
Programmer's
Companion

for
Sony CLIÉ™ Handheld

CLIÉ Software Development Kit Release 2.0

Trademark Ownership Information

CLIÉ, Memory Stick and Jog Dial are registered trademarks of Sony Corporation.
Palm Computing, Graffiti, HotSync are registered trademarks of Palm, Inc. and subsidiary companies of Palm in the
United States and other countries.
Palm OS is a registered trademark of Palm, Inc. in the United States.
Windows is a registered trademark of Microsoft Corporation in the United States and other countries.
All other trademarks are property of their respective owners.

Notes

Reproduction in whole or in part without written permission is prohibited.
All rights reserved.

Programmer's Companion for Sony CLIÉ™ Handheld 3

Table of Contents 3

 Introduction 7
Purpose of this manual . 7
How to read this manual . 7

PEG-N700C, N710C . 7
PEG-S300, S500C . 8
Audio Adapter(PEGA-SA500) . 8

CLIÉ™ SDK Components . 8
Directory components . 8
Header file . 9

Software Development Environment . 9
CodeWarrior for Palm Release 6. 9
Palm OS SDK 3.5 . 10
Palm OS Emulator. 10

Installing CLIÉ™ SDK . 10
Copying SDK. 10
Adding an access path . 10
Adding a header file. 10

History . 11

Part I : System Function 13

1 Palm OS® System Features 15
Features . 15

Feature Creator . 15
Feature number . 15

Notification . 20
Event . 20
Broadcaster . 21

Device Detection . 22
How to distinguish the CLIÉ™ Handheld . 22
Availability of functions . 22
Availability of library. 23

2 Jog Dial™ Navigator 25
Jog Event . 25

Virtual key . 25
Event interval. 26
Event processing . 28

Note . 29

Table of Contents

4 Programmer's Companion for Sony CLIÉ™ Handheld

Determining If Function Is Available . 29

3 JogAssist 31
JogAssist processing . 31

vchrJogBack Assist . 31
vchrJogUp/Down Assist . 33
vchrJogPushedUp/PushedDown Assist . 35
vchrJogPush/PushRepeat/Release Assist . 36

JogAssist Mask Specification . 37
JogAssist Mask Data . 37
JogAssist Mask Pointer . 38
JogAssist Mask Owner . 39
Support to JogAssist mask system. 40

Notes. 40
Determining If JogAssist Is Available . 40
Preferences . 40
Mask Setting. 41

4 Audio Remote Control 43
Remote Control Event. 43

Virtual Key . 43
Event intervals . 44
Event processing . 46

Notes. 47
Determining If Audio Remote Control Is Available . 47
Auto-On . 47
Application of Remote Control Interface. 47

5 Hold 49
Hold User Interface . 49

Turn on and off . 49
Hold on spec. 49

Application Interface . 50
Getting current Hold status. 50
Receiving change in Hold status . 51

Note. 52
Determining If Function Is Available . 52

6 Memory Stick® File System 53
File System Format . 53

Logical Format . 53
Directory structure . 53
Name Specification. 54

Programmer's Companion for Sony CLIÉ™ Handheld 5

Volume and Slot . 54
File System Notification . 55

Event . 55
The sequence of event issuing . 55
handled Field . 56
Handling Instructions for Notification . 57

File System API . 57
Data Structure . 58
Constants . 59
File Stream APIs . 61
Directory APIs . 72
Volume APIs . 75
Utility APIs . 79
Expansion APIs . 83

Note . 85
Determining If File System Is Available . 85

Part II : Library 87

7 High Resolution : Sony HR Library 89
Screen mode and API . 89

Glossary . 89
Incompatibility of existing API for High Resolution . 90
High Resolution and existing API . 93
Font setting . 98
Drawing on an off-screen window in high-resolution mode 100

Using High resolution API . 103
Library loading . 103
Switching screen mode . 104

High-Resolution API. 107
System API . 107
Window API . 108
Bitmap API. 129
Fonts API. 130

Notes . 131
Determining If High Resolution Library Is Available 131
Sub-Launch . 131
Switching a screen mode . 132
BmpCompress. 132
About High Resolution Assist . 132

8 Memory Stick® Audio : Sony Msa Library 135
Configuration and Function . 135

Configuration . 135

6 Programmer's Companion for Sony CLIÉ™ Handheld

MSA I/F funcitonal . 135
MsaOut functional. 136
Glossary . 137

Audio Interface (MSA I/F) reference . 138
Data Structures. 138
System I/F . 147
Obtaining information I/F . 149
Specifying information I/F . 156
Playback control I/F . 160
Utility I/F . 162

MsaOut API. 163
Data structure . 163
Audio output control I/F . 169
Beep output control I/F . 174
Setting information retrieval I/F. 175
Audio output information retrieval I/F . 179
System I/F . 181

Notes. 181
Determining If Memory Stick Audio Library Is Available. 181
Power Auto-Off . 181

9 Audio remote control : Sony Rmc Library 183
Audio remote control API . 183

Data structure . 183
Audio remote control functions . 185
The constants defined by an application . 188

Note. 188
Determining If Audio Remote Control Library Is Available 188

A User Interface Guideline 189

B External Interface 193
Cradle interface. 193

Pin Specification . 193
Audio remote control interface . 194

Pin Specification . 194

Index 195

Introduction
Purpose of this manual

Programmer's Companion for Sony CLIÉ™ Handheld 7

Introduction
Purpose of this manual

This manual describes the essential information on the software development of the
CLIÉ™. It enables users to utilize the original features of the CLIÉ™ Handheld and to
promote software development.
In addition, it is recommended to read the Palm OS Programmer’s Companion and Palm
OS SDK Reference provided by Palm, Inc.

How to read this manual
This manual provides a guideline that is newly adopted function of the CLIÉ™ Handheld
on the Palm platform and the reference information for development.
The list below shows the new features and the pages to refer to for more information or
details.

PEG-N700C, N710C

Original feature Pages to refer

Jog Dial Chapter 1, “Features.”
Chapter 2, “Jog Dial™ Navigator.”

JogAssist Chapter 1, “Features.”
Chapter 2, “Jog Dial™ Navigator.”
Chapter 3, “JogAssist.”

Memory Stick file system Chapter 1, “Features.”
Chapter 1, “Notification.”
Chapter 6, “Memory Stick® File System.”

Hold Chapter 1, “Features.”
Chapter 1, “Notification.”
Chapter 5, “Hold.”

High resolution Chapter 1, “Features.”
Chapter 7, “High Resolution : Sony HR Library.”

Introduction
CLIÉ™ SDK Components

8 Programmer's Companion for Sony CLIÉ™ Handheld

PEG-S300, S500C

Audio Adapter(PEGA-SA500)

CLIÉ™ SDK Components
Directory components
The CLIÉ™ SDK Release2.0 is composed of the following directories

Sony SDK Support\

Rel2.0\

Documentation\ An explanation of the CLIÉ™ SDK.
Incs\ Root directory of the header file of the CLIÉ™ SDK

System\ Stores the system related header file of the CLIÉ™
SDK

Libraries\ Stores the library related header file of the CLIÉ™
SDK

Memory Stick audio Chapter 1, “Features.”
Chapter 1, “Notification.”
Chapter 8, “Memory Stick® Audio : Sony Msa Library.”

Audio remote control Chapter 1, “Features.”
Chapter 1, “Notification.”
Chapter 9, “Audio remote control : Sony Rmc Library.”

Original feature Pages to refer

Jog Dial Chapter 1, “Features.”
Chapter 2, “Jog Dial™ Navigator.”(Haven't responded to
Back key.)

Memory Stick file system Chapter 1, “Features.”
Chapter 1, “Notification.”
Chapter 6, “Memory Stick® File System.”

Original feature Pages to refer

Memory Stick audio Chapter 1, “Features.”
Chapter 1, “Notification.”
Chapter 7, “Memory Stick® Audio : Sony Msa Library.”

Introduction
Software Development Environment

Programmer's Companion for Sony CLIÉ™ Handheld 9

Header file
These are the header files stored in Inc directory.

Incs Directory
SonyCLIE.h All the header files are integrated in this file. Including this

automatically includes the rest.

System Directory
SonySystemPublic.h

The system related header files are integrated in this file.

ExpansionMgr.h For Expansion Manager that controls a media in extension slot.

VFSMgr.h For VFS Manager used to operate VFAT file system in
MemoryStick media.

SonyErrorBase.h Error codes unique to CLIÉ™ Handheld are defined.

SonyHwrOEMIDs.h Constants unique to CLIÉ™ Handheld are defined.

SonyKeyMgr.h For key events unique to CLIÉ™ Handheld and Key Manager.

SonyChars.h Jog Dial-related constants are defined.

SonyJogAssist.h Constants for JogAssist function are defined.

SonySystemResources.h
System resource of CLIÉ™ Handheld is defined.

SonySystemFtr.h Features unique to CLIÉ™ Handheld are defined.

SonyNotify.h For Notification Manager that notifies status change in CLIÉ™
Handheld.

Library Directory
SonyLibPublic.h The library related header files are integrated in this file.

SonyHRLib.h For High-resolution library.

SonyMsaLib.h For Memory Stick library.

SonyRmcLib.h For audio remote control library.

Software Development Environment
Software development should be made on WindowsPC. These are the required
development tools.

CodeWarrior for Palm Release 6
Development tool for applications that run on C/C++ -supported Palm OS devices. This
contains Integrated Development Environment (IDE) and all the tools required to develop
Palm OS applications. CodeWarrior for Palm Computing platform is the recommended

Introduction
Installing CLIÉ™ SDK

10 Programmer's Companion for Sony CLIÉ™ Handheld

development environment for CLIÉ™ applications. For more information, visit the Web
site of Metrowerks.co. at <http://www.metrowerks.com/>.

Palm OS SDK 3.5
CLIÉ™ SDK is for proprietary features of the CLIÉ™ Handheld. For Palm OS basic
development information including Palm OS SDK, visit the Palm OS platform Web site at
<http://www.palmos.com/>.

Palm OS Emulator
Palm OS emulator (POSE) is software that emulates PalmOS platform devices including
the CLIÉ™ Handheld. This emulates Palm OS environment by using ROM image. Your
application can be tested with added functions such as error checking and debugging
before performing validation on real machine. The emulator and ROM image of CLIÉ™
Handheld are available at the CLIÉ™ Developer Web site at
<http://www.us.sonypdadev.com/>.

Installing CLIÉ™ SDK
Copying SDK
Copy directory structure under Sony SDK Support to CodeWarrior directory
(example: C:\Program Files\Metrowerks\CodeWarror for Palm OS
R6).

Adding an access path
To add a path to allow access to CLIÉ™ SDK header files using CodeWarrior for Palm
Release6.0:

1. Open a project. From [Edit] menu, select [Starter Settings].
2. In the <Starter Settings> dialogbox, select “Access Paths” under “Target” on

<Target Settings Panels>. Then, select “System Paths" on <Access Paths>. Click
[Add] button.

3. In the “Please Select an Access Path” dialogbox, select “Compiler Relative”
from <Path Type> list. Next, select “Sony SDK Support” under CodeWarrior
directory and click [OK] button.

4. Check that “{Compiler}Sony SDK Support” is added to <System Paths>. Click
[Save] button. Click at upper right corner to quit.

Adding a header file
To add CLIÉ™ SDK header files to a source file, type in “SonyCLIE.h” as below.

#include <PalmOS.h>
#include <SonyCLIE.h>
#include "StarterRsc.h"

http://www.metrowerks.com/
http://www.palmos.com/
http://www.us.sonypdadev.com/

Introduction
History

Programmer's Companion for Sony CLIÉ™ Handheld 11

History
Version 1.0 - available on PEG-N700C

[2001/4/9]

Version 1.1 - available on PEG-N710C
[2001/6/6]

Version 1.2 - available on System Update Program for PEG-N700C
[2001/6/18]

Version 1.3 - available on Audio Adapter(PEGA-SA500)
[2001/9/18]

Version 1.3a - corrected example at “Library loading” on page 103
[2001/10/16]

Introduction
History

12 Programmer's Companion for Sony CLIÉ™ Handheld

Part I: System Function

Palm OS® System Features
Features

Programmer's Companion for Sony CLIÉ™ Handheld 15

1
Palm OS® System
Features

Features
This section describes the features that indicate the system status in CLIÉ™ Handheld.
For more details on a feature, see the relevant Palm OS documents.

Feature Creator
To access the features unique to CLIÉ™ Handheld, use sonySysFtrCreator as a
feature creator. For a creator argument of FtrGet() and FtrSet()API, specify
sonySysFtrCreator and for featureNum argument, specify a value described in
“Feature number”.

Feature number
This section provides the descriptions of the feature numbers defined in CLIÉ™
Handheld.
Note that previous models do not offer these features, so an application should not
determine that a device is NOT a CLIÉ™ Handheld even if the feature is NOT present.
(However, if any of the features exists, a device can be regarded as CLIÉ™ Handheld.)

sonySysFtrNumSysInfoP
This gets a pointer to the structure, SonySysFtrSysInfoType, where system
information such as usable functions and current hardware status is stored.
As for featureNum argument of FtrGet(), specify sonySysFtrNumSysInfoP.
The pointer will not be changed by reset.
An application should not write in the location shown by the pointer.

SonySysFtrSysInfoType structure
typedef struct S_SonySysFtrSysInfo {

UInt16 revision;
UInt16 rsv16_00;
UInt32 extn; /* loaded extension */
UInt32 libr; /* loaded libr */

Palm OS® System Features
Features

16 Programmer's Companion for Sony CLIÉ™ Handheld

UInt32 rsv32_00;
UInt32 rsv32_01;

void *rsvP;
UInt32 status; /* current system status */
UInt32 msStatus; /* current MemoryStick status */
UInt32 rsv32_10;

UInt16 msSlotNum; /* number of slot of MemoryStick */
UInt16 jogType;
UInt16 rmcType;

} SonySysFtrSysInfoType;

Field Descriptions revision Revision number of SonySysFtrSysInfoType.
The number increases by one every time a new member is
added. The number is 1 at default.

rsv16_00 Reserved. Not usable.

extn Bit field that indicates the loaded and working extension.
When a particular extension is working, the corresponding bit
will be set (1).

There are four bits:

sonySysFtrSysInfoExtnJog

Jog (and also Back button, if available) is usable.

sonySysFtrSysInfoExtnRmc

Remote control is usable.

sonySysFtrSysInfoExtnHold

Hold function is usable.

sonySysFtrSysInfoExtnJogAst

JogAssist is usable.

For the specification of each extension, see the corresponding
document.

libr Bit field that indicates a loaded and usable library.
When particular library is already loaded by a system, the
corresponding bit will be set (1).
Every library works properly only on a device that supports a
corresponding function, and with a non-supporting device, a
bit field will usually not be set even if a library is saved in a
device using HotSync technology. However, your application
should not rely on this setting to determine whether a device
supports a particular function.

Here are the bits:

Palm OS® System Features
Features

Programmer's Companion for Sony CLIÉ™ Handheld 17

sonySysFtrSysInfoLibrHR

Sony HR Library is usable.

sonySysFtrSysInfoLibrMsa

Sony Msa Library is usable.

sonySysFtrSysInfoLibrRmc

Sony Rmc Library is usable.

For the specification of each Library, see the corresponding
document.

rsv32_00 Reserved. Not usable.

rsv32_01 Reserved. Not usable.

rsvP Reserved. Not usable.

status The bit field that indicates the system status which changes
dynamically.

There are two bit fields:

sonySysFtrSysInfoStatusHP

Headphones are connected.

sonySysFtrSysInfoStatusHoldOn

Hold feature is ON.

msStatus The bit field that shows the status of Memory Stick.
There are four bit fields
Note that ExpansionMgr/VFSMgr might not recognize the
setting. For example, API of VFSMgr might fail to access MS
even though the set bit indicates MS is inserted; this is due to
the specifications of PalmOS.

sonySysFtrSysInfoMsStatus1MS

Memory Stick media is inserted in slot 1.
Regardless of the state of the other bits, this will be set
when Memory Stick media is inserted in the slot. This
means the other bits are not necessarily set just
because this bit is set.

sonySysFtrSysInfoMsStatus1StrgMS

Physically formatted Memory Stick media storage
type is inserted in slot 1. Note that this does not ensure
the validity of logical format (and correct mounting of
VFS.)

sonySysFtrSysInfoMsStatus1MGMS

Memory Stick media that supports MG(MagicGate™)
is inserted in slot 1.

Palm OS® System Features
Features

18 Programmer's Companion for Sony CLIÉ™ Handheld

Note that the setting of this bit has nothing to do with
MG authentication or status of
sonySysFtrSysInfoMsStatus1StrgMS bit.

sonySysFtrSysInfoMsStatus1WP

Write-protected Memory Stick media is inserted in
slot 1.
Note that the setting of this bit has nothing to do with
physical formatting or MG authentication.

You can use either msStatus or Expansion Manager/VFS
Manager. However, feature has these advantages:

- No need to use VFS Manager APIs and Notification

- Able to get the information that cannot be obtained by VFS
Manager APIs.

- Able to get accurate information of SlotDriver level (PalmOS
3.5 can fail to issue a notification, in that case VFS Manager
may not be able to detect the insertion of a card).

rsv32_10 Reserved. Not usable.

msSlotNum Number of Memory Stick slots

jogType Type of Jog Dial (including Back button) feature incorporated
to a device.
The values are as follows:

sonySysFtrSysInfoJogTypeNone

Jog Dial navigator is not incorporated.

sonySysFtrSysInfoJogType1

2D type(Up/Down and Push)

sonySysFtrSysInfoJogType2

2D type with Back key

rmcType Type of remote control incorporated into a device.
The values are as follows:

sonySysFtrSysInfoRmcTypeNone

Remote control is not incorporated.

sonySysFtrSysInfoRmcType1

AD conversion type with 6 buttons.

sonySysFtrSysInfoRmcType2

Audio Adapter type.

Palm OS® System Features
Features

Programmer's Companion for Sony CLIÉ™ Handheld 19

sonySysFtrNumStringInfoP
This gets a pointer to the structure, SonySysFtrStringInfoType, where a character
string that represents system property is stored.
As a featureNum, argument of FtrGet(), specify
sonySysFtrNumStringInfoP.
An application should not write in the location shown by the pointer.
Every character string has fixed length; If charcter string is shorter than the specified
length, it will be ended with Null(0x00). In some cases, only null may be put in.

SonySysFtrStringInfoType structure
typedef struct S_SonySysFtrStringInfo {

Char maker[16]; /* 0/0x0000: ex. "Sony Corp." */
Char model[16]; /* 16/0x0010: ex. "PEG-S300" */
Char ship[16]; /* 32/0x0020: ex. "Japan" */
Char os[32]; /* 48/0x0030: ex. "Palm OS 3.5" */
Char cpu[32]; /* 80/0x0050: ex. "Motorola..." */
Char comment[128]; /* 112/0x0070: ex. "Personal..." */
UInt16 code; /* 240/0x00F0: code for comment2 */
Char comment2[254];/* 242/0x00F2: ex. "SonyCLIE..." */

/* 496/0x01F0: */
} SonySysFtrStringInfoType;

Field Descriptions Values in parentheses indicate character string length (in bytes):

maker[16] manufacturer

model[16] Model No.

ship[16] Addressee

os[32] OS name

cpu[32] CPU name

comment[128] Comments in ASCII

code Character code of comment2.

Here are the codes:

sonySysFtrStingInfoCodeASCII

ASCII

sonySysFtrStingInfoCode8859

Modified 8859-1

sonySysFtrStingInfoCodeMSJIS

MS-JIS

comment2[254] Comment written in the set code.

Palm OS® System Features
Notification

20 Programmer's Companion for Sony CLIÉ™ Handheld

sonySysFtrNumJogAstMaskP
Return the address to specify a pointer of Mask data that controls the JogAssist function.
The address doesn’t be changed after reset.
See “JogAssist Mask Pointer” for more information.

sonySysFtrNumJogAstMOCardNoP
Return the address for a the card number of application to specify Mask data that controls
the JogAssist function.
The address doesn’t need to be changed after reset.
See “JogAssist Mask Owner” for more information.

sonySysFtrNumJogAstMODbIDP
Return the address for the database ID of application to specify Mask data that controls
JogAssist function.
The address doesn’t need to be changed after reset.
See “JogAssist Mask Owner” for more information.

Notification
On the CLIÉ™ Handheld, original Notifications are issued other than those of issued by
PalmOS. This section explains original Notifications.
See Palm OS document for details on Notification.

Event
The following are explanations of event constant specified as available notification on the
CLIÉ™ Handheld.
The application shouldn’t determine the device is CLIÉ™ Handheld, based on the fact
that these events are received.

sonySysNotifyMsaStatusChangeEvent
issued when replaying mode of Memory Stick audio is
changed.
Defined using SonyNotify.h
For receiving, ensure broadcaster field of
SysNotifyParamType is
sonySysNotifyBroadcasterCode.
For details, see “Memory Stick® Audio : Sony Msa Library”.

Palm OS® System Features
Notification

Programmer's Companion for Sony CLIÉ™ Handheld 21

sonySysNotifyMsaEnforceOpenEvent
issued when Sony Msa Library is requested to suspend.
Defined using SonyNotify.h.
For receiving, ensure broadcaster field of
SysNotifyParamType is
sonySysNotifyBroadcasterCode.
For details, see “Memory Stick® Audio : Sony Msa Library”.

sonySysNotifyHoldStatusChangeEvent
issued when Hold condition is changed.
Defined using SonyNotify.h.
For receiving, ensure broadcaster field of
SysNotifyParamType is
sonySysNotifyBroadcasterCode.
For details, see “Hold”.

Broadcaster
sonySysNotifyBroadcasterCode is used as broadcastser, on
sonySysNotifyMsastatusChangeEvent,
SonySysNotifyMsaEnforceOpenEvent, and
SonySysNotifyHoldStatusChangeEvent.
sysFileCExpansionMgr is used as broadcaster on
sysNotifyCardInsertedEvent and sysNotifyCardRmovedEvent.
SysFileCVFSMgr is used as broadcaster on SysNotifyVolumeMountedEvent
and sysNotifyVolumeUnmountedEvent.
There is no argument to specify broadcaster when registering notification handler so that
different broadcasters may broadcast same event. Thus, for notification handler, it’s
preferable to confirm the broadcaster before transaction as the code indicated below.

The example of SonySysNotifyHoldStatusChangeEvent

static Err PrvHoldNotificationHandler(SysNotifyParamType
*notifyParamsP)
{

if (notifyParamsP->broadcaster !=
sonySysNotifyBroadcasterCode)
return errNone;

if (((SonySysNotifyHoldStatusChangeDetailsP)
(notifyParamsP->notifyDetailsP))->holdOn) {
/* Hold is about to be ON */

} else {
/* Hold is about to be OFF */

}
...

Palm OS® System Features
Device Detection

22 Programmer's Companion for Sony CLIÉ™ Handheld

Device Detection
How to distinguish the CLIÉ™ Handheld
To distinguish the CLIÉ™ Handheld, use the feature number provided by Palm OS by
comparing the value with the one defined with SonyHwrOEMIDs.h. Specify
sysFtrCreator for creator parameters of FtrGet().
The chart indicates the relation between feature numbers and specified values of the
CLIÉ™ Handheld that have been released. Each constant is defined with
SonyHwrOEMIDs.h

Below are example codes to distinguish the CLIÉ™ Handheld in practice.

#include <SonyCLIE.h>
...
UInt32 val;
if(!FtrGet(sysFtrCreator, sysFtrNumOEMCompanyID, &val)) {

if (val == sonyHwrOEMCompanyID_Sony) {
/* device might be CLIE */

} else {
/* device might not be CLIE */

}
} else {

/* something wrong ... */
}

Availability of functions
To determine whether a device provides a particular function unique to CLIÉ™ Handheld,
you set Feature. Here is an example code that determines whether the Hold function is
available or not.

#include <SonyCLIE.h>
...
SonySysFtrSysInfoP infoP;
if(!FtrGet(sonySysFtrCreator, sonySysFtrNumSysInfoP,
(UInt32 *)&infoP)) {

Model sysFtrNumOEMCompanyID sysFtrNumOEMHALID sysFtrNumOEMDeviceID

PEG-S300 sonyHwrOEMCompanyID_Sony sonyHwrOEMHALID_S300 sonyHwrOEMDeviceID_S300

PEG-S500C sonyHwrOEMCompanyID_Sony sonyHwrOEMHALID_S500C sonyHwrOEMDeviceID_S500C

PEG-N700C
PEG-N710C sonyHwrOEMCompanyID_Sony sonyHwrOEMHALID_N700C sonyHwrOEMDeviceID_N700C

Palm OS® System Features
Device Detection

Programmer's Companion for Sony CLIÉ™ Handheld 23

if (infoP && (infoP->extn & sonySysFtrSysInfoExtnHold)) {
/* Hold function is available */

} else {
/* Hold is NOT available */

}
} else {

/* something wrong, maybe not CLIE */
}

For other functions, it’s possible to detect the availability. See each explanation for details.

Availability of library
A particular library can be used only in a device that supports the corresponding function,
which means the system that runs on that device automatically loads the library.
To determine whether a library is loaded, you check on Feature.
Here is an example code that determines whether the Audio remote control function is
available or not.

#include <SonyCLIE.h>
...
SonySysFtrSysInfoP infoP;
if(!FtrGet(sonySysFtrCreator, sonySysFtrNumSysInfoP,
(UInt32 *)&infoP)) {

if (infoP && (infoP->libr & sonySysFtrSysInfoLibrRmc)) {
/* ‘Sony Rmc Library’ has been loaded */

} else {
/* Rmc is not available */

}
} else {

/* something wrong, maybe not CLIE */
}

If this bit is not specified, the loaded library may not work properly.
Even though its specified, the library is likely to be unloaded.

Palm OS® System Features
Device Detection

24 Programmer's Companion for Sony CLIÉ™ Handheld

Jog Dial™ Navigator
Jog Event

Programmer's Companion for Sony CLIÉ™ Handheld 25

2
Jog Dial™ Navigator
The Jog Dial navigator is an original feature of the CLIÉ™. Here, we describes the jog
events which occur when operations are performed using the Jog Dial navigator.

Jog Event
Virtual key
When a certain operation is performed using the Jog Dial navigator, keyDownEvent
will be issued. At this moment, data field of eventType is
_KeyDownEventType; the value of the pressed key is stored in chr field;
commandKeyMask bit is set in modifiers field.
These are the cords set in chr field.
For more information about keyDownEvent or events in general, refer to Palm OS
documentation.

vchrJogUp Issued when Jog Dial navigator is rotated clockwise.
One event is generated on each Jog Dial click with the
minimum event interval of 6 SystemTicks.

vchrJogDown Issued when Jog Dial navigator is rotated counter-clockwise.
One event is generated on each Jog Dial click with the
minimum event interval of 6 SystemTicks.

vchrJogPush Issued when Jog Dial button is pressed.
This will not be issued when Jog Dial navigator is pressed
continuously or rotated while being pressed.

NOTE: In SonyChars.h (previous version), this event was defined as
vchrJogPress. This code is still usable but we strongly recommned to use
vchrJogPush.

vchrJogPushRepeat Issued when Jog Dial is pressed continuously.
autoRepeatKeyMask in modifiers field will be
automatically set. This event will not be issued when Jog Dial
navigator is pushed and rotated at the same time.

Jog Dial™ Navigator
Jog Event

26 Programmer's Companion for Sony CLIÉ™ Handheld

NOTE: In SonyChars.h (previous version), this event was defined as
vchrJogPressRepeat. This code is still usable but we strongly recommned
to use vchrJogPushRepeat.

vchrJogRelease Issued when Jog Dial navigator is released.

vchrJogPushedUp Issued when Jog Dial navigator is pushed in and rotated
clockwise.
One event is generated on each JogDial click with the
minimum event interval of 6 SystemTicks.

NOTE: In SonyChars.h (previous version), this event was defined as
vchrJogPageUp. This code is still usable but we strongly recommned to use
vchrJogPushedUp.

vchrJogPushedDown Issued when Jog Dial navigator is pushed in and rotated
counter-clockwise. One event is generated on each Jog Dial
click with the minimum event interval of 6 SystemTicks.

NOTE: In SonyChars.h (previous version), this event was defined as
vchrJogPageDown. This code is still usable but we strongly recommned to
use vchrJogPushedDown.

vchrJogBack Issued when Back Button is pressed.
When Jog Dial navigator is pressed continuously,
autoRepeatKeyMask in modifiers field will be set
and this functions as repeat key.
(This will not issued in PEG-S300)

NOTE: Note that this event key is made for the system and not for an
application. In case of use, the processing should conform to the guideline to
keep user interface consistent.
The code might be processed by the system extension so your application
should not assume this event will be issued.

Current Palm OS cannot issue key event when key queue is full. For example, there can be
a case that vchrJogRelease is not issued even though vchrJogUp has. So, the
processing of an user command should always come before acceptance of a certain event.

Event interval
Now, we will show you how the issued events are related to one another.
In the description, Tick (Ticks) denotes system tick and this is counted as 10msec in the

Jog Dial™ Navigator
Jog Event

Programmer's Companion for Sony CLIÉ™ Handheld 27

current Palm OS. For more about the system tick, refer to Palm OS documentation.
Note that the interval control has an error of +/- 1 tick.

1. Push/PushRepeat/Release

If the Jog Dial navigator has kept pressed down, the first
vchrJogPushRepeat is generated 50 ticks later, then every 12 ticks,
vchrJogPushRepeat is generated.

2. Up(Down)

vchrJogUp is generated whenever rotating the Jog Dial navigator one time.
If rotating is fast, (under 6 ticks in between one click) that the event couldn't be
generated.

Push

time

vchrJogPush

Release

vchrJogPushRepeat vchrJogRelease

initDelay=50Ticks repeat=12Ticks

Up

time

vchrJogUp

Up UpUp Up Up

vchrJogUp

min>=6Ticks

vchrJogUp…..

1Click

Jog Dial™ Navigator
Jog Event

28 Programmer's Companion for Sony CLIÉ™ Handheld

3. Push/PushedUp(PushedDown)/PushRepeat/Release

If user rotates the Jog Dial navigator while its button is being pressed,
vchrJogPushRepeat isn’t generated1. If rotating stops while the button is
being pressed, vchrJogPushRepeat starts to be regenerated after the button
is pressed and kept still during the initial delay, initDelay.

Event processing
Example codes of jog event are given below.

#include <SonyCLIE.h>
...
Boolean JogHandleEvent (EventPtr eventP) {
Boolean handled = false;
if (eventP->eType == keyDownEvent) {

if (EvtKeydownIsVirtual(eventP)) {
if (eventP->data.keyDown.chr == vchrJogUp) {

/* do ‘Up’ */
} else if (eventP->data.keyDown.chr == vchrJogDown) {

/* do ‘Down’ */
} else {

...
}

}
}

time

vchrJogPush

vchrJogPushRepeat

vchrJogRelease

Push ReleasePushedUp

vchrJogPushedUp

PushedUp

initDelay=50Ticks initDelay=50Ticks

vchrJogPushRepeat

1. On some divice, vchrJogPushRepeat is issued.

Jog Dial™ Navigator
Note

Programmer's Companion for Sony CLIÉ™ Handheld 29

Note
Determining If Function Is Available
The following steps determine whether it’s the right device equipping with the Jog Dial
navigator to issue the key down event that responds to each operation.

1. Is it CLIÉ™?
If you find the CLIÉ™ as the way shown in “How to distinguish the CLIÉ™
Handheld”, keyDownEvent that responds to Jog Dial operations is issued1.
Yet, not specified whether vchrJogBack event is issued.

2. Has the jogType of SysInfo feature been set?
Obtain the feature shown in “Feature number” to determine the types of Jog Dial
navigator. If the information is obtained and that value isn’t
sonySysFtrSysInfoJogTypeNone, keyDownEvent that responds to
the Jog Dial is issued.

If the value is sonySysFtrSysInfoJogType2, the event
responds to back key is issued.

If no feature is obtained, determine whether it’s the CLIÉ™ or not by step 1.

1. There is no guarantee every CLIÉ™ is equipped with Jog dial even in the future.

Jog Dial™ Navigator
Note

30 Programmer's Companion for Sony CLIÉ™ Handheld

JogAssist
JogAssist processing

Programmer's Companion for Sony CLIÉ™ Handheld 31

3
JogAssist
Some models offer JogAssist functionality. This functionality enables the use of the Jog
Dial™ navigator in applications that do not support the Jog Dial control is running.
With applications that properly support the Jog Dial navigator, JogAssist automatically
suspends itself from processing jog events. By minimizing the number of Jog-related
tasks to be handled explicitly by the application, this function is not only useful to the user
but also to the application developer.
Note that specifications are subject to change without notification.

JogAssist processing
JogAssist is designed to process unmasked jog events instead of an application and to
increase user-friendliness. How JogAssist processes each jog event is described below.

vchrJogBack Assist
vchrJogBack is generated when the Back key is pressed. Normally, this event is
processed by a system utility such as JogAssist. This allows the user to perform operations
such as returning to the previous screen or cancelling an operation in any application.

NOTE: To keep user interfaces consistant, applications should not mask the
Back key. If the Back key is masked, the application is responsible for
providing Back key functionality equivalent to that of JogAssist.

A) No pop-up list, cursor, menu or list displayed
• Response

Button Control is pressed. / System returns to the Home screen.

• Handling
One of the usable and visible Button Controls in the current form is selected. The
Button will be selected in the order of priorities shown below. If there is more
than one button with the same priority level, the one with the smaller numerical
index value will be selected. If these buttons do not exist, the application will quit
to return to the Home screen

JogAssist
JogAssist processing

32 Programmer's Companion for Sony CLIÉ™ Handheld

NOTE: For JogAssist to utilize this event, applications should have buttons
with the above labels in every form.

B) Pop-up list displayed
• Response

Pop-up list is closed.

• Handling
The displayed pop-up list is closed. The current item will be the one selected.

C) Cursor displayed.
• Response

Cursor disappears.

• Handling
The displayed cursor will disappear if the back button is pressed for less than one
second.

D) Menu displayed.
• Response

Menu disappears.

• Handling
The menu closes.

E) List displayed.
• Response

Goes back to the previously selected item in the list.

• Handling
After moving the selection cursor by rotating the Jog Dial navigator, the selection
returns to the previously selected item if the back button is pressed before
pressing the Jog Dial navigator.

Keeping the Back button pressed provides the functionality described below. Note that the
response and handling may change depending on the user settings in the Jog Preferences
panel.

Check box for power off is checked in Jog panel
F) Back key pressed longer than 1 second.

(High priority) -Cancel, Previous

-No, Close

-Done

(Low priority) -Yes, OK

JogAssist
JogAssist processing

Programmer's Companion for Sony CLIÉ™ Handheld 33

• Response
Shut off the power.

• Handling
When Back key is pressed for longer thatn 1 second, the system turns the power
off. When the key is released in less than 1 second, normal Back key processing
is performed.

Check box for displaying cursor and menu is checked in Jog panel
G) No pop-up list, cursor or menu is displayed, and the Back button is pressed for

more than 1 and less than 2 seconds.
• Response

Cursor displays.

• Handling
Cursor appears when back key is pressed longer than 1 second.

H) No pop-up list, cursor, or menu is displayed and the Back button is pressed for
more than 2 second.
Or, with the cursor displayed, the Back button is pressed for more than 1 second.

• Response
Menu displays.

• Handling
The menu appears when the Back button is pressed for more than 2 seconds.
After the first second, the cursor will be displayed temporarily but will disappear
before the menu appears.
If the cursor is already displayed, the menu appears when the back button is
pressed for more than only 1 second.

I) With the “i” icon displayed, the back button is pressed for more than 2 seconds.
• Response

Starts online help

• Handling
In a modal form with the “i” icon, online help appears when the Back button is
pressed for more than 2 seconds or for more than 1 second if the cursor is
displayed.

NOTE: To keep the user interface consistent, an application should not have
an interface which requires continuous pressing of Back Button.

vchrJogUp/Down Assist
vchrJogUp and vchrJogDown are generated when the Jog Dial navigator is rotated up
or down. Being a frequently used event, this is generally used to move the selection cursor
or to scroll text. Every application might have a slightly different user interface.

JogAssist
JogAssist processing

34 Programmer's Companion for Sony CLIÉ™ Handheld

JogAssist is made to provide an independent and general user interface, so the use of this
event is not limited to linguistic meaning of Up/Down.

A) No pop-up list, cursor, menu, or list displayed
• Response

Moves the scroll car up/down in a scroll bar or performs an operation equivalent
to pushing the up/down scroll buttons.

• Handling
A scroll bar that is usable and visible in the current Form will be selected and its
scroll car moves in response to the rotating the Jog Dial navigator up or down.
When a scroll bar is not present, the Jog Dial navigator will act the same as
pushing the up/down scroll buttons. If there is more than one scroll bar in a
Form, the one with the younger index will be selected.

NOTE: To utilize this event, an application should not have more than one
scroll bar in a form.

B) Pop-up list displayed
• Response

Selection marker moves.

• Handling
Changes the selected item in a pop-up list.

vchrJogUp causes the selection (highlight) to move to one item up.
vchrJogDown causes the selection to move to one item down.

C) Brightness/Contrast control form displayed
• Response

Brightness control bar moves.

• Handling
When the brightness/contrast control dialog box is displayed, this processing
precedes A) and B). vchrJogUp causes the bar to move to the right (brightness/
contrast increases); vchrJogDown causes it to move to the left (brightness/
contrast decreases).
In actual processing, the chr field of the keyDown event is replaced with
pageUpChr for vchrJogUp and with pageDownChr for vchrJogDown.

D) Cursor displayed.
• Response

Cursor moves.

• Handling
Moves the cursor if displayed. Selectable objects are buttons, checkboxes, popup
triggers, push buttons, selector triggers, and repeating buttons.

JogAssist
JogAssist processing

Programmer's Companion for Sony CLIÉ™ Handheld 35

E) Menu displayed.
• Response

The selection cursor in the menu is moved.

• Handling
Moves the selection cursor in the menu if the menu is displayed.

F) List displayed.
• Response

Moves the selection cursor in the list.

• Handling
Moves the highlighted part in the list. Note that the highlighted item is not
selected until the Jog Dial navigator is pressed and released.

vchrJogPushedUp/PushedDown Assist
The events of Jog Dial being pushed up or down. These events are less used as compared
to vchrJogUp/Down and their use might greatly differ depending on each application’s
needs.
Regarding these as complementary event of vchrJogUp/Down, their working is similar
to that of vchrJogUp/Down.

A) No pop-up list displayed
• Response

Moves the scrollCar up or down (by one page at a time) in a ScrollBar.

• Handling
See vchrJogUp/Down.

The scroll car moves to the previous or to the next page corresponding to the
direction of the jog rotation. The size of a “page” is defined by the pageSize in a
ScrollBar object.

NOTE: To utilize this event, an application should not have more than one
scroll bar in a form.

B) Pop-up list displayed
• Response

No response.

• Handling
A nilEvent is generated so that this event will not be passed to the system event
handler to close the pop-up list.

C) Brightness control form displayed
• Response

Brightness control bar moves.

JogAssist
JogAssist processing

36 Programmer's Companion for Sony CLIÉ™ Handheld

• Handling
See vchrJogUp/Down.

vchrJogPush/PushRepeat/Release Assist
vchrJogPush, vchrJogPushRepeat, and vchrJogRelease events are all
related to the Jog Dial being pushed down. They are generally used to execute commands,
so their uses differ depending on each application’s needs. JogAssist must offer the user
interface not depending on an application. For this reason, it is used only to select a
particular item in the list. Note that the selection is not set until the release of a pushed Jog
Dial navigator.

A) No pop-up list, cursor, menu, or list displayed.
• Response

No response.

• Handling
No processing will be made. The jog event will be passed to the system event
handler.

B) Pop-up list displayed.
• Response

Sets the selected list item

• Handling
vchrJogRelease (Jog Dial navigator is released) sets the selected list item
(current item) and closes the popup list
Replaces with a nilEvent so the pop-up list will not disappear by passing
vchrJogPush and vchrJogPushRepeat events.

C) Cursor displayed.
• Response

Sets the selected cursor item.

• Handling
When the cursor is displayed, vchrJogRelease sets the selected cursor item
and the cursor disappears.

D) Menu displayed.
• Response

Sets the selected menu item.

• Handling
vchrJogRelease selects the highlighted menu item and closes the menu.

E) List displayed.
• Response

Sets the selected list item.

JogAssist
JogAssist Mask Specification

Programmer's Companion for Sony CLIÉ™ Handheld 37

• Handling
vchrJogReleease sets the selected list item.

JogAssist Mask Specification
It is possibile for users to specify different behavior from those which are defined by the
application: In applications designed to handle Jog Dial navigator events explicitly,
JogAssist functionality may interfere with its Jog Dial behavior and may cause
undesirable results.
To cope with these issues, there is a system to restrict JogAssist functionality temporarily
on the CLIÉ™.

JogAssist Mask Data
To disable the JogAssist function, the application must specify Mask data.

Below is the format of the currently defined Mask data.

• Type 1
It specifies the masks for each form in the application. (Forms that are not
specified in the mask will have full JogAssist functionality available.)

• Type 2
Specifies effective masks for all forms in the application, including system
forms such as alert or help.

Each field should follow the states below.

• Describe the numeric value with binary BigEndian.
• Specify the mask type in the Type field. These values are defined in

SonyJogAssist.h

00

Mask

01 …

FrmNum FrmID MaskFrmID

1Byte

Type

00

Mask

02

1Byte

Type

JogAssist
JogAssist Mask Specification

38 Programmer's Companion for Sony CLIÉ™ Handheld

• Mask field is a bitmask that specifies the events to mask.
1 means masked (JogAssist function is disabled), 0 means unmasked (JogAssist
function is enabled). However, whether JogAssist function actually works in
unmasking depends on the specification of the extension software which
functions then. It is not guaranteed that any JogAssist function works.
The Reserved bits must be set to zero. These bits are likely to be defined by Sony
in the future.
See, SonyJogAssist.h for the actual definition of each bit.

Example:

0x0070 -> Mask vchrJogPush/vchrJogRelease/
vchrPushRepeat

0x0000 -> Unmask all events. (Same as not specifying mask data.)

• In the FrmNum field, specify the number of forms for which to set the mask.
• In the FrmID field, specify the form ID of the form for which to set the mask.

(Note that the form ID must be used, not resource ID, although the two usually
have the same value.)

The following is an example of Mask data in hexadecimal format.

• 0x0001000203E80003044C0018

Type 1, the two Forms that use masks have form IDs 1000 and 1100. The
specified masks: Form 1000 masks vchrJogUp/vchrJogDown. Form 1100
masks vchrJogPush/vchrJogRelease.

JogAssist Mask Pointer
JogAssist requires a JogAssist mask pointer to the top address of the Mask data. The
application must specify the JogAssist mask pointer in a system-defined address.
The address where the mask pointer will be set can be obtained by using FtrGet() with
sonySysFtrNumJogAstMaskP as the feature number, as demonstrated below:

#include <SonyCLIE.h>
...

Mask

0Bit15 8 7

Bit0: vchrJogUp
Bit1: vchrJogDown
Bit2: vchrJogPushedUp
Bit3: vchrJogPushedDown
Bit4: vchrJogPush
Bit5: vchrJogRelease
Bit6: vchrJogPushRepeat
Bit7: vchrJogBack
Bit8～15: Reserved

JogAssist
JogAssist Mask Specification

Programmer's Companion for Sony CLIÉ™ Handheld 39

UInt16 **maskPP;
UInt16 mask[MASK_DATA_LENGTH];
...
if(!FtrGet(sonySysFtrCreator, sonySysFtrNumJogAstMaskP,
(UInt32 *)&maskPP)) {

/* Mask can be set */
*maskPP = mask;

} else {
/* something wrong ... */

}

After a system reset, the contents of the specified address is set to NULL. This address
itself will not be changed after the system reset.
The pointers stored in features are shared among all applications and Extensions. Thus, it
is highly recommended that all applications and extension software (which has an original
event loop.) use the procedure below to set the JogAssist mask pointer properly when
activating and finishing. It is recommended to follow these procedures even when a
JogAssist mask is unnecessary.

• When activating, save the old mask pointer, and when finishing, restore it.
• Before sub-launching other applications, set the mask pointer to NULL, and then

reset it to the original value afterward.

JogAssist Mask Owner
Palm OS sometimes can activate other applications or forms on its own independently of
the current application. If mask data is specified for the current application, it still is valid
unless the sub-launched application specifies its own mask. This may cause the sub-
launched application to not respond to Jog Dial navigator events, which may be
inconvenient for the user. To avoid this the card number and local ID of the application
can be used to set mask data for only the specified application (mask owner). The address
specifying this data can be obtained as a Feature, similar to the one used to store the mask
pointer.
The code below demonstrates how to set the JogAssist mask owner.

#include <SonyCLIE.h>
...
UInt16 cardNo, *ftrCardNoP;
LocalID dbID, *ftrDbIDP;
...
SysCurAppDatabase(&cardNo, &dbID);
if(!FtrGet(sonySysFtrCreator, sonySysFtrNumJogAstMOCardNoP,
(UInt32 *)&ftrCardNoP)
&& !FtrGet(sonySysFtrCreator, sonySysFtrNumJogAstMODbIDP,
(UInt32 *)&ftrDbIDP)) {

/* Mask can be set */
*ftrCardNoP = cardNo;

JogAssist
Notes

40 Programmer's Companion for Sony CLIÉ™ Handheld

*ftrDbIDP = dbID;
} else {

/* something wrong ... */
}

If the local ID of the mask owner is NULL, JogAssist will not be able to determine which
application is the mask owner, and thus the current mask will be valid for all applications.
So we encourage users to set the value for the mask-owner on the applications that Palm
OS can sub-launch other applications. (However, it is only necessary for such applications
that Palm OS adds the original item in the menu by itself and sub-launch applications as
Address book.) When done, restoring the original data also is recommended.

Support to JogAssist mask system
JogAssist loaded on the CLIÉ™ works by utilizing the JogAssist mask system. It is
recommended that other kinds of jog utility softwarealso employ this mask value.
Note that the mask does not affect JogAssist functionality when a pop-up list is displayed.
This is because the event loop in the system is waiting for the event while the popup list is
displayed so that the application can't process it even though the mask is specified.

Notes
Determining If JogAssist Is Available
To determine if JogAssist is available on a device, you can obtain a
SonySysFtrSysInfoType structure by using sonySysFtrNumSysInfoP as the
feature number and then checking the sonySysFtrSysInfoExtnJogAst bit in the
extn field.

Preferences
JogAssist functionality can be set via the “Jog” panel in the Preferences. Changing the
preferences can be performed only by using the preferences panel not by using the
program.
The current “Jog” panel has the items below1. These settings are retained after a soft reset.

• [Power On with BACK button] check box
Check to allow the device to be powered on by pushing the BACK button. This
does not depend on the state of the [Use JogAssist] check box.

1. The panel setting items and the values are subject to change in the future.

JogAssist
Notes

Programmer's Companion for Sony CLIÉ™ Handheld 41

• [Use JogAssist] check box
Check to enable JogAssist. If you intend to use a software functionally equivalent
to JogAssist, enabling JogAssist may interfere with it. In this case, uncheck this
box.

• [Select Applications] button
Used to set particular applications for which JogAssist should be disabled. Tap
this to display the [Select Applications] dialog box. This is valid only when [Use
JogAssist] is ON.

• Select Additional Menu] button
Used to add new system items to the first menu in an application. Tap this to
display the [Additional menu] setting screen. This is valid only when [Use
JogAssist] is ON.

• [Control Power] or [Power Off] check box
Check to allow the device to be powered off by pushing the BACK button for
more than 1 second. This is valid only when [Use JogAssist] is ON; OFF when
[Display Cursor/Menu] is ON.

• [Display Cursor/Menu] check box
Check to allow the cursor or the menu to be displayed by pushing the BACK
button for more than 1 second.
When enabled:

– Pushing the BACK button down for more than 1 second displays the cursor.
 If the cursor already is displayed, the menu appears.

– Pushing the BACK button down for more than 2 seconds displays the menu.
After the first second, the cursor temporarily appears before the menu is
shown.

– This is valid only when [Use JogAssist] is ON; OFF when [Power Off] is
ON.

Mask Setting
• Note that the JogAssist specification is subject to change. Thus, applications that

depend on specific Jog Dial navigator behavior should not depend on JogAssist
and should process jog events explicitly using an appropriate mask.

• If no masking is required, set the mask pointer or the mask owner to NULL to
indicate that your application is not masked.

JogAssist
Notes

42 Programmer's Companion for Sony CLIÉ™ Handheld

Audio Remote Control
Remote Control Event

Programmer's Companion for Sony CLIÉ™ Handheld 43

4
Audio Remote
Control
Some CLIÉ™ models allow you to use the audio remote control as an external input
terminal. This chapter describes the events which will be issued whenever an operation is
performed by using the audio remote control. Library is also provided to allow more
sophisticated use. For more information about the library, see “Audio remote control :
Sony Rmc Library”.

Remote Control Event
Virtual Key
If you perform a specific operation using the audio remote control supplied with CLIÉ™,
the corresponding virtual key, keyDownEvent is issued.
See PalmOS documentation about keyDownEvent or events in general.
Data field of the eventType in the keyDownEvent is _KeyDownEventType and
the value to indicate the kinds of operation is stored in its chr field. In the modifiers
field, commandKeyMask bit is set.

The codes specified in the chr field are given in the following.

vchrRmcKeyPush issued when any keys of remote control is pressed.
autoRepeatKeyMask in the modifiers field is set and
issued while the key continues to be pressed
keyCode field determines what key is pressed.

vchrRmcKeyRelease issued when key pressing of remote control is stopped.
keyCode filed is unsettled.

vchrRmcKeyRelease isn’t always issued corresponding to vchrRmcKeyPush.
Because PalmOS event queue may overflow. Thus, an application waiting for only
vchrRmcKeyRelease should not be developed.
A/D value, a physical interface with audio remote control is stored in the key Code. The
value is generated when a button is pressed and has a few ranges. In audio remote control
with 6 buttons loaded on the CLIÉ™, there is a relation in respose between values and
buttons as below. If two buttons are pressed at a time, A/D value like validating higher
priority (play side) buttons will be returned.

Audio Remote Control
Remote Control Event

44 Programmer's Companion for Sony CLIÉ™ Handheld

Event intervals
How the events are associated with one another will be explained.
Tick (Ticks) represents system tick and it equals 10msec according to latest PalmOS. For
more information about system tick, refer to PalmOS document.

Every interval has an error of +/- 1 tick.

1. Push/Release

As a button is pushed, vchrRmcKeyPush occurs. If it is kept pushed in,
vchrRmcKeyPush will occur again after 50 ticks. After this,
vchrRmcKeyPush will occur every 12 ticks.
vchrRmcKeyRelease occurs as the button is released.

Button keyCode(A/D value)

Min Max

Play 3235 3372

FR Play 3030 3167

FF Play 2430 2566

Stop 1938 2048

Volume Down 1802 1911

Volume Up 1665 1761

Push

time

vchrRmcKeyPush

Release

vchrRmcKeyPush vchrRmcKeyRelease

initDelay=50Ticks repeat=12Ticks

Audio Remote Control
Remote Control Event

Programmer's Companion for Sony CLIÉ™ Handheld 45

2. Push of two buttons overlapped (When pushing the button with a high priority
later.)1

If a button with a higher priority (button A) is pushed while another button with a
lower priority (button B) is pushed, the system determines button B is already
released at this moment.

1. After the two buttons whose A/D value difference is under 50 are pressed, if the different button is pressed
around, vchrRmcKeyRelease event isn’t issued during the time for the current driver’s restriction. This
specification is subject to change.

time

vchrRmcKeyPush vchrRmcKeyRelease

initDelay=50Ticks

Push
Release

Push
Release

Play

Stop

(Play)
vchrRmcKeyReleasevchrRmcKeyPush

(Stop)

vchrRmcKeyPush

Audio Remote Control
Remote Control Event

46 Programmer's Companion for Sony CLIÉ™ Handheld

3. Push of two buttons overlapped (When pushing the button with a low priority
later.)

If a button with a lower priority (button A) is pushed while another button with a
higher priority (button B) is pushed, the system ignores button A.
However, if button A is still pushed when button B is released, the system will
respond to it.

Event processing
If you process remote control event, consider some ranges of A/D value stored in
keyCode field.
By using a macro written on the header file(GetRmcKey()), easy mapping to 6 buttons
is available. Sample codes are given below.

#include <SonyCLIE.h>
...
static Boolean MainFormHandleEvent(EventPtr eventP)
switch (eventP->eType) {
case keyDownEvent:

switch (eventP->data.keyDown.chr) {
case vchrRmcKeyPush:

switch (GetRmcKey(eventP->data.keyDown.keyCode)) {
case rmcKeyPlay:

/* Play key has been pushed */
break;

case rmcKeyFrPlay:

time

vchrRmcKeyPush vchrRmcKeyPush

vchrRmcKeyRelease

initDelay=50Ticks

Push
Release

Push
Release

Play

Stop

(Play)
vchrRmcKeyRelease

vchrRmcKeyPush

(Stop)

Audio Remote Control
Notes

Programmer's Companion for Sony CLIÉ™ Handheld 47

/* FR_Play key has been pushed */
break;
...

default:
break;

}
break;

case vchrRmcKeyRelease:
/* remocon key has just been released */
break;

default:
break;

}
break;
...

}

Notes
Determining If Audio Remote Control Is Available
To determine if a device supports audio remote control and issues corresponding
keyDownEvent, check the setting of sonySysFtrSysInfoExtnRmc bit in extn
field of SonySysFtrSysInfoType structure obtained by using
sonySysFtrNumSysInfoP as a feature number.

Auto-On
When a button on the remote control is pressed while the power is off, the key event of
poweredOnKeyMask set to modifiers field will be generated powering a device on.
However, the screen will not light up and auto-off timer will not be reset1.
So, if your application needs to turn on the power of both a device and its screen at the
same time, call EvtResetAutoOffTimer()API; or if you want to turn the power on
only when a particur button on the remote control is pressed, call
EvtResetAutoOffTimer()API as needed.

Application of Remote Control Interface
A driver loaded into the CLIÉ™ doesn’t assume an attached audio remote control alone.
So the A/D values obtained from physical interface through remote control aren’t
converted to the fixed variables such as play and stop. They are stored in the event as is.

1. Some devices may turn on the screen as the remote-control button is pressed, however, that will be modified
soon following the spec of this manual.

Audio Remote Control
Notes

48 Programmer's Companion for Sony CLIÉ™ Handheld

That’s why, other remote controls, even though not provided by Sony, are able to connect
with the CLIÉ™ (only if they meet the reqirements of hardware.).
The applicable possibility extends wider like games, if a remote control to generate A/D
value segmented into narrower range is developed and an application to interpret those
values directly is provided to the user. However, the A/D values must be output as the
table shown Virtual Key to be compatible with the application that assumes the standard
loaded audio remote control.

Hold
Hold User Interface

Programmer's Companion for Sony CLIÉ™ Handheld 49

5
Hold
Hold provides functions of key lock and LCD-off.
If the power is on, Hold function helps to conserve battery power because the LCD turns
off and protects malfunctions by inadvertent key-pressing. If the power is off, the Hold
function specifies the key lock alone.
This section explains the specifications of the Hold function.

Hold User Interface
Turn on and off
Slide the tab up and down, where located on the left side1 of the CLIÉ™. Upward slide
turns on and downward turns off. This could perform at any time you like, regardless of
the power mode and any performing applications. When sliding upward, it activates after
the message of Hold on the display. On the other hand, when sliding downward, it’s
released without any message.
Below are the cases that the Hold doesn’t work shortly after upward tab slide. It will work
after these procedures:

• After Memory Stick media insertion during file system recognition.
• Formatting the Memory Stick media.
• Some object, like button, is being tapped on the Graffiti area or in the display by

stylus.
• The system is in progress, showing message like “Please wait for a while”.

Hold on spec
Below is a chart to show the performance of each function. (O is valid, X is invalid, - is
originally invalid, regardless of the Hold mode.)

1. It may change with devices.

Hold
Application Interface

50 Programmer's Companion for Sony CLIÉ™ Handheld

If you perform Hold on, while the power is on, the performing applications keep working
even though invisible on the LCD display. In general, it’s not necessary for the application
to check whether a device is Hold on.
The Hold is fully independent of the auto shut-off. Thus, the power automatically shuts off
regardless of the Hold mode (if the auto shut-off has been set before).

Application Interface
Getting current Hold status
Basically, the Hold function has only to do with an user interface. However, some
interfaces are available for application to let it obtain relevant information. One use of this
is plot suspension. By this, power consumption reduces and the response rate of remote
control speeds up when Hold is enabled.
Here is the code that gets current Hold status from Feature. The value changes in real time.

#include <SonyCLIE.h>
...
SonySysFtrSysInfoP infoP;
if(!FtrGet(sonySysFtrCreator, sonySysFtrNumSysInfoP,
(UInt32 *)&infoP)) {

if (infoP) {
if (infoP->status & sonySysFtrSysInfoStatusHoldOn)) {

/* Hold is ON (active) */
} else {

/* Hold is OFF (not active) */
}

} else {
/* something wrong, maybe not CLIE */

}
}

Obtained pointer remains unchanged unless a device is reset.
An application should not write in the area indicated by the pointer.

Power LCD Button Pen Audio
Remo-

con

LED

Power Appl Jog Cradle

ON X X X X O X O O

OFF - X X - O - O -

Hold
Application Interface

Programmer's Companion for Sony CLIÉ™ Handheld 51

Receiving change in Hold status
Everytime Hold is turned ON or OFF, sonySysNotifyHoldStatusChangeEvent
Notification is issued. holdOn field tells whether Hold is ON or Off: If true, it is active; if
false, it is not.
Lock field indicates the locked feature when Hold is ON (Note that the present sytem
setsKey (sonySysNotifyHoldLockKey), Pen (sonySysNotifyHoldLockPen),
and Screen (LCD) (sonySysNotifyHoldLockScreen) to 1 (Lock).
These codes register and process received Notification, respectively.

Registering received Notification

#include <SonyCLIE.h>
UInt16 cardNo;
LocalID dbID;
DmSearchStateType state;
DmGetNextDatabaseByTypeCreator(true, &state,

myType, myCreator, true, &cardNo, &dbID);
SysNotifyRegister(cardNo, dbID,

sonySysNotifyHoldStatusChangeEvent,
PrvHoldNotificationHandler, sysNotifyNormalPriority,
(void *)anyP);

Processing received Notification

static Err PrvHoldNotificationHandler(SysNotifyParamType
*notifyParamsP)
{

if (notifyParamsP->broadcaster !=
sonySysNotifyBroadcasterCode)

return errNone;
if (((SonySysNotifyHoldStatusChangeDetailsP)
(notifyParamsP->notifyDetailsP))->holdOn) {
/* Hold is about to be ON */

} else {
/* Hold is about to be OFF */

}
...

Notification will be issued immediately after the Hold switch is turned on or off. So, an
application receives ON Notification after enabled Hold is known to the user (that is,
when “Hold” is displayed on LCD).
Notification is issued only when CLIÉ™ is powered. This means the switching during the
power-off will not affect Hold status. Thus, ON and OFF Notifications are not necessarily
issued in pairs.

Hold
Note

52 Programmer's Companion for Sony CLIÉ™ Handheld

Note
Determining If Function Is Available
To defermine if the system offers the hold function, see “Availability of functions”.

Memory Stick® File System
File System Format

Programmer's Companion for Sony CLIÉ™ Handheld 53

6
Memory Stick® File
System1

On the CLIÉ™, Memory Stick is available as an expansion memory slot.
An application is accessible to the file of Memory Stick media using provided API.

File System Format
Logical Format
On the Memory Stick media, logical format is MS-DOS compatible format defined on the
Memory stick format specification. However, it’s recognized as virtual file system (VFS)
for the application.

Directory structure
There is a definition of file name and storing position in the memory stick file system so
that users can handle the Memory Stick media and store the file easily.
The directory structure is defined below.

Basically, only pre-assigned directories should be placed under the ROOT directory. The
files should not be placed under the ROOT directory immediately since they have a
specific one to be stored according to the format.

1. It is equivalent to Expansion Manager and VFS Manager supported by Palm OS 4.0, and is compatible with
these.

/
(root) PALM Programs

Backup

Memory St ick® File System
File System Format

54 Programmer's Companion for Sony CLIÉ™ Handheld

The use of each directory

/(/(/(/(Root)))) The volume of file system is mounted.

PALM This directory is exclusive for the use of Palm OS and applications.

In general, the application shouldn’t place files immediately under this directory.

Programs This Directory is for the exclusive use of applications.
Normally, it creates subdirectory for each application to store those respective application
files.

Backup This directory is exclusive for the use of SYSTEM BACKUP and RESTORE of
PalmOS®.
The application access to this directory is forbidden.

Name Specification
Pass name Specify absolute path name to access a file in Memory Stick media. “.” (current directory)

and “..” (parent directory) cannot be used.
To delimit each directory, ‘/’ is used.
The path name must be terminated by NULL.
The length of the path name should be within 255 characters including NULL and the
directory’s delimiters.

File name CP932 character set can be used, but excludes those indicated below.

• ASCII characters forbidden to use
" * / : < > ? \ |

The file name string must be within 255-byte characters. (excludes NULL)

Volume name It has the same restriction as file name.

Volume and Slot
Memory Stick file system can be accessible by being fixed into the system (Being
mounted). The entire mounted file system is called Volume that is given a volume
reference number. An application calls API by specifying the volume number.
The hole to insert the Memory Stick media on the device calls Slot and the physical
medium attachment to insert the slot calls Card. Slot has a Slot reference number to
identify the card existence easily. However, the application doesn’t need to be aware of the
slot condition.

Memory Stick® File System
File System Notification

Programmer's Companion for Sony CLIÉ™ Handheld 55

File System Notification
Event
Notification event is issued when inserting and removing the Memory Stick media.

sysNotifyCardInsertedEvent
Issued when the Memory Stick is inserted to the CLIÉ™.
Memory Stick slot reference number can be obtained from notifyDetailsP which is
a parameter of SysNotifyParamType argument passed in to Notification Handler.

sysNotifyCardRemovedEvent
Issued when Memory Stick is removed from the CLIÉ™.
The Memory Stick slot reference number can be obtained from notifyDetailsP
which is a parameter of SysNotifyParamType argument passed in to Notification
Handler.

sysNotifyVolumeMountedEvent
Issued when Memory Stick file system is mounted by the system correctly.
The NotifyDetailsP parameter of SysNotifyParamType argument passed in to
Notification Handler function can be casted to VFSAnyMountParamTypePtr. Thus,
VolRefNum and mountclass(‘libs’) of the mounted volume can be passed to the
Notification Handler.

sysNotifyVolumeUnmountedEvent
Issued when Memory Stick file system is unmounted from the system.
The NotifyDetailsP parameter of SysNotifyParamType argument passed in to
Notification Handler function can be casted to VFSAnyMountParamTypePtr. Thus,
VolRefNum and mountclass(‘libs’) of the mounted volume can be passed to the
Notification Handler.

The sequence of event issuing
The explanations are given below for the sequence of issuing each notification when the
volume is mounted and unmounted.

Memory Stick Media Insertion
1. When a Memory Stick media is inserted into the handheld expansion slot, the

system instructs Expansion Manager that a card has been inserted through a slot
driver.

2. Expansion Manager broadcasts sysNotifyCardInsertedEvent through
Notification Manager.

3. Each Notification Handler for sysNotifyCardInsertedEvent is called.

Memory St ick® File System
File System Notification

56 Programmer's Companion for Sony CLIÉ™ Handheld

4. Expansion Manager receives sysNotifyCardInsertedEvent in the
lowest priority and precedes mounting at step 5 and below unless
expHandledVolume in the sysNotifiyParamType. handled field is 1.

5. Expansion Manager checks the Memory Stick media whether it’s a right storage
card through a slot driver.

6. If it’s determined as a right one, Expansion Manager mounts the Memory Stick
File system to VFS Manager.

7. If mounting succeeds, VFSMgr broadcasts
sysNotifyVolumeMountedEvent through Notification Manager.
If it fails, VFSVolumeFormat is called. It gives a dialog to ask user whether to
format the memory stick or not.
If the user chooses to format then the formatting is successfully complete, after
sysNotifyVolumeMountedEvent will be broadcasted again through
Notification Manager.
Memory Stick file system isn’t mounted if user cancel the format procedure.

8. The notification handler for sysNotifyVolumeMountedEvent is called.

Memory Stick Media Removal
1. When the Memory Stick media is removed from the handheld expansion slot, the

system instructs Expansion Manager that a card has been removed.
2. Expansion Manager issues sysNotifyCardRemovedEvent through

Notification Manager.
3. Expansion Manager receives sysNotifyCardRemovedEvent in the

highest priority. If the Memory Stick file system is mounted, unmounting is
proceeded at step 7 and below. If not mounted, the procedure below will be
executed.

4. Expansion Manager precedes unmounting with VFS Manager.
5. If unmounting succeeds, system issues

sysNotifyVolumeUnmountedEvent though Notification Manager.
6. Notification handler is called for sysNotifyVolumeUnmountedEvent.
7. Notification handler is called for sysNotifyCardRemovedEvent.

handled Field
SysNotifyParamType.handled field is defined by Boolean. However, four
notifications connected to Memory Stick file system, are handled as bit field for the
cooperative work with expansion manager, associating system and application.

The following Bit fields are defined now.

• expHandledVolume

Use in case of sysNotifyCardInsertedEvent and
sysNotifyCardRemovedEvent.
If specified (1), Expansion Manager doesn’t call VFS Manager for the
procedure of mount and unmount of the file system.
For instance, Specify it if you would like to mount the file system that’s not
supported by OS.

Memory Stick® File System
File System API

Programmer's Companion for Sony CLIÉ™ Handheld 57

• vfsHandledUIAppSwitch.
Use in case of sysNotifyVolumeMountedEvent and
sysNotifyVolumeUnmountedEvent.
If specified, system, system with the function of activating application, and
associating application won’t switch over to application. For instance, specify
this bit when you would like to activate the application automatically, which
reads the user’s original activating script and stores it in the assigned directory.

Handling Instructions for Notification
• If a file is formatted during the mounting of the file system,

sysNotifyVolumeUnmountedEvent and
sysNotifyVolumeMountedEvent will occur to cancel the mounting.

• Notification will not be sent in some cases. Here are some of those cases:
– Logical file format in the MS is not right.
– The CLIÉ™ needs battery charging
– Memory capacity is not enough to handle mount processing.

• To register for notification using SysNotifyRegister() API, we
recommend to set the priority as below:

– If you want to receive it only when an applicaiton is normally started (started
using sysAppLaunchCmdNormalLaunch) set
sysNotifyNormalPriority.

– If you want to receive it also for background processing, set a value larger
than sysNotifyNormalPriority.

• If the Memory Stick media is inserted or removed when the power is off, the
notification will be issued but the screen (LCD) will not light up. If you want to
explicitly notify the user the change of plot, let the power on by using
EvtResetAutoOffTimer() API.

• If you want to run another application in the reception handlers,
SysNotifyVolumeMountedEvent or
sysNotifyVolumeUnmountedEvent, SysUIAppSwitch() should not
be called directly, or the succeeding handlers may not be executed.
In that case, vfsHandledUIAppSwitch is set in the reception handler. Then,
user-defined notification will be issued by using
SysNotifyBroadcastDeferred() to go through handler processing.
Lastly, call SysUIAppSwitch() API in the reception handler for the user-
defined notification.
Notification Handler issued using SysNotifyBroadcastDeferred() will
be executed, but those issued by SysUIAppSwitch() will not.

File System API
Both VFS (Virtual File System) manager and Expansion Manager provide Memory Stick
File System API.

Memory St ick® File System
File System API

58 Programmer's Companion for Sony CLIÉ™ Handheld

Data Structure

FileInfoType
typedef struct FileInfoTag{

UInt32 attributes;
Char *nameP;
UInt16 nameBufLen;

} FileInfoType, *FileInfoPtr;

Field descriptions attributes Attributes of file: including read-only, system file, directory,
and archive.

nameP Pointer to the buffer that receives a name of file or directory as
VFSDirEntryEnumerate() is executed.

nameBufLen Buffer size of nameP(Number of bytes).

VFSAnyMountParamType
typedef struct VFSAnyMountParamTag {

UInt16 volRefNum;
UInt16 reserved;
UInt32 mountClass;

} VFSAnyMountParamType;

Field descriptions volRefNum Volume reference number.

reserved Reserved.
mountClass Mount class. Indicates a class of file system.

VFSSlotMountParamType
typedef struct VFSSlotMountParamTag {

VFSAnyMountParamType vfsMountParam;
UInt16 slotLibRefNum;
UInt16 slotRefNum;

} VFSSlotMountParamType;

Field descriptions vfsMountParam VFSAnyMountParamType (See the descriptions given
above.)

slotLibRefNum Slot library reference number

slotRefNum Slot reference number

VolumeInfoType
typedef struct VolumeInfoTag{

UInt32 attributes;

Memory Stick® File System
File System API

Programmer's Companion for Sony CLIÉ™ Handheld 59

UInt32 fsType;
UInt32 fsCreator;
UInt32 mountClass;
UInt16 slotLibRefNum;
UInt16 slotRefNum;
UInt32 mediaType;
UInt32 reserved;

} VolumeInfoType, *VolumeInfoPtr;

Field descriptions attributes Volume attributes: read-only, hidden.

fsType A type of file system (ex. FAT file system).

fsCreator Creator ID of file system library.

mountClass Mount class.

slotLibRefNum Reference number of slot library.

slotRefNum Slot reference number.

mediaType Media type. Indicates type of a card (ex. Memory Stick)

reserved Reserved.

ExpCardInfoType
typedef struct ExpCardInfoTag {

UInt32 capabilityFlags;
Char manufacturerStr[expCardInfoStringMaxLen+1];
Char productStr[expCardInfoStringMaxLen+1];
Char deviceClassStr[expCardInfoStringMaxLen+1];
Char deviceUniqueIDStr[expCardInfoStringMaxLen+1];

}ExpCardInfoType, *ExpCardInfoPtr;

Field descriptions capabirityFlags Flag of card information. Indicates free space available,
reading and writing capabilities.

manufactureStr Name of manufacturer.

productStr Name of product.

deviceClassStr Classification of product.

deviceUniqueIDStr Unique ID of product.

Constants

Error codes of Expansion Manager
expErrUnsupportedOperation

Unsupported or undefined opcode and/or creator.

Memory St ick® File System
File System API

60 Programmer's Companion for Sony CLIÉ™ Handheld

expErrNotEnoughPower
The required power is not available.

expErrCardNotPresent
No Memory Stick media is present.

expErrInvalidSlotRefNumber
Slot reference number is bad.

expErrSlotDeallocated
Slot reference number is within valid range, but has been
deallocated.

expErrCardNoSectorReadWrite
The Memory Stick media does not support the SlotDriver
block read/write API.

expErrCardReadOnly
The Memory Stick media does support R/W API but the card is
read only.

expErrCardBadSector
The Memory Stick media does support R/W API but the sector
is bad.

expErrCardProtectedSector
The Memory Stick media does support R/W API but the sector
is copyright protected.

expErrNotOpen Memory Stick File System library or Memory Stick slot driver
library has not been opened.

expErrStillOpen Memory Stick File System library or Memory Stick slot driver
library is still open.

expErrUnimplemented
This API is unimplemented.

expErrEnumerationEmpty
No values remaining to enumerate.

Error codes of VFS Manager
vfsErrBufferOverflow

The buffer passed in is too small.

vfsErrFileGeneric General file error.

vfsErrFileBadRef The fileref is invalid (has been closed, or was not obtained
from VFSFileOpen()).

vfsErrFileStillOpen
Returned from VFSFileDelete if the file is still open.

vfsErrFilePermissionDenied
Cannot execute this API.

Memory Stick® File System
File System API

Programmer's Companion for Sony CLIÉ™ Handheld 61

vfsErrFileAlreadyExists
A file with this name already exists in this location.

vfsErrFileEOF File pointer is at the end of file.

vfsErrFileNotFound
File was not found at the specified path.

vfsErrVolumeBadRef
The volume reference number is invalid.

vfsErrVolumeStillMounted
Returned from FSVolumeFormat if the volume is still
mounted.

vfsErrNoFileSystem
No installed filesystem supports this operation.
(It might be returned if volume reference number or file
reference number is invalid.)

vfsErrBadData Corrupted file data vfsErrDirNotEmpty
Cannot delete a non-empty directory.

vfsErrBadName Invalid filename, path, or volume label.

vfsErrVolumeFull Not enough space left in volume.

vfsErrUnimplemented
This call is not implemented.

vfsErrNotADirectory
This operation requires a directory.

vfsErrIsADirectory
This operation requires a file, not a directory.

VfsErrDirectoryNotFound
The path leading up to the new file does not exist.

File Stream APIs

VFSFileCreate
Purpose Generates new files.

Prototype Err VFSFileCreate(UInt16 volRefNum,const Char *pathNameP)

Parameters -> volRefNum Volume reference number

-> pathNameP Absolute full path name for the newly created file.

Result errNone

expErrNotOpen

Memory St ick® File System
File System API

62 Programmer's Companion for Sony CLIÉ™ Handheld

vfsErrFileGeneric

vfsErrVolumeBadRef

vfsErrNoFileSystem

vfsErrFileAlreadyExists

vfsErrBadName

vfsErrVolumeFull

vfsErrDirectoryNotFound

etc.

Comments Only creates the file and it is not opened.
Prepares the directory in advance before creating the file.

VFSFileOpen
Purpose OPEN the file or directory.

Prototype Err VFSFileOpen(UInt16 volRefNum, const Char *pathNameP,
UInt16 openMode, FileRef *fileRefP)

Parameters -> volRefNum Volume reference number.

-> pathNameP Absolute full path name of file or directory.
It must not be NULL.

-> openMode Specify open mode as follows (See VFSMgr.h),

#define vfsModeExclusive
// do not let anyone else open it

#define vfsModeRead // open for read access
#define vfsModeWrite // open for write access, implies
exclusive
#define vfsModeReadWrite

// open for read/write access

<- fileRefP The opened file reference.

Result errNone

expErrNotOpen

expErrCardReadOnly

vfsErrFileGeneric

vfsErrVolumeBadRef

vfsErrNoFileSystem

Memory Stick® File System
File System API

Programmer's Companion for Sony CLIÉ™ Handheld 63

vfsErrFilePermissionDenied
File cannot be opened (because the same file has been opened
in vfsModeExclusive, for instance).

vfsErrFileNotFound

vfsErrBadName

etc.

Comments openMode is applicable in the case of file open, but not directory open.
vfsErrFilePermissionDenied will be returned in two cases.

1. If a file has already been opened with the openMode parameter set to
vfsModeExclusive, and you try to open the same file.

2. If the file has already been opened with the openMode set to some value other
than vfsModeExclusive, and you try to open the same file with
vfsModeExclusive.

VFSFileClose
Purpose Closing a file or directory.

Prototype Err VFSFileClose(FileRef fileRef)

Parameters -> fileRef File reference number returned from VFSFileOpen().

Result errNone

expErrNotOpen

vfErrFileGeneric

vfsErrFileBadRef

vfsErrNoFileSystem

etc.

VFSFileReadData
Purpose Read the contents of the opened file to data storage based chunk (record or resource) in

storage heap.

Prototype Err VFSFileReadData(FileRef fileRef, UInt32 numBytes, void
*bufBaseP, UInt32 offset, UInt32 *numBytesReadP)

Parameters -> fileRef File reference number returned from VFSFileOpen.

-> numBytes Number of read byte

Memory St ick® File System
File System API

64 Programmer's Companion for Sony CLIÉ™ Handheld

-> bufBaseP Pointer to destination chunk in storage heap for READ data.
This must be a valid pointer that is returned by MemoryMgr.
This must be the beginning of the chunk.

-> offset Offset in bytes from destination buffer’s base pointer
(bufBaseP)

<- numBytesReadP
Pointer to the number of bytes actually read.
If it is not necessary to get this value, set to NULL.

Result errNone

expErrNotOpen

vfsErrFileGeneric

vfsErrFileBadRef

vfsErrFilePermissionDenied
Forbidden access to File READ. When this value is returned,
openMode is not appropriate.

vfsErrFileEOF

vfsErrNoFileSystem

vfsErrIsADirectory

etc.

Comments When opening a file to read data, specify ‘vfsModeRead’ or
‘vfsModeReadWrite’ as openMode.
When internal filePointer reaches at the end of file (EOF), this API has read data until
EOF and returns ‘vfsErrFileEOF’. If ‘NumBytesReadP’ is non-NULL, this API
returns the actual read bytes as a result.
This API is applicable to the file, not the directory.

VFSFileRead
Purpose Read data from a file into a dynamic heap (or any writable memory).

Prototype Err VFSFileRead (FileRef fileRef, UInt32 numBytes, void
*bufP, UInt32 *numBytesReadP)

Parameters -> fileRef File reference number returned from VFSFileOpen.

-> numBytes The number of bytes to read

-> bufP Pointer to destination buffer in dynamic Heap for the READ
data.

Memory Stick® File System
File System API

Programmer's Companion for Sony CLIÉ™ Handheld 65

<- numBytesReadP
Pointer to the number of bytes actually read.
If it is not necessary to get this value, set to NULL.

Result errNone

expErrNotOpen

vfsErrFileGeneric

vfsErrFileBadRef

vfsErrFilePermissionDenied
openMode is not appropriate.

vfsErrFileEOF

vsfErrNoFileSystem

vfsErrIsADirectory

etc.

Comments When opening a file to read data, specify ‘vfsModeRead’ or
‘vfsModeReadWrite” as openMode.
When internal filePointer reaches at the end of file (EOF), this API has read data until
EOF and returns ‘vfsErrFileEOF’. If ‘NumBytesReadP’ is non-NULL, this API
returns the actual read bytes as a result.
This API applies to the file, not the directory.

VFSFileWrite
Purpose WRITE data to an open file.

Prototype Err VFSFileWrite(FileRef fileRef, UInt32 numBytes,
const void *dataP, UInt32 *numBytesWrittenP)

Parameters -> fileRef File reference number returned from VFSFileOpen().

-> numBytes The number of bytes to write.

-> dataP Pointer to data to write.

<- numBytesWrittenP
Set to the number of bytes actually written on return if non-
NULL.
If it is not necessary to get this value, set NULL.

Result errNone

expErrNotOpen

expErrCardReadOnly

Memory St ick® File System
File System API

66 Programmer's Companion for Sony CLIÉ™ Handheld

vfsErrFileGeneric

vfsErrFileBadRef

vfsErrFilePermissionDenied
Attributes of File are ReadOnly, or openMode is inappropriate.

vfsErrNoFileSystem

vfsErrIsADirectory

vfsErrVolumeFull

etc.

Comments When opening a file to write data to, specify either ‘vfsModeWrite’ or
‘vfsModeReadWrite’ as openMode.
This API applies to the file, not the directory.

VFSFileDelete
Purpose Delete a closed file or directory.

Prototype Err VFSFileDelete(UInt16 volRefNum, const Char *pathNameP)

Parameters -> volRefNum Volume reference number returned from VFSFileOpen().

-> pathNameP Full path of the file or directory to be deleted

Result errNone

expErrNotOpen

vfsErrFileGeneric

vfsErrFileStillOpen

vfsErrFilePermissionDenied
Attributes of File are ReadOnly.

vfsErrFileNotFound

vfsErrVolumeBadRef

vfsErrNoFileSystem

vfsErrDirNotEmpty

vfsErrBadName

etc.

Comments When this API is called, the file or the directory to be deleted must be closed.

Memory Stick® File System
File System API

Programmer's Companion for Sony CLIÉ™ Handheld 67

VFSFileRename
Purpose Rename a closed file or directory.

Prototype ErrVFSFileRename(UInt16 volRefNum,const Char *pathNameP,
const Char*newNameP)

Parameters -> volRefNum Volume reference number.

-> pathNameP Full path of the file or directory to be renamed.

-> newNameP New file name only (not the full path).

Result errNone

expErrNotOpen

expErrCardReadOnly

vfsErrFileGeneric

vfsErrFileStillOpen

vfsErrFilePermissionDenied
Attributes of file are ReadOnly.

vfsErrFileAlreadyExists

vfsErrFileNotFound

vfsErrVolumeBadRef

vfsErrNoFileSystem

vfsErrBadName

vfsErrVolumeFull

etc.

Comments When this API is called, the file or the directory to be renamed must be closed.
Renaming a file does not change its directory where it is located.

Ex)

VFSFileRename(volRefNum, “/palm/programs/test”,
“rename”);
“/palm/programs/test” changes to “/palm/programs/rename”

Memory St ick® File System
File System API

68 Programmer's Companion for Sony CLIÉ™ Handheld

VFSFileSeek
Purpose Set the position of file pointer within an open file.

Prototype Err VFSFileSeek(FileRef fileRef, FileOrigin origin, Int32
offset)

Parameters -> fileRef File reference number returned from VFSFileOpen.

-> origin Origin to use when calculating new position from the offset
Assign FileOrigin constant.

-> offset Offset from the origin to set the new position in the file.
It can be set as positive (forward) or negative (backward).

Result errNone

sysErrParamErr Origin is improper.

expErrNotOpen

vfsErrFileBadRef

vfsErrFileEOF

vfsErrNoFileSystem

vfsErrIsADirectory

etc.

Comments When offset is set to a negative value and the result of the new position becomes negative,
the actual position is the beginning of file.
When offset is set to a positive value and the result of the new position exceeds the end of
the file, the actual position is the end of file.
This API is applied to the file, not the directory.

VFSFileEOF
Purpose Get the status of End-Of-File of an open file.

Prototype Err VFSFileEOF(FileRef fileRef)

Parameters -> fileRef File reference number returned from VFSFileOpen.

Result errNone

expErrNotOpen

vfsErrFileEOF

vfsErrFileBadRef

Memory Stick® File System
File System API

Programmer's Companion for Sony CLIÉ™ Handheld 69

vfsErrNoFileSystem

vfsErrIsADirectory

etc.

Comments This API is applied to the file, not the directory.

VFSFileTell
Purpose Get current position of the file pointer within an open file.

Prototype Err VFSFileTell(FileRef fileRef, UInt32 *filePosP)

Parameters -> fileRef File reference number returned from VFSFileOpen.

<- filePosP Pointer to the present position of the file.

Result errNone

expErrNotOpen

vfsErrFileBadRef

vfsErrNoFileSystem

vfsErrIsADirectory

etc.

VFSFileAttributesGet
Purpose Obtain the file attributes of an open file or directory.

Prototype Err VFSFileAttributesGet(FileRef fileRef, UInt32
*attributesP)

Parameters -> fileRef File reference number returned from VFSFileOpen.

<- attributesP Pointer to file or directory attributes (See VFSMgr.h)
Obtained as FileAttributes constant.

Result errNone

expErrNotOpen

vfsErrFileBadRef

vfsErrNoFileSystem

etc.

Memory St ick® File System
File System API

70 Programmer's Companion for Sony CLIÉ™ Handheld

VFSFileAttributesSet
Purpose Change the attributes of an open file or directory.

Prototype Err VFSFileAttributesSet(FileRef fileRef, UInt32 attributes)

Parameters -> fileRef File reference number returned from VFSFileOpen.

-> attributes The file attribute to set to the file.
(Refer to VFSFileAttributesGet)

Result errNone

sysErrParam The specified attributes are inappropriate.

expErrNotOpen

expErrCardReadOnly

vfsErrFileGeneric

vfsErrFileBadRef

vfsErrNoFileSystem

etc.

Comments File attributes can be changed to read only, hidden, system, or archive attributes.
However, this function should not be used to change directory (fsAttribDirectory)
or volume label (fsAttribVolumeLabel) attributes. If it is necessary to change the
directory or volume label attributes, use VFSDirCreate or VFSVolumeSetLabel.

VFSFileDateGet
Purpose Obtain the dates of an open file or directory.

Prototype Err VFSFileDateGet(FileRef fileRef, UInt16 whichDate, UInt32
*dateP)

Parameters -> fileRef File reference number returned from VFSFileOpen.

-> whichDate Specifies which date to get. (See VFSMgr.h.)
Assign FileDate constant.

<- dateP Pointer to dates data.
Date represented by seconds counting since 1/1/1904
represents date.

Result errNone

sysErrParamErr The date is inappropriate.

expErrNotOpen

Memory Stick® File System
File System API

Programmer's Companion for Sony CLIÉ™ Handheld 71

vfsErrFileBadRef

vfsErrNoFileSystem

etc.

VFSFileDateSet
Purpose Change the dates of an open file or directory.

Prototype Err VFSFileDateSet(FileRef fileRef, UInt32 whichDate,
UInt32 date)

Parameters -> fileRef File reference number returned from VFSFileOpen.

-> whichDate Specifies which date to set. (See VFSFileDateGet.)

-> date Contains the date to set.
Represented by seconds counting since 1/1/1904.

Result errNone

sysErrParamErr whichDate is inappropriate.

expErrNotOpen

vfsErrFileGeneric

vfsErrFileBadRef

vfsErrFilePermissionDenied

File attribute is ReadOnly.

vfsErrNoFileSystem

etc.

VFSFileSize
Purpose Obtain the size of an open file.

Prototype Err VFSFileSize(FileRef fileRef, UInt32 *fileSizeP)

Parameters -> fileRef File reference number returned from VFSFileOpen.

<- fileSizeP Pointer to file size.

Result errNone

expErrNotOpen

vfsErrNoFileSystem

vfsErrFileBadRef

Memory St ick® File System
File System API

72 Programmer's Companion for Sony CLIÉ™ Handheld

vfsErrIsADirectory

etc.

Comments This API is applied to the file, not the directory.

VFSFileResize
Purpose Change the size of an open file.

Prototype Err VFSFileResize(FileRef fileRef, UInt32 newSize)

Parameters -> fileRef File reference number returned from VFSFileOpen.

-> newSize The desired new size of the file.
The new size can be larger or smaller than the current file size.

Result errNone

expErrNotOpen

vfsErrFileGeneric

vfsErrFileBadRef

vfsErrFilePernissionDenied
File attribute is ReadOnly, or openMode is inappropriate.

vfsErrNoFileSystem

vfsErrVolumeFull

vfsErrIsADirectory

etc.

Comments Specifies vfsFileWrite or vfsFileReadWrite when opening the file.
This API is applied to the file, not the directory.
It doesn’t have to execute VFSfileResize specifically because file resizes
automatically when executing VFSfileWrite.

Directory APIs

VFSDirCreate
Purpose Create a new directory.

Prototype Err VFSDirCreate(UInt16 volRefNum, const Char *dirNameP)

Parameters -> volRefNum Volume reference number.

Memory Stick® File System
File System API

Programmer's Companion for Sony CLIÉ™ Handheld 73

-> dirNameP Full path to the directory to be created.

Result errNone

expErrNotOpen

expErrCardReadOnly

vfsErrFileGeneric

vfsErrFileAlreadyExists

vfsErrVolumeBadRef

vfsErrNoFileSystem

vfsErrVolumeFull

vfsErrBadName

etc.

VFSDirEntryEnumerate
Purpose Enumerate the entries in the given directory.

Prototype Err VFSDirEntryEnumerate(FileRef dirRef, UInt32
*dirEntryIteratorP, FileInfoType *infoP)

Parameters -> dirRef Reference number returned from VFSFileOpen.

<-> dirEntryIteratorP
Set the Pointer to the last enumerated directory entry.
The Pointer to the next directory entry is returned.

<- infoP The pointer to the file information (FileInfoType) about
directory entry, which is specified by
dirEntryInteratorP.

Result errNone

sysErrParamErr dirEntryP is invalid.

expErrNotOpen

expErrEnumerationEmpty

vfsErrBufferOverflow

vfsErrFileGeneric

vfsErrFileBadRef

vfsErrNoFileSystem

vfsErrNotADirectory

etc.

Memory St ick® File System
File System API

74 Programmer's Companion for Sony CLIÉ™ Handheld

Comments Before using this API, the directory to be enumerated must be opened by
VFSFileOpen() API.

dirEntryIteratorP is a variable to obtain the next directory entry. If the last
enumerated directory entry is set and this API is called, the next directory entry is
returned.

To obtain all directory entry, set expIteratorStart and call this API to get the first
entry. After the first entry is called, call this API repeatedly by setting the returned value
until the end of directory. If expIeratorStop is returned in this parameter, this means
all directory entries of the specified directory have been enumerated.

Return value depends on the number of directory entries as follows,

• There is nothing under the specified directory
Return value: expErrEnumerationEmpty
dirEntryIteratorP: expIteratorStop

• There is one directory entry to be enumerated.
Return value: errNone
dirEntryIteratorP: expIteratorStop

• There are more than 2 directory entries to be enumerated.
Return value: errNone
dirEntryIteratorP: the reference to obtain the next directory entry.

When infoP->name is set to NULL and this API is called, only the attributes
information is returned as infoP->attributes.

When infoP is set to NULL, valid data is not returned as a result.

This API is applied to the directory, not the file.

Below are example codes to enumerate directory entries.

FileInfoType info;
UInt32 dirIterator = expIteratorStart;
FileRef dirRef;

VFSFileOpen(volRefNum, “/palm”, vfsModeRead, &dirRef);
while(dirIterator != expIteratorStop){

if(VFSDirEntryEnumerate(dirRef, &dirIterator,
&info)) {
/* get 1 entry */

} else {
/* error */

}
}
VFSFileClose(dirRef);

Memory Stick® File System
File System API

Programmer's Companion for Sony CLIÉ™ Handheld 75

Volume APIs

VFSVolumeFormat
Purpose Format and mount the first volume in the specified slot.

Prototype Err VFSVolumeFormat(UInt8 flags, UInt16 fsLibRefNum,
VFSAnyMountParamPtr vfsMountParamP)

Parameters -> flags Specifies format.

-> fsLibRefNum Specifies the library reference number of File system to format
with.

<-> VFSMountParamP
The pointer to VFSAnyMountParamType.

Result errNone

expErrUnsupportedOperation

expErrNotOpen

expErrNotEnoughPower

vfsErrVolumeStillMounted

etc.

Comments When flags is set to 0, Slot Native File System is chosen to format the Memory Stick. In
this case, fsLibRefNum is set to 0.

To specify the library reference number of file system to format with, flags is set to
vfsMountFlagsUseThisFileSystem and fsLibRefNum is set to the number.

VFSMountParamP is set to casted pointer to VFSSlotMountParamType structure
variable.

For instance, it is possible to implement Volume Format as follows:

1. Application should call VFSVolumeInfo() API to get slotLibRefNum
and slotRefNum.

2. Set the argument of VFSSlotMountParamType.
3. Use the result of casting vfsSlotMountParam to

VFSAnyMountParamType as the parameter of VFSVolumeFormat() API.

VolumeInfoType volInfo;
VFSSlotMountParamType sltMntPrm;
err = VFSVolumeInfo(volRefNum, &volInfo);
sltMntPrm.vfsMountParam.mountClass = sysFileTSlotDriver;
sltMntPrm.slotLibRefNum = volInfo.slotLibRefNum;

Memory St ick® File System
File System API

76 Programmer's Companion for Sony CLIÉ™ Handheld

sltMntPrm.slotRefNum = volInfo.slotRefNum;
vfsVolumeFormat(0,0, (VFSAnyMountParamPtr)&sltMntPrm);

VFSVolumeEnumerate
Purpose Enumerate the volume that is mounted.

Prototype Err VFSVolumeEnumerate(UInt16 *volRefNumP, UInt32
*volIteratorP)

Parameters <- volRefNumP Pointer to volume reference number.

<-> volIteratorP Specifies pointer to the last enumerated volume.
The pointer to next volume is returned.

Result errNone

SysParamErr volIteratorP is invalid.

expErrNotOpen

expErrEnumerationEmpty

vfsErrVolumeBadRef

etc.

Comments volIteratorP is the variable to enumerate the next volume. Set the last enumerated
volume and call this API, the next volume is returned.
To enumerate all volume, at first, set volIteratorP to expIeratorStart and call
this API, the first volume can be obtained. Subsequently, set the last obtained volume and
call this API repeatedly untill expIteratorStop is returned by volIteratorP.

VFSVolumeInfo
Purpose Get information about the specified volume.

Prototype Err VFSVolumeInfo(UInt16 volRefNum, VolumeInfoType
*volInfoP)

Parameters -> volRefNum Volume reference number.

<-> volInfoP Pointer to volume information.

Result errNone

expErrNotOpen

vfsErrVolumeBadRef

Memory Stick® File System
File System API

Programmer's Companion for Sony CLIÉ™ Handheld 77

vfsErrNoFileSystem

etc.

Comments In Memory File System, VolumeInfoType is defined as follows.

volumeInfo.attributes = 1;
volumeInfo.fsType = fsFilesystemType_VFAT;
volumeInfo.fsCreator = 'MSfs';
volumeInfo.mountClass =sysFileTSlotDriver;
volumeInfo.slotLibRefNum = 5;
volumeInfo.slotNumer = 1;
volumeInfo.mediaType = ExpMediaType_MemoryStick;

VFSVolumeLabelGet
Purpose Obtain the label of the Specified Volume.

Prototype Err VFSVolumeLabelGet(UInt16 volRefNum, Char *labelP, UInt16
bufLen)

Parameters -> volRefNum Volume reference number.

<-> labelP Pointer to destination volume label.

-> bufLen Specify the length of labelP buffer.

Result errNone

expErrNotOpen

vfsErrBufferOverflow

vfsErrVolumeBadRef

vfsErrNoFileSystem

etc.

Comments labelP requires Minimum 12 bytes length.

VFSVolumeLabelSet
Purpose Set volume label

Prototype VFSVolumeLabelSet(UInt16 volRefNum, const Char *labelP)

Parameters -> volRefNum Volume reference number.

Memory St ick® File System
File System API

78 Programmer's Companion for Sony CLIÉ™ Handheld

-> labelP Desired volume label

Result errNone

expErrNotOpen

expErrCardReadOnly

vfsErrFileGeneric

vfsErrVolumeBadRef

vfsErrNoFileSystem

vfsErrBadName

vfsErrVolumeFull

etc.

Comments For Volume label restrictions, See Name Specification.

VFSVolumeSize
Purpose Obtain the total amount of space in a volume and the amount of space that is currently

used.

Prototype Err VFSVolumeSize(UInt16 volRefNum, UInt32 *volumeUsedP,
UInt32 *volumeTotalP)

Parameters -> volRefNum Volume reference number.

<-> volumeUsedP Pointer to the amount of used space on the volume

<-> volumeTotalP Pointer to the total amount of space on the volume.

Result errNone

expErrNotOpen

vfsErrVolumeBadRef

vfsErrNoFileSystem

etc.

Comments Obtain the amount in bytes.

Memory Stick® File System
File System API

Programmer's Companion for Sony CLIÉ™ Handheld 79

Utility APIs

VFSImportDatabaseFromFile
Purpose Import database to the storage heap from a file that is on the Memory Stick media.

Prototype Err VFSImportDatabaseFromFile(UInt16 volRefNum, const Char
*pathNameP, UInt16 *cardNoP, LocalID *dbIDP)

Parameters -> volRefNum Volume reference number.

-> pathNameP Pointer to absolute full path to a source file (Memory Stick).

<- cardNop On success, pointer to card number of new database on
destination side (palm storage heap).

<- dbIDP On success, pointer to database’s database ID.

Result errNone

expErrNotOpen

vfsErrVolumeBadRef

vfsErrNoFileSystem

vfsErrBadName File name of a source is improper.

etc.

Comments Twice the space of the file itself is needed to import it to the storage heap. Palm OS 3.5
has such a restriction1.

VFSExportDatabaseToFile
Purpose Export the specified database in storage heap to a file in memory in .prc or .pdb format.

Prototype Err VFSExportDatabaseToFile(UInt16 volRefNum, const Char
*pathNameP, UInt16 cardNo, LocalID dbID)

Parameters -> volRefNum Volume reference number.

-> pathNameP Pointer to absolute path to a file on destination side (Memory
Stick™).

-> cardNo Card number of the card where the specified source database
is.

1. It will be improved at the next release of Palm OS®.

Memory St ick® File System
File System API

80 Programmer's Companion for Sony CLIÉ™ Handheld

-> dbID Database ID of source (Palm device side) database.

Result errNone

expErrNotOpen

expErrCardReadOnly

vfsErrVolumeBadRef

vfsErrNoFileSystem

vfsErrBadName File on destination side is improper.

vfsErrVolumeFull

etc.

VFSFileDBGetResource
Purpose Get the database resource of the specified .prc file on the Memory Stick.

Prototype Err VFSFileDBGetResource(FileRef fileRef, DmResType type,
DmResID resID, MemHandle *resHP)

Parameters -> fileRef .prc file reference returned from VFSFileOpen.

-> type Resource type.

-> resID Resource ID.

<- resHP Handle pointer to resource data.

Result errNone

expErrNotOpen

vfsErrFileBadRef

vfsErrNoFileSystem

memErrNotEnoughSpace
(Not enough space left in memory to store required resource.)

dmErrResourceNotFound
(Specified file is not a resource database.)

sysErrParamErr (Argument is invalid. ResHP is NULL.)

etc.

Comments resHP occupies a certain amount of memory on the dynamic storage heap which is
necessary to execute MemHandleFree(resHP) to release it after the function call.

Memory Stick® File System
File System API

Programmer's Companion for Sony CLIÉ™ Handheld 81

VFSFileDBInfo
Purpose Get database information of .prc or .pdb file, which specified on the Memory Stick.

Prototype VFSFileDBInfo(
FileRef fileRef,
Char *nameP,
UInt16 *attributesP,
UInt16 *versionP,
UInt32 *crDateP,
UInt32 *modDateP,
UInt32 *bckUpDateP,
UInt32 *modNumP,
MemHandle *appInfoHP,
MemHandle *sortInfoHP,
UInt32 *typeP,
UInt32 *creatorP,
UInt16 *numRecordsP)

Parameters -> fileRef .prc or .pdb File reference returned from VFSFileOpen.

<-> nameP Pointer to database name. Pass by 32 byte characters to the
pointer.
Assign NULL if it is unnecessary.

<-> attributesP Pointer to database attributes flag.
Assign NULL if it is unnecessary.

<-> versionP Pointer to application version number.
Assign NULL if it is unnecessary.

<-> crDateP The date that the database was created.
Date is seconds counting since 1/1/1904 represents date.
Assign NULL if it is unnecessary.

<-> modDateP Date that the last time databases change.
Assign NULL if it is unnecessary.

<-> *appInfoHP Pointer to handle of application information.
Assign NULL if it is unnecessary.

<-> *sortInfoHP Pointer to handle of soft table.
Assign NULL if it is unnecessary.

<-> bckUpDateP Database backup date.
Assign NULL if it is unnecessary.

<-> modNumP The number of times that the file has been modified, for
instance, add or delete records.
Assign NULL if it is unnecessary.

Memory St ick® File System
File System API

82 Programmer's Companion for Sony CLIÉ™ Handheld

<-> typeP Pointer returns to database type.
Assign NULL if it is unnecessary.

<-> creatorP Pointer returns to creator ID.
Assign NULL if it is unnecessary.

<-> numRecordsP Pointer returns to record number that is inside of database.
Assign NULL if it is unnecessary.

Result errNone

expErrNotOpen

memErrNotEnoughSpace
(Not enough space left in memory for store database header.)

vfsErrFileBadRef

vfsErrNoFileSystem

vfsErrBadData

etc.

Comments appInfoHP and sortInfoHP occupy a certain amount of memory on the dynamic
storage heap which is necessary to execute MemHandleFree(resHP) to release it
after the function call.

VFSFileDBGetRecord
Purpose Get record handle and its attribute, which is specified by index from .prc and .pdb files on

Memory Stick media.

Prototype Err VFSFileDBGetRecord(FileRef fileref, UInt16 recIndex,
MemHandle *recHP, UInt8 *recAttrP, UInt32 *uniqueIDP)

Parameters -> fileRef .prc or .pdb File reference returned from VFSFileOpen

-> recIndex Record index to be retrieved.

<- recHP Pointer returns handle to record.
Assign NULL if it is unnecessary.

<- recAttrP Pointer to record attribute.
Assign NULL if it is unnecessary.

<- uniqueIDP Pointer returns ID, which specific record.
Assign NULL if it is unnecessary.

Result errNone

expErrNotOpen

Memory Stick® File System
File System API

Programmer's Companion for Sony CLIÉ™ Handheld 83

memErrEnoughSpace
(Not enough space left in memory for required record entry.)

dmErrNotRecordDB
the file contains no records.

dmErrIndexOutOfRange
(recIndex is stands outside the scope.)

vfsErrFileBadRef

vfsErrNoFileSystem

etc.

Comments resHP occupies a certain amount of memory on the dynamic storage heap which is
necessary to execute MemHandleFree(resHP) to release it after the function call.

Expansion APIs

ExpCardPresent
Purpose Verify that the Memory Stick media exists in the specified slot.

Prototype Err ExpCardPresent(UInt16 slotRefNumber)

Parameters -> slotRefNumber Slot reference number.
This value can be obtained from VFSVolumeInfo().

Result errNone Memory Stick media exists in the specified slot.

expErrInvalidSlotRefNumber

expErrSlotDeallocated

expErrNotOpen

expErrCardNotPresent

etc.

ExpCardInfo
Purpose Obtain expansion card information

Prototype Err ExpCardInfo(UInt16 slotRefNumber, ExpCardInfoType
*infoP)

Parameters -> slotRefNumber Slot reference number.
This value can be obtained from VFSVolumeInfo().

Memory St ick® File System
File System API

84 Programmer's Companion for Sony CLIÉ™ Handheld

<- InfoP Pointer to ExpCard information.

Result errNone

expErrNotOpen

expErrCardNotPresent

expErrInvalidSlotRefNumber

expErrSlotDeallocated

etc

Comments Information about the Memory Stick media in the slot is returned.

If capabilityFlags is set to expCapabilityHasStorage, the following
params are returned.

manufacturerStr[]:””
productStr[]:””
deviceClassStr[]:”Memory Stick”
deviceUniqueIDStr[]:””

ExpSlotEnumerate
Purpose Obtain expansion slot list.

Prototype Err ExpSlotEnumerate(UInt16 *slotRefNumP, UInt16
*slotIteratorP)

Parameters <- slotRefNumP Pointer that returns slot reference number.

<-> slotIteratorP Pointer to the last slot.
Returns the pointer to the next slot.

Result errNone

expErrInvalidSlotRefNumber

expErrSlotDeallocated

expErrNotOpen

expErrCardNotPresent

SysParamErr (slotIteratorP is invalid)

etc

Comments slotIteratorP is a valiable used to obtain the next slot. Set the last slot obtained and
call API to get the next one.

Memory Stick® File System
Note

Programmer's Companion for Sony CLIÉ™ Handheld 85

To obtain all slots, set expIteratorStart to slotIteratorP to call API for the
first slot. Then, set a value returned from the API. Repeat to call this until
expIteratorStop is returned to slotIteratorP.

Note
Determining If File System Is Available
To determine if the Memory Stick file system is available, check the presence of VFS
Manager on Feature.

Here is the sample code.

UInt32 vfsMgrVersion;
err = FtrGet(sysFileCVFSMgr, vfsFtrIDVersion,
&vfsMgrVersion);
if (err){

/* VFS Manager is present */;
} else {

/* VFS Manager is NOT present */;
}

Memory St ick® File System
Note

86 Programmer's Companion for Sony CLIÉ™ Handheld

Part II: Library

High Resolution : Sony HR Library
Screen mode and API

Programmer's Companion for Sony CLIÉ™ Handheld 89

7
High Resolution :
Sony HR Library
The CLIÉ™ enables users to provide a 320 x 320 dot high-definition display that first
appeared as a Palm platform device. Applications are able to display impressively detailed
pictures.

Screen mode and API
Glossary

Compatibility
mode

This mode enables a 160 x 160 VRAM image to stretch twice its height and width to
display on a 320 x 320 LCD panel.

High resolution
mode

This mode displays a 320 x 320 VRAM image as it is on the LCD panel and has two ways
of drawing: high-resolution API and existing API. These two modes are usable at the same
time.

Existing API Existing API is a drawing with API provided PalmOS 3.5. In drawing, since OS expands
320 x 320 of the image automatically, The application allows you to program with the
existing API as before without recognizing the hardware difference. Moreover, the
existing API makes it possible to draw beautiful characters according to newly adopted
fonts for high-resolution. (Exception: The characters made by bitmap are displayed as
usual.)

High resolution
API

High resolution API is API to make the best use of 320 x 320 resolution. It displays more
characters with beautiful fonts than usual, detailed figures, and elaborated bitmap on 320 x
320 coordinate system.
High-resolution API isn’t planned to achieve all the drawing function of conventional
PalmOS but is planned as an assumption to use existing API for unrealized functions such
as a form and a coordinate input using pens. Thus, in creating a high-resolution
application, we recommend you to plan it by existing API as usual then replace only the
parts which needed to be drawn elaborately with high-resolution API. This makes it easier
to keep the compatibility of a source and a binary level action among existing models and

High Resolution : Sony HR Library
Screen mode and API

90 Programmer's Companion for Sony CLIÉ™ Handheld

is the effective way to utilize the limited resource of Palm OS for realizing a beautiful
drawing.

Incompatibility of existing API for High Resolution
On high-resolution mode, the existing application works with few modification. Here,
explanations can be given about the difference with conventional device.

1. Font drawing
The characters to the display (screen) window are drawn with resolution font.
(This font is newly adopted for PEG-N700C/N710C so the visibility differs
because the glyph is different from the font of PalmOS.) For the drawing of an
off-screen window, the same font is used as usual when drawing characters with
existing API.

The Object of API

WinDrawChar

WinDrawChars

WinDrawInvertedChars

WinDrawTruncChars

WinEraseChars

WinInvertChars

WinPaintChar

WinPaintChars

Correspodance

Existing Font High Resolution Font

stdFont (fontID:0) -> hrStdFont (fontID:8)

boldFont (fontID:1) -> hrBoldFont (fontID:9)

largeFont (fontID:2) -> hrLargeFont (fontID:10)

symbolFont (fontID:3) -> hrSymbolFont (fontID:11)

symbol11Font (fontID:4) -> hrSymbol11Font (fontID:12)

symbol7Font (fontID:5) -> hrSymbol7Font (fontID:13)

ledFont (fontID:6) -> hrLedFont (fontID:14)

largeBoldFont (fontID:7) -> hrLargeBoldFont (fontID:15)

High Resolution : Sony HR Library
Screen mode and API

Programmer's Companion for Sony CLIÉ™ Handheld 91

2. Line drawing
When the functions for a series of WinXXXLine are valued on the screen:
In the direction of parallel and vertical line, the compatibility remains (The line is
drawn of 2 pixel thickness).
The direct line at slant is drawn of 1 pixel thickness.
The line drawing for off-screen has not changed at all.

3. Pattern drawing:
On screen window, a resolution of pattern is doubled. (For GrayPattern, a
visibility is different due to its resolution.)
The Pattern drawing for off-screen has remained in the same condition.

4. Frame drawing
When drawing a Frame with existing API on screen window, the thickness of the
line may differ depend on the types of frame. The thickness of the line is thinner
than before with RoundFrame, boldRoundFrame, and dialogFrame. (In case that
the Frame is radius>2)
The frame drawing for off screen window remains the same.

The Object of API

WinDrawGrayLine

WinDrawLine

WinEraseLine

WinFillLine

WinInvertLine

WinPaintLine

The Object of API

WinDrawGrayLine

WinDrawGrayRectangleFrame

WinFillLine

WinFillRectangle

The Object of API

WinDrawRectangleFrame

WinDrawGrayRectangleFrame

High Resolution : Sony HR Library
Screen mode and API

92 Programmer's Companion for Sony CLIÉ™ Handheld

5. Rounded Rectangle
When drawing a rectangle, radius>2 with existing API, the corner is rounded
because of the high resolution. However, drawing rectangle on the off screen
window is unchanging as usual.

6.WinCopyRectangle

On high-resolution mode, when an existing API is used, a screen window
actually handles 320 x 320 resolution on the inside. So, when coping between
screen window and off-screen window with existing API, the resolution has
changed over. Thus, if copying from screen to off-screen to screen, for example,
restoring a display might be difficult.
So, use WinSaveBits() and WinRestoreBits() instead of
WinCopyRectangle in performing these procedures.

Details:

– When copying: from the screen window to off-screen with an existing API,
the information is reduced by one-forth of its conventional size.

– From the off-screen window to screen with an existing API, the information
enlarged 4 times of its size.

– The resolution for copying between the screen windows and the off-screen
windows has not changed at all.

– For copying with API HRWinCopyRectangle, the conversion of
resolution hasn't undergone.

7. The visibility of drawing may differ (Characters, diagonal lines and patterns)
depending on the drawing directly on the screen and the drawing on the off-
screen window first then it is copied to the screen window as the process from 1
to 6.

8. A WinGetPixel returns (top, left) pixel out of four pixels. (The compatibility
will remaine only among an existing API.)

9. It takes more time to transfer the data and more memory because the display data
has increased four times.

10.Forms and objects are controlled in the 160 x 160 coordinate system. In high-
resolution, the image is stretched twice its height and width to display. The
resource size to create is 160 x 160 at the most by Constructor provided Code
Warrior for Palm Release 6.

11.If application font is used, the display may not work properly.
12.Applicaion, the likes of drawing on VRAM directly isn’t drawn correctly.

WinEraseRectangleFrame

WinInvertRectangleFrame

WinPaintRectangleFrame

The Object of API

High Resolution : Sony HR Library
Screen mode and API

Programmer's Companion for Sony CLIÉ™ Handheld 93

High Resolution and existing API
When drawing with existing API in high-resolution mode on the screen window, the
drawing is doubled in the directions of X and Y-axes and written on the VRAM. For
example, if drawn at axes (50, 70) with WinDrawPixel, a current foreground color is
set on the pixel of VRAM at (100, 140), (101, 140), (100, 141), (101, 141). However, on
high-resolution API, it’s drawn with 320 x 320 resolution. A foreground color is set only
on one pixel of VRAM at axes (50, 70) if drawn at axes (50, 70), with
HRWinDrawPixel of high-resolution API.

This table shows corresponding high-resolution and existing APIs.
If there is a blank on high-resolution API line, use the existing API. If you handle the axes
data with these indicated APIs, NOTE that the scale of them will be converted into the
coordinate system of 160 x 160 even in the high-resolution mode. The coordinate system
change applies only to the display window.
A high-resolution API with limitation is noted.

Table 7-1 High-resolution APIs for Window

Existing API High-resolution API Hand instruction for
high-resolution API

WinClipRectangle HRWinClipRectangle

WinCopyRectangle HRWinCopyRectangle

WinCreateBitmapWindow HRWinCreateBitmapWindow

WinCreateOffscreenWindo
w

HRWinCreateOffscreenWindow

WinCreateWindow HRWinCreateWindow Bounds setting is limited.

WinDeleteWindow

WinDisplayToWindowPt HRWinDisplayToWindowPt

WinDrawBitmap HRWinDrawBitmap

WinDrawChar HRWinDrawChar See “Font setting”.

WinDrawChars HRWinDrawChars See “Font setting”.

WinDrawGrayLine HRWinDrawGrayLine

WinDrawGrayRectangleFra
me

HRWinDrawGrayRectangleFram
e

WinDrawInvertedChars HRWinDrawInvertedChars See “Font setting”.

WinDrawLine HRWinDrawLine

WinDrawPixel HRWinDrawPixel

High Resolution : Sony HR Library
Screen mode and API

94 Programmer's Companion for Sony CLIÉ™ Handheld

WinDrawRectangle HRWinDrawRectangle

WinDrawRectangleFrame HRWinDrawRectangleFrame

WinDrawTruncChars HRWinDrawTruncChars See “Font setting”.

WinEraseChars HRWinEraseChars See “Font setting”.

WinEraseLine HRWinEraseLine

WinErasePixel HRWinErasePixel

WinEraseRectangle HRWinEraseRectangle

WinEraseRectangleFrame HRWinEraseRectangleFrame

WinEraseWindow

WinFillLine HRWinFillLine

WinFillRectangle HRWinFillRectangle

WinGetActiveWindow

WinGetBitmap

WinGetClip HRWinGetClip

WinGetDisplayExtent HRWinGetDisplayExtent

WinGetDisplayWindow

WinGetDrawWindow

WinGetFirstWindow

WinGetFramesRectangle HRWinGetFramesRectangle

WinGetPattern

WinGetPatternType

WinGetPixel HRWinGetPixel

WinGetWindowBounds HRWinGetWindowBounds

WinGetWindowExtent HRWinGetWindowExtent

WinGetWindowFrameRect HRWinGetWindowFrameRect

WinIndexToRGB

WinInvertChars HRWinInvertChars See “Font setting”.

Table 7-1 High-resolution APIs for Window

High Resolution : Sony HR Library
Screen mode and API

Programmer's Companion for Sony CLIÉ™ Handheld 95

WinInvertLine HRWinInvertLine

WinInvertPixel HRWinInvertPixel

WinInvertRectangle HRWinInvertRectangle

WinInvertRectangleFrame HRWinInvertRectangleFrame

WinModal

WinPaintBitmap HRWinPaintBitmap

WinPaintChar HRWinPaintChar See “Font setting”.

WinPaintChars HRWinPaintChars See “Font setting”.

WinPaintLine HRWinPaintLine

WinPaintLines HRWinPaintLines

WinPaintPixel HRWinPaintPixel

WinPaintPixels HRWinPaintPixels

WinPaintRectangle HRWinPaintRectangle

WinPaintRectangleFrame HRWinPaintRectangleFrame

WinPalette

WinPopDrawState

WinPushDrawState

WinResetClip

WinRestoreBits HRWinRestoreBits

WinRGBToIndex

WinSaveBits HRWinSaveBits

WinScreenLock

WinScreenMode HRWinScreenMode Use to switch between
compatibility and high-
resolution modes.

WinScreenUnlock

WinScrollRectangle HRWinScrollRectangle

WinSetActiveWindow

Table 7-1 High-resolution APIs for Window

High Resolution : Sony HR Library
Screen mode and API

96 Programmer's Companion for Sony CLIÉ™ Handheld

WinSetBackColor

WinSetClip HRWinSetClip Clipping rectangle setting
is limited.

WinSetDrawMode

WinSetDrawWindow

WinSetForeColor

WinSetPattern

WinSetPatternType

WinSetTextColor

WinSetUnderlineMode

WinSetWindowBounds HRWinSetWindowBounds Bounding rectangles
setting is limited.

WinValidateHandle

WinWindowToDisplayPt HRWinWindowToDisplayPt

Table 7-2 High-resolution API for Bitmap

Existing API High-resolution API Handling instruction for high-resolution API

BmpBitsSize HRBmpBitsSize

BmpColortableSize

BmpCompress Bitmap that exceeds 160 x 160 x 8 bit is not
supported.

BmpCreate HRBmpCreate

BmpDelete

BmpGetBits

BmpGetColortable

BmpSize HRBmpSize

Table 7-1 High-resolution APIs for Window

High Resolution : Sony HR Library
Screen mode and API

Programmer's Companion for Sony CLIÉ™ Handheld 97

This table shows compatality of high-resolution and existing APIs with these models.

Table 7-3 High-resolution API for Font

Existing API High-resolution API Handling instruction for
high-resolution API

FntAverageCharWidth

FntBaseLine

FntCharHeight

FntCharsInWidth

FntCharsWidth

FntCharWidth

FntDefineFont

FntDescenderHeight

FntGetFont HRFntGetFont

FntGetFontPtr

FntGetScrollValue

FntLineHeight

FntLineWidth

FntSetFont HRFntSetFont

FntWidthToOffset

FntWordWrap

FntWordWrapReverseNLines

FontSelect HRFontSelect

High Resolution : Sony HR Library
Screen mode and API

98 Programmer's Companion for Sony CLIÉ™ Handheld

Font setting
With an existing API, the fonts shown below are available. When any of these fonts is
used, the system internally doubles its resolution and allows clear character display.

With a high-resolution API, in addition to those shown above, 8 fonts are also usable.
To specify 16 kinds of fonts in high-resolution mode, HRFontID type is defined instead of
the existing FontID type.

Table 7-4 compatality of high-resolution and existing APIs with these model

High-resolution API Existing API

Conventional model NG (Fatal Error) OK

High-resolution support model
In compatibility mode

HRWinScreenMode : OK
The other APIs : NG (Fatal Error)

OK

High-resolution support model
In high-resolution mode

OK OK
(Enables distinct character display.)

Table 7-5 FontID

Name FontID

stdFont 0

boldFont 1

largeFont 2

symbolFont 3

symbol11Font 4

symbol7Font 5

ledFont 6

largeBoldFont 7

Table 7-6 HRFontID

Name HRFontID Remark

hrTinyFont 0 stdFont

hrTinyBoldFont 1 boldFont

hrSmallFont 2 largeFont

High Resolution : Sony HR Library
Screen mode and API

Programmer's Companion for Sony CLIÉ™ Handheld 99

High-resolution API displays the text in the original size of a specified font. Here is an
example: When a chinese character was viewed on the display of 320 x 320 with its font
set to hrTinyFont(= stdFont), its size will be 8 x 8 pixels (a quarter of the
conventional size). To display the character in the same size as the one on the conventional
device, the font should be set to one of these: HRFontID 8 to 15.
To set a font or to get a specified font on high-resolution mode, these are used:

HRFont HRFntGetFont(Ulnt16 refNum)
HRFont HRFntSetFont(Ulnt16 refNum, HRFontID font)

When the text is to be displayed using existing API with the font set to one of these
(HRFontID8 to 15), the actual font will be hrStdFont(HRFontID=8).
Palm OS does not associate plotting commands with plotting attributes. For example,
when font is set to hrLargeBoldFont(HRFontID = 15) in high-resolution mode
and the text is plotted first with a high-resolution API (such as HRWinDrawChars) and
then with an existing API (such as WinDrawChars), the font will be
hrStdFont(HRFontID=8).
Thus, you should first set a font using HRFntSetFont to plot text with high-resolution
API. And to plot a character with an existing API, reset a font using FntSetFont .
As for the API that gets width and height of a font, an existing API can be used also on
high-resolution mode. When plotting is done with high-resolution API, the font size will
be the one that corresponds to a 320 x 320 coordinate system; with existing API, it will be
the one that corresponds to a 160 x 160 coordinate system.

hrSmallSymbolFont 3 symbolFont

hrSmallSymbol11Font 4 symbol11Font

hrSmallSymbol7Font 5 symbol7Font

hrSmallLedFont 6 ledFont

hrSmallBoldFont 7 largeBoldFont

hrStdFont 8

hrBoldFont 9

hrLargeFont 10

hrSymbolFont 11

hrSymbol11Font 12

hrSymbol7Font 13

HrLedFont 14

HrLargeBoldFont 15

Table 7-6 HRFontID

High Resolution : Sony HR Library
Screen mode and API

100 Programmer's Companion for Sony CLIÉ™ Handheld

Drawing on an off-screen window in high-resolution
mode
Display on screen and off-screen windows
With an existing API, a screen window has a bitmap of 160 x 160. However, it will be 320
x 320 in actual use. On the other hand, an off-screen window will have a bitmap of the
specified size.

For example,
the off-screen window defined as this using existing API will have a bitmap of 160 x 160:

winH = WinCreateOffscreenWindow(160, 160, genericFormat,
&error);

And the one defined as this using high-resolution API will have a bitmap of 320 x 320:

winH = HRWinCreateOffscreenWindow(refNum, 320, 320,
genericFormat, &error);

With exisitng API, there might be a differnce between the drawing in screen window and
off-screen window. With high-resolution API, there will be no difference.

Drawing characters
The display in the screen window will be as shown in Figure 7-1. Characters in the left
column are drawn using the existing API WinDrawChars; those in the right are drawn
with the high-resolution API HRWinDrawChars.

Figure 7-1

High Resolution : Sony HR Library
Screen mode and API

Programmer's Companion for Sony CLIÉ™ Handheld 101

Figure 7-2 shows the off-screen window (the area of 160 x 160 outlined in blue) copied
to the screen window using HRCopyRectangle.

Figure 7-2

When the area outlined in blue (Figure 7-2) is copied to a screen window using
WinCopyRectangle, the display will be as shown in Figure 7-3.

Figure 7-3

High Resolution : Sony HR Library
Screen mode and API

102 Programmer's Companion for Sony CLIÉ™ Handheld

Drawing lines
Figure 7-4 shows the figure consisting of six staight lines drawn with the existing API,
WinDrawLine.

Figure 7-4

Same image as Figure 7-4 is drawn on the off-screen window as below.

Figure 7-5

High Resolution : Sony HR Library
Using High resolution API

Programmer's Companion for Sony CLIÉ™ Handheld 103

The image of 160 x 160 bounds shown in the off-screen window is copied to the screen
window with WinCopyRectangle as follow. In this case, the difference is the thickness of
the diagonal line between direct drawing on screen window and copying.

Figure 7-6

Using High resolution API
Library loading
For a high-resolution support device, the library provides high-resolution API. To utilize
the library, use SysLibFind to get reference No.

Example is shown below.1

#include <SonyCLIE.h>

SonySysFtrSysInfoP sonySysFtrSysInfoP;
Err error = 0;
Err status = 0;
UInt16 refNum;

if ((error = FtrGet(sonySysFtrCreator,
sonySysFtrNumSysInfoP, (UInt32*)&sonySysFtrSysInfoP))) {

1. In this example the device is checked whether it's the CLIÉ™ ,however there is no guarantee that the CLIÉ™
has long been the only device that is accessible to the High-resolution.

High Resolution : Sony HR Library
Using High resolution API

104 Programmer's Companion for Sony CLIÉ™ Handheld

/* Not CLIE: maybe not available */
} else {

if (sonySysFtrSysInfoP->libr & sonySysFtrSysInfoLibrHR) {
/* HR available */
if ((error = SysLibFind(sonySysLibNameHR, &refNum))){

if (error == sysErrLibNotFound) {
/* couldn't find lib */
error = SysLibLoad('libr', sonySysFileCHRLib, &refNum);

}
}

if (!error) {
/* Now we can use HR lib */
...

}
}

}

Any API is accessible using a reference No. obtained by SysLibFind or
SysLibLoad. Only high-resolution support devices can get reference No. of
“SonyHRLib”. Without reference No., you cannot utilize the high-resolution API. In that
case, the display will be in compatibility mode.

To start using the high-resolution API, an application should call the function HROpen;
To exit, it should call HRClose.

Switching screen mode
An application programmed only with an existing API works in compatibility mode. To
use the high-resolution mode, application needs to change the mode actively.
The two modes, the compatibility mode and the high-resolution mode, can be changed by
HRWinScreenMode() API.
The comparison with WinScreenMode() API and the situation of a change in the
screen mode by HRWinScreenMode() API are shown below.

High Resolution : Sony HR Library
Using High resolution API

Programmer's Companion for Sony CLIÉ™ Handheld 105

For the application that runs in high-resolution mode, set to high-resolution mode at its
startup and reset to default at exit.
When another application is to be started (using SysAppLaunch) when a current
application is running in high-resolution mode, you need to reset the mode to default. Set
back to high-resolution mode again when later launched application is no longer in use.

In addition, a screen is cleared in the case of a mode change.
Examples are shown below.

Example 1: Switching from compatibility to high-resolution mode

#include <SonyCLIE.h>

Err error;
UInt16 refNum;
UInt32 width, height, depth;

/**/
/* Gets refNumof SonyHRLib */
/* Refer to section 5 for details. */
/**/
/**/

Table 7-7 operation : winScreenModeSet

WinScreenMode HRWinScreenMode

width:160
height:160

width:320
height:320

width:160
height:160

width:320
height:320

compatibility
mode

compatibility
mode

invalid compatibility mode compatibility mode
->

high-resolution mode

high-resolution
mode

high-resolution
mode

invalid high-resolution mode
->

compatibility mode

high-resolution mode

Table 7-8 operation : winScreenModeSetToDefaults

WinScreenMode HRWinScreenMode

compatibility mode compatibility mode compatibility mode

high-resolution mode high-resolution mode
->

compatibility mode

high-resolution mode

High Resolution : Sony HR Library
Using High resolution API

106 Programmer's Companion for Sony CLIÉ™ Handheld

/* Executes Open library. */
/**/
error = HROpen(refNum);
if (error) {

/* error processing */
} else {

width ÅÅ hrWidth; height = hrHeight;
depth = 8; /* (in color mode of 256 colors) */
error = HRWinScreenMode (refNum, winScreenModeSet,
&width, &height, &depth, NULL);
If (error != errNone){

/* Screen mode remains unchanged. */
- - - - - - - - - - -

} else {
/* high-resolution mode */
- - - - - - - - - - -

}
}

Example 2: Switching from high-resolution mode to default screen mode/
closing library

error = HRWinScreenMode (refNum,
winScreenModeSetToDefaults, NULL, NULL, NULL, NULL);
if (error != errNone){

/* Screen mode remains unchanged. */
- - - - - - - - - - -

} else {
/* Switched to default screen mode. */
- - - - - - - - - - -

}
/**/
/* Executes Close library. */
/**/
error = HRClose(refNum);

High Resolution : Sony HR Library
High-Resolution API

Programmer's Companion for Sony CLIÉ™ Handheld 107

High-Resolution API
System API

HROpen
Purpose Start to use high-resolution library.

Set plotting mode to high-resolution mode.

Prototype Err HROpen (UInt16 refNum)

Parameters -> refNum Reference number of high-resolution library.

Result errNone No error

hrErrNoFeature High-resolution mode is not supported.

memErrNotEnoughSpace
Memory is insufficient.

Comments Handles the process to enables the use of high-resolution library.

HRClose
Purpose End an use of high-resolution library.

Prototype Err HRClose (UInt16 refNum)

Parameters -> refNum Reference number of high-resolution library

Result errNone No error

hrErrNotOpen High-resolution library is not Open.

hrStillOpen High-resolution library is still Open.

Comments Handles the process to end the use of high-resolution library.

HRGetAPIVersion
Purpose Get a version of high-resolution API.

Prototype Err HRGetAPIVersion(UInt16 refNum, UInt16 *versionP)

Parameters -> refNum Reference number of high-resolution library

High Resolution : Sony HR Library
High-Resolution API

108 Programmer's Companion for Sony CLIÉ™ Handheld

<-> versionP Pointer to a memory that stores API version.

Result errNone No error.

hrErrNotOpen High-resolution library is not Open.

hrErrParam Parameter error (versionP is NULL.)

Comments Obtains a version of high-resolution API.

version

Window API

HRWinClipRectangle
Purpose Clip a specified rectangular frame to clipping region in current draw window.

Prototype void HRWinClipRectangle(UInt16 refNum, RectangleType *rP)

Parameters -> refNum Reference number of high-resolution library

<-> rP Pointer to a structure of a specified rectangular frame.
Passed rectangle will be returned with it fitted into clipping
region in the draw window.

Result Returns nothing.

HRWinCopyRectangle
Purpose Copy a rectangular region from one place to another.

Prototype void HRWinCopyRectangle (UInt16 refNum, WinHandle srcWin,
WinHandle dstWin, RectangleType *srcRect, Coord destX, Coord
destY, WinDrawOperation mode)

Parameters -> refNum Reference number of high-resolution library

-> srcWin Window from which the rectangle is copied.
When NULL, this will be the draw window.

-> dstWin Window to which the rectangle is copied.
When NULL, this will be the draw window.

-> srcRect Bounds of the region to copy.

15 8 7 0

Major Version Minor Version

High Resolution : Sony HR Library
High-Resolution API

Programmer's Companion for Sony CLIÉ™ Handheld 109

-> destX Top bound of the rectangle in destination window.

-> destY Left bound of the rectangle in destination window.

-> mode The method of transfer from the source to the destination
window.

Result Returns nothing.

HRWinCreateBitmapWindow
Purpose Create a new off-screen window.

Prototype WinHandle HRWinCreateBitmapWindow (UInt16 refNum,
BitmapType *bitmapP, UInt16 *error)

Parameters -> refNum Reference number of high-resolution library

-> bitmapP Pointer to the bitmap which wil be associated to this window.

<- error Pointer to any error this function encounters.

Result If no error, returns the handle of the new window. In case of error, returns NULL.
One of the followings will be stored to errorParameter.

errNone No error

sysErrParamErr bitmapP Parameter is invalid. Bitmap should be
uncompressed and its pixel size be valid(1,2,4,8). Screen
bitmap is unacceptable.

sysErrNoFreeResource
Memory is insufficient to store new window structure.

HRWinCreateOffscreenWindow
Purpose Create a new off-screen window and add it to the window list.

Prototype WinHandle HRWinCreateOffscreenWindow (UInt16 refNum,
Coord width, Coord height, WindowFormatType format,
UInt16 *error)

Parameters -> refNum Reference number of high-resolution library

-> width Width of the window.

-> height Height of the window.

-> format Either screenFormat or genericFormat
For an off-screen window, genericFormat is generally used.

High Resolution : Sony HR Library
High-Resolution API

110 Programmer's Companion for Sony CLIÉ™ Handheld

<- error Pointer to any error this function encounters.

Result If no error, returns a new handle of the new window. In case of error, returns NULL.

ErrorParameter stores one of the followings.

errNone No error

sysErrParamErr Either width or height parameter is NULL; current color
palette is invalid.

SysErrNoFreeResource
Memory is insufficient to execute this function.

memErrNotEnoughSpace
Memory is insufficient to execute this function.

HRWinCreateWindow
Purpose Create a new window and register it to the window list.

Prototype WinHandle HRWinCreateWindow (UInt16 refNum, RectangleType
*bounds, FrameType frame, Boolean modal, Boolean focusable,
UInt16 *error)

Parameters -> refNum Reference number of high-resolution library

-> bounds Display relative bounds of the window.
Every element of bounds
(topleft.x,topleft.y,extent.x,extent.y)
should be multiple of 2.

-> frame Type of frame around the window.

-> modal TRUE if the window is modal.

-> focusable TRUE if the window can be the active window.

<- error Pointer to any error encountered by this function.

Result Returns a handle for the new window. In case of error, returns NULL.

HRWinDisplayToWindowPt
Purpose Convert a display-relative coordinate to a window-relative coordinate. The coordinate

returned is relative to the display window.

Prototype void HRWinDisplayToWindowPt (UInt16 refNum, Coord *extentX,
Coord *extentY)

Parameters -> refNum Reference number of high-resolution library.

High Resolution : Sony HR Library
High-Resolution API

Programmer's Companion for Sony CLIÉ™ Handheld 111

<-> extentX Pointer to x coordinate to convert.

<-> extentY Pointer to y coordinate to convert.

Result Returns nothing.

HRWinDrawBitmap
Purpose Draw a bitmap at the specified point in winPaint mode.

Prototype void HRWinDrawBitmap (UInt16 refNum, BitmapPtr bitmap,
Coord x, Coord Y)

Parameters -> refNum Reference number of high-resolution library

-> bitmap Pointer to a bitmap

-> x The x coordinate of the top-left corner.

-> y The y coordinate of the top-left corner.

Result Returns nothing.

HRWinDrawChar
Purpose Draw the specified character in the draw window.

Prototype void HRWinDrawChar (UInt16 refNum, WChar theChar, Coord x,
Coord Y)

Parameters -> refNum Reference number of high-resolution library

-> theChar The character to draw.

-> x x coordinate of the location where the character should be
drawn (Left bound).

-> y y coordinate of the location where the character should be
drawn (Left bound).

Result Returns nothing.

High Resolution : Sony HR Library
High-Resolution API

112 Programmer's Companion for Sony CLIÉ™ Handheld

HRWinDrawChars
Purpose Draw the specified characters in the draw window.

Prototype void HRWinDrawChars (UInt16 refNum, const Char *chars,
Int16 len, Coord x, Coord y)

Parameters -> refNum Reference number of high-resolution library

-> chars Pointer to the characters to draw.

-> len Length in bytes of the characters to draw.

-> x x coordinate(left bound) of the first character to draw.

-> y y coordinate (top bound) of the first character to draw.

Result Returns nothing.

HRWinDrawGrayLine
Purpose Draw a dotted line in the draw window.

Prototype void HRWinDrawGrayLine (UInt16 refNum, Coord x1, Coord y1,
Coord x2, Coord y2)

Parameters -> refNum Reference number of high-resolution library

-> x1 x coordinate of the start of the line.

-> y1 y coordinate of the start of the line.

-> x2 x coordinate of the end of the line.

-> y2 y coordinate of the end of the line.

Result Returns nothing.

HRWinDrawGrayRectangleFrame
Purpose Draw a gray rectangular frame in the draw window.

Prototype void HRWinDrawGrayRectangleFrame (UInt16 refNum, FrameType
frame, RectangleType *rP)

Parameters -> refNum Reference number of high-resolution library

-> frame Type of frame to draw.

High Resolution : Sony HR Library
High-Resolution API

Programmer's Companion for Sony CLIÉ™ Handheld 113

-> rP Pointer to the rectangle to frame.

Result Returns nothing.

HRWinDrawInvertedChars
Purpose Draw the specified characters inverted (background color) in the draw window.

Prototype void HRWinDrawInvertedChars (UInt16 refNum, const Char
*chars, Int16 len, Coord x, Coord y)

Parameters -> refNum Reference number of high-resolution library

-> chars Pointer to the characters to draw.

-> x x coordinate (left bound) of first charater to draw

-> y y coordinate (top bound) of first charater to draw.

Result Returns nothing.

HRWinDrawLine
Purpose Draw a line in the draw window using current foreground color.

Prototype void HRWinDrawLine (UInt16 refNum, Coord x1, Coord y1,
Coord x2, Coord y2)

Parameters -> refNum Reference number of high-resolution library

-> x1 x coordinate of the start of the line.

-> y1 y coordinate of the start of the line.

-> x2 x coordinate of the end of the line.

-> y2 y coordinate of the end of the line.

Result Returns nothing.

HRWinDrawPixel
Purpose Draw a pixel in the draw window using current foreground color.

Prototype void HRWinDrawPixel (UInt16 refNum, Coord x, Coord y)

Parameters -> refNum Reference number of high-resolution library

-> x x coordinate of pixel.

High Resolution : Sony HR Library
High-Resolution API

114 Programmer's Companion for Sony CLIÉ™ Handheld

-> y y coordinate of pixel.

Result Returns nothing.

HRWinDrawRectangle
Purpose Draw a rectangle in the draw window using current foreground color.

Prototype void HRWinDrawRectangle (UInt16 refNum, RectangleType *rP,
UInt16 cornerDiam)

Parameters -> refNum Reference number of high-resolution library

-> rP Pointer to the rectangle to draw.

-> cornerDiam Diameter of corners.

Zero for square corners.

Result Returns nothing.

HRWinDrawRectangleFrame
Purpose Draw a rectangular frame in the draw window using current foreground color.

Prototype void HRWinDrawRectangleFrame (UInt16 refNum, FrameType
frame, RectangleType *rP)

Parameters -> refNum Reference number of high-resolution library.

-> frame Type of frame to draw.

-> rP Pointer to the rectangle to frame.

Result Returns nothing.

HRWinDrawTruncChars
Purpose Draw the specified characters in the draw window, truncating the characters to the

specified width.

Prototype void HRWinDrawTruncChars (UInt16 refNum, const Char *chars,
Int16 len, Coord x, Coord y, Coord maxWidth)

Parameters -> refNum Reference number of high-resolution library

-> chars Pointer to the characters to draw.

-> len Length in bytes of the characters to draw.

High Resolution : Sony HR Library
High-Resolution API

Programmer's Companion for Sony CLIÉ™ Handheld 115

-> x x coordinate of first character to draw (left bound).

-> y y coordinate of first character to draw (top bound).

-> maxWidth Maximum width of the characters that are to be drawn.

Result Returns nothing.

HRWinEraseChars
Purpose Erase specified characters in the draw window.

Prototype void HRWinEraseChars (UInt16 refNum, const Char *chars,
Int16 len, Coord x, Coord y)

Parameters -> refNum Reference number of high-resolution library

-> chars Pointer to the charcters to erase.

-> len Length of the characters to erase.

-> x x coordinate of first character to erase (left bound).

-> y y coordinate of first character to erase (top bound).

Result Returns nothing.

HRWinEraseLine
Purpose Erase a line in the draw window using current background color.

Prototype void HRWinEraseLine (UInt16 refNum, Coord x1, Coord y1,
Coord x2, Coord y2)

Parameters -> refNum Reference number of high-resolution library.

-> x1 x coordinate of the start of the line.

-> y1 y coordinate of the start of the line.

-> x2 x coordinate of the end of the line.

-> y2 y coordinate of the end of the line.

Result Returns nothing.

High Resolution : Sony HR Library
High-Resolution API

116 Programmer's Companion for Sony CLIÉ™ Handheld

HRWinErasePixel
Purpose Erase a pixel in the draw window using current background color.

Prototype void HRWinErasePixel (UInt16 refNum, Coord x, Coord y)

Parameters -> refNum Reference number of high-resolution library

-> x x coordinate of a pixel.

-> y y coordinate of a pixel.

Result Returns nothing.

HRWinEraseRectangle
Purpose Erase a rectangle in the draw window using current background color.

Prototype void HRWinEraseRectangle (UInt16 refNum, RectangleType *rP,
UInt16 cornerDiam)

Parameters -> refNum Reference number of high-resolution library

-> rP Pointer to the rectangle to erase.

-> cornerDiam Diameter of corners; zero for square corners.

Result Returns nothing.

HRWinEraseRectangleFrame
Purpose Erase a rectangle in the draw window using current background color.

Prototype void HRWinEraseRectangleFrame (UInt16 refNum, FrameType
frame, RectangleType *rP)

Parameters -> refNum Reference number of high-resolution library

-> frame Type of frame to erase.

-> rP Pointer to the rectangular frame.

Result Returns nothing.

High Resolution : Sony HR Library
High-Resolution API

Programmer's Companion for Sony CLIÉ™ Handheld 117

HRWinFillLine
Purpose Fill a line in the draw window with the current pattern.

Prototype void HRWinFillLine (UInt16 refNum, Coord x1, Coord y1,
Coord x2, Coord y2)

Parameters -> refNum Reference number of high-resolution library

-> x1 x coordinate of the start of the line.

-> y1 y coordinate of the start of the line.

-> x2 x coordinate of the end of the line.

-> y2 y coordinate of the end of the line.

Result Returns nothing.

HRWinFillRectangle
Purpose Draw a rectanble with current pattern in the draw window.

Prototype void HRWinFillRectangle (UInt16 refNum, RectangleType *rP,
UInt16 cornerDiam)

Parameters -> refNum Reference number of high-resolution library

-> rP Pointer to the rectangle to draw.

-> cornerDiam Diameter of corners; Zero for square corners.

Result Returns nothing.

HRWinGetClip
Purpose Return the clipping rectangle of the draw window.

Prototype void HRWinGetClip (UInt16 refNum, RectangleType *rP)

Parameters -> refNum Reference number of high-resolution library

<- rP Pointer to a structure to hold the clipping bounds.

Result Returns nothing.

High Resolution : Sony HR Library
High-Resolution API

118 Programmer's Companion for Sony CLIÉ™ Handheld

HRWinGetDisplayExtent
Purpose Return the width and height of the display (the screen).

Prototype void HRWinGetDisplayExtent (UInt16 refNum, Coord *extentX,
Coord *extentY)

Parameters -> refNum Reference number of high-resolution library

<- extentX Width of the display window.

<- extentY Height of the display window.

Result Returns nothing.

HRWinGetFramesRectangle
Purpose Return the region needed to draw a rectangle with a frame.

Prototype void HRWinGetFramesRectangle (UInt16 refNum, FrameType
frame, RectangleType *rP, RectangleType *obscuredRectP)

Parameters -> refNum Reference number of high-resolution library.

-> frame Type of frame.

-> rP Pointer to the rectangle to frame.

<- obscuredRectP Pointer to the rectangle obscured by the frame.

Result Returns nothing.

HRWinGetPixel
Purpose Return the current pixel color in the draw window.

Prototype IndexedColorType HRWinGetPixel (UInt16 refNum, Coord x,
Coord y)

Parameters -> refNum Reference number of high-resolution library

-> x x coordinate of a pixel

-> y y coordinate of a pixel

Result Returns the index color value of the pixel.

High Resolution : Sony HR Library
High-Resolution API

Programmer's Companion for Sony CLIÉ™ Handheld 119

HRWinGetWindowBounds
Purpose Return the bounds of the current draw window in display-relative coordinates.

Prototype void HRWinGetWindowsBounds (UInt16 refNum, RectangleType
*rP)

Parameters -> refNum High-resolution library reference number.

<- rP Pointer to rectangle.

Result Returns nothing

HRWinGetWindowExtent
Purpose Returns the width and height of the current draw window.

Prototype void HRWinGetWindowExtent (UInt16 refNum, Coord *extentX,
Coord *extentY)

Parameters -> refNum High-resolution library reference number.

<- extentX Pointer to the width in pixels of the draw window.

<- extentY Pointer to the height in pixels of the draw window.

Result Returns nothing

HRWinGetWindowFrameRect
Purpose Returns a rectangle, in display –relative coordinates that defines the size and location of

the window and its frame.

Prototype void HRWinGetWindowFrameRect (UInt16 refNum, WinHandle
winHandle, RectangleType *rP)

Parameters -> refNum High-resolution library reference number.

-> winHandle Handle of window whose coordinates are desired.

<- rP A pointer to the coordinates of the window.

Result Returns nothing

High Resolution : Sony HR Library
High-Resolution API

120 Programmer's Companion for Sony CLIÉ™ Handheld

HRWinInvertChars
Purpose Invert the specified characters in the draw window.

Prototype void HRWinInvertChars (UInt16 refNum, const Chars *chars,
Int16 len, Coord x, Coord y)

Parameters -> refNum High-resolution library reference number.

-> chars Pointer to characters to invert.

-> len Length in bytes of the characters to invert.

-> x X coordinate of the first character to invert (left bound)

-> y Y coordinate of the first character to invert (top bound)

Result Returns nothing

HRWinInvertLine
Purpose Inverts a line in the draw window.

Prototype void HRWinInvertLine (UInt16 refNum, Coord x1, Coord y1,
Coord x2, Coord y2)

Parameters -> refNum High-resolution library reference number.

-> x1 x coordinate of line start point.

-> y1 y coordinate of line start point.

-> x2 x coordinate of line end point.

-> y2 y coordinate of line end point.

Result Returns nothing

HRWinInvertPixel
Purpose Inverts a pixel in the draw window.

Prototype void HRWinInvertPixel (UInt16 refNum, Coord x, Coord y)

Parameters -> refNum High-resolution library reference number.

-> x Pointer to the x coordinate of a pixel.

-> y Pointer to the y coordinate of a pixel.

Result Returns nothing

High Resolution : Sony HR Library
High-Resolution API

Programmer's Companion for Sony CLIÉ™ Handheld 121

HRWinInvertRectangle
Purpose Invert a rectangle in the draw window.

Prototype void HRWinInvertRectangle (UInt16 refNum, RectangleType
*rP, UInt16 cornerDiam)

Parameters -> refNum High-resolution library reference number.

-> rP pointer to the rectangle to invert.

-> cornerDiam Radius of rounded corners.
Specify zero for square corners.

Result Returns nothing

HRWinInvertRectangleFrame
Purpose Inverts a rectangular frame in the draw window.

Prototype void HRWinInvertRectangleFrame (UInt16 refNum, FrameType
frame, RectangleType *rP)

Parameters -> refNum High-resolution library reference number.

-> frame Type of frame to draw.

-> rP Pointer to rectangle to frame.

Result Returns nothing

HRWinPaintBitmap
Purpose Draw a bitmap in the current draw window at the specified coordinates with the current

draw mode.

Prototype void HRWinPaintBitmap (UInt16 refNum, BitmapType *bitmapP,
Coord x, Coord y)

Parameters -> refNum High-resolution library reference number.

-> bitmapP Pointer to a bitmap.

-> x The x coordinate of the upper-left corner.

-> y The y coordinate of the upper-left corner.

Result Returns nothing

High Resolution : Sony HR Library
High-Resolution API

122 Programmer's Companion for Sony CLIÉ™ Handheld

HRWinPaintChar
Purpose Draw a character in the draw windonw using the current drawing state.

Prototype void HRWinPaintChar (UInt16 refNum, WChar theChar, Coord x,
Coord y)

Parameters -> refNum High-resolution library reference number.

-> theChar Pointer to a character to draw.

-> x x coordinate of the location where the character is to be drawn
(left bound).

-> y Y coordinate of the location where the character is to be drawn
(top bound).

Result Returns nothing

HRWinPaintChars
Purpose Draw the specified characters in the draw windonw with current draw state.

Prototype void HRWinPaintChars (UInt16 refNum, const Chara chars,
Int16 len, Coord x, Coord y)

Parameters -> refNum High-resolution library reference number.

-> chars Pointer to the characters to draw.

-> len Length in bytes of the characters to draw.

-> x X coordinate of the first character to draw (left bound).

-> y Y coordinate of the first character to draw (top bound).

Result Returns nothing

Comments HRWinPaintLine
Purpose Draw a line in the draw window using the current drawing state.

Prototype void HRWinPaintLine (UInt16 refNum, Coord x1, Coord y1,
Coord x2, Coord y2)

Parameters -> refNum High-resolution library reference number.

-> x1 X coordinate of line beginning point.

-> y1 Y coordinate of line beginning point.

High Resolution : Sony HR Library
High-Resolution API

Programmer's Companion for Sony CLIÉ™ Handheld 123

-> x2 X coordinate of line endpoint.

-> y2 Y coordinate of line endpoint.

Result Returns nothing

HRWinPaintLines
Purpose Draw several lines in the draw window using the current drawing state.

Prototype void HRWinPaintLines (UInt16 refNum, UInt16 numLines,
WinLineType lines[])

Parameters -> refNum High-resolution library reference number.

-> numLines Number of lines to paint.

-> lines Array of lines.

Result Returns nothing

HRWinPaintPixel
Purpose Render a pixel in the draw window with current drawing state.

Prototype void HRWinPaintPixel (UInt16 refNum, Coord x, Coord y)

Parameters -> refNum High-resolution library reference number.

-> x Pointer to the x coordinate of a pixel.

-> y Pointer to the y coordinate of a pixel.

Result Returns nothing

HRWinPaintPixels
Purpose Render several pixels in the draw window with current drawing state.

Prototype void HRWinPaintPixels (UInt16 refNum, UInt16 numPoints,
PointType pts[])

Parameters -> refNum High-resolution library reference number.

-> numPoints Number of pixels to paint.

-> pts Array of pixels.

Result Returns nothing

High Resolution : Sony HR Library
High-Resolution API

124 Programmer's Companion for Sony CLIÉ™ Handheld

HRWinPaintRectangle
Purpose Draw a rectangle in the draw window with current drawing state.

Prototype void HRWinPaintRectangle (UInt16 refNum, RectangleType *rP,
UInt16 cornerDiam)

Parameters -> refNum High-resolution library reference number.

-> rP Pointer to rectangle to draw.

-> cornerDiam Radius of rounded corners. Specify zero for square corners.

Result Returns nothing

HRWinPaintRectangleFrame
Purpose Draw a rectangular frame in the draw window with the current drawing state.

Prototype void HRWinPaintRectangleFrame (UInt16 refNum, FrameType
frame, RectangleType *rP)

Parameters -> refNum High-resolution library reference number.

-> frame Type of frame to draw.

-> rP Pointer to rectangle to frame.

Result Returns nothing

HRWinRestoreBits
Purpose copy the contents of the specified window to the draw window and delete the passed

window.

Prototype void HRWinRestoreBits (UInt16 refNum, WinHandle winHandle,
Coord destX, Coord destY)

Parameters -> refNum High-resolution library reference number.

-> winHandle Handle of window to copy and delete.

-> destX X coordinate in the draw window to copy to.

-> destY Y coordinate in the draw window to copy to.

Result Returns nothing

High Resolution : Sony HR Library
High-Resolution API

Programmer's Companion for Sony CLIÉ™ Handheld 125

HRWinSaveBits
Purpose Creates an off-screen window and copy the specified region from the draw window to the

off-screen window.

Prototype WinHandle HRWinSaveBits (UInt16 refNum, RectangleType
*sourceP, UInt16 *error)

Parameters -> refNum High-resolution library reference number.

-> sourceP Pointer to the bounds of the region to save, relative to the
display.

<- error Pointer to any error encountered by this function.

Result Returns the handle of the Window containing the saved image, or zero if an error
occurred.

HRWinScreenMode
Purpose Sets or retunes display parameters, including display width and height, bit depth and color

support.

Prototype Err HRWinScreenMode (UInt16 refNum, WinScreenModeOperation
operation, UInt32 *widthP, UInt32 *heightP, UInt32 *depthP,
Boolean *enableColorP)

Parameters -> refNum High-resolution library reference number.

-> operation The work this function is to perform, as specified by one of the
following:

winScreenModeGet
Returns the current settings for the display.

winScreenModeGetDefaults
Returns the default settings for the display.

winScreenModeGetSupportedDepths
Returns the supported screen depth stored in depthP.
See WinScreenMode of SDK for more information.

winScreenModeGetSupportsColor
Returns true as the value of the enableColorP, when
color mode can be enabled.

winScreenModeSet
Change display settings to the values specified by the
other arguments.

High Resolution : Sony HR Library
High-Resolution API

126 Programmer's Companion for Sony CLIÉ™ Handheld

winScreenModeSetToDefaults
Change display settings to default values.

<-> widthP Pointer to New/old screen width.

<-> heightP Pointer to New/old screen height.

<-> depthP Pointer to New/old /available screen depth.

<-> enableColorP Pointer to Pass true to enable color drawing mode.

Result If no error, returns values as specified by the argument. Various invalid arguments may
cause this function to return a sysErrParamErr result code. A failed allocation can cause
this function to return a memErrNot EnoughSpace error.

Comments Return parameter (width, height) on each drawing mode

operation winScreenModeGet
winScreenModeGetDefaults

Operations associated with switching of drawing mode

operation winScreenModeSet
winScreenModeSetToDefaults

Table 7-9 operation : winScreenModeGet

WinScreenMode HRWinScreenMode

Compatibility mode width: 160 height: 160 width: 160 height: 160

High-resolution mode width: 160 height: 160 width: 320 height: 320

Table 7-10 operation : winScreenModeGetDefaults

WinScreenMode HRWinScreenMode

Compatibility mode width: 160 height: 160 width: 160 height: 160

High-resolution mode width: 160 height: 160 width: 160 height: 160

High Resolution : Sony HR Library
High-Resolution API

Programmer's Companion for Sony CLIÉ™ Handheld 127

HRWinScrollRectangle
Purpose Scroll a rectangle in the draw window.

Prototype Err HRWinScrollRectangle (UInt16 refNum, RectangleType *rP,
WinDirectionType direction, Coord distance, RectangleType
*vacatedP)

Parameters -> refNum High-resolution library reference number.

-> rP Pointer to rectangle to scroll.

-> direction Direction to scroll(winUp, winDown, winLeft, winRight).

-> distance Distance to scroll in pixels.

<- vacatedP Pointer to the rectangle that needs to be redrawn because it has
been vacated as a result of the scroll.

Result Return nothing

Table 7-11 operation : winScreenModeSet

WinScreenMode HRWinScreenMode

width: 160
height: 160

width: 320
height: 320

width: 160
height: 160

width: 320
height: 320

Compatibility
mode

Compatibility
mode

Invalid Compatibility mode Compatibility mode
->

High-resolution mode

High-resolution
mode

High-resolution
mode

Invalid High-resolution mode
->

Compatibility mode

High-resolution mode

Table 7-12 operation : winScreenModeSetToDefaults

WinScreenMode HRWinScreenMode

Compatibility mode Compatibility mode Compatibility mode

High-resolution mode High-resolution mode
->

Compatibility mode

High-resolution mode
->

Compatibility mode

High Resolution : Sony HR Library
High-Resolution API

128 Programmer's Companion for Sony CLIÉ™ Handheld

HRWinSetClip
Purpose Set the clipping rectangle of the draw window.

Prototype void HRWinSetClip (UInt16 refNum, RectangleType *rP)

Parameters -> refNum High-resolution library reference number.

-> rP Pointer to a structure holding the clipping bounds.
Each parameter of
rP(topleft.x,topleft.y,extent.x,extent.y)
should be a multiple of two.

Result Return nothing

HRWinSetWindowBounds
Purpose Set the bounds of the window to display relative coordinates.

Prototype void HRWinSetWindowBounds (UInt16 refNum, WinHandle
winHandle, RectangleType *rP)

Parameters -> refNum High-resolution library reference number.

-> winHandle Handle for the window for which to set the bounds.

-> rP Pointer to rectangle to use for bounds.
Each parameter of
rP(topleft.x,topleft.y,extent.x,extent.y)
should be a multiple of two.

Result Return nothing

HRWinWindowToDisplayPt
Purpose Convert a window-relative coordinate to a display- relative coordinate.

Prototype void HRWinWindowToDisplayPt (UInt16 refNum, Coord *extentX,
Coord *extentY)

Parameters -> refNum High-resolution library reference number.

<-> extentX Pointer to x coordinate to convert.

<-> extentY Pointer to y coordinate to convert.

Result Return nothing

High Resolution : Sony HR Library
High-Resolution API

Programmer's Companion for Sony CLIÉ™ Handheld 129

Bitmap API

HRBmpBitsSize
Purpose Return the size of the bit map’s data.

Prototype UInt32 HRBmpBitsSize (UInt16 refNum, BitmapType *bitmapP)

Parameters -> refNum High-resolution library reference number.

-> bitmapP Pointer to bitmap.

Result Returns the size in bytes of the bitmap’s data, excluding the header and the color table

HRBmpSize
Purpose Return the size of the bit map’s data.

Prototype UInt32 HRBmpSize (UInt16 refNum, BitmapType *bitmapP)

Parameters -> refNum High-resolution library reference number.

-> bitmapP Pointer to bitmap.

Result Returns the size in bites of the bitmap’s data, including the header and the color table.

HRBmpCreate
Purpose Create bitmap.

Prototype BitmapType *HRBmpCreate (UInt16 refNum, Coord width, Coord
height, UInt8 depth, ColorTableType *colortableP, Uint16
*error)

Parameters -> refNum High-resolution library reference number.

-> width The width of the bitmap in pixels. Must not be 0.

-> height The height of the bitmap in pixels. Must not be 0.

-> depth The pixel depth of the bitmap. Must be 1,2,4 or 8.
This value is used as the pixelSize field of BitmapType.

-> colortableP A pointer to the color table associated with the bitmap, or
NULL if the bitmap should not include a color table. If
specified, The number of colors in the color table must match
the depth parameter (2 for 1-bit, 4 for 2-bit, 16 for 4-bit, and
256 for 8-bit).

High Resolution : Sony HR Library
High-Resolution API

130 Programmer's Companion for Sony CLIÉ™ Handheld

<- error Contains the error code if an error occurs.

Result Return a pointer to the new bitmap structure or NULL if an error occurs. The parameter

Error contains one of the following:

errNone Success

sysErrParamErr The width, height, depth or colorTableP is invalid.

memErrNotEnoughSpace
There is not enough memory available to allocate the structure.

Fonts API

HRFntGetFontSize
Purpose Return the font ID of current font.

Prototype HRFontID HRFntGetFont (UInt16 refNum)

Parameters -> refNum High-resolution library reference number.

Result Return the font ID of current font

HRFntSetFont
Purpose Set the current font.

Prototype HRFontID HRFntSetFont (UInt16 refNum, HRFontID font)

Parameters] -> refNum High-resolution library reference number.

-> font ID of the font to make the active font.

Result Return the ID of the current font before the change.

HRFontSelect
Purpose Display a dialog box in which the user can choose and return a FontID value representing

the user’s choice.

Prototype HRFontID HRFontSelect (UInt16 refNum, HRFontID font)

Parameters -> refNum High-resolution library reference number.

High Resolution : Sony HR Library
Notes

Programmer's Companion for Sony CLIÉ™ Handheld 131

-> font A font ID value specifying the font to be highlighted as the
default choice in the dialog box this function displays.
The value must be one of the following.

US: hrStdFont
hrBoldFont
hrLargeBoldFont

J: hrStdFont
hrBoldFont
hrLargeFont
hrLargeBoldFont

Result Return selected font ID

Notes
Determining If High Resolution Library Is Available
As shown in “Availability of library” to determine whether a device provides High-
resolution library, use sonySysFtrSysInfoLibrHR bit in libr field of
SonySysFtrSysInfoType which is obtained by sonySysftrNumSysInfoP as a
feature number.1

Sub-Launch
Be careful of the screen mode when Sub-Launching other applications from the
application program or being Sub-Launched by another application program.
In switching the screen mode, make sure to close the menu, command bar, or pop up
window; otherwise, an error might be occurred.

Sub-Launching
In Sub-Launching the other application from a high-resolution mode application, switch
the mode to normal before Sub-Launching, if the application is not corresponding to high-
resolution mode.

Being sub-Launched
A sub-Launching application must be saved first with WinSaveBits, when sub-
launching from an application activated with compatible mode to the one corresponding to
high-resolution mode. Then switch the mode to high-resolution. When the application
ends, change to the compatible mode to redraw the saved screen with
(WinRestoreBits).

1. Other distinction methods may be offered in the future.

High Resolution : Sony HR Library
Notes

132 Programmer's Companion for Sony CLIÉ™ Handheld

Switching a screen mode
It takes time to switch the screen mode. Try programming to reduce the number of
switching as possible as you can.

BmpCompress
BmpCompress doesn’t correspond to the bitmap that exceeds 160 x 160 x 8 bit, and is
not supported.

About High Resolution Assist
Despite the use of High-Resolution API, this function enables activation of the existing
applications in High-Resolution mode.
By using this function, clear high resolution display (such as characters) will be available
in the application that run on Palm OS provided models.

However, some applications activate in one of the following ways if High Resolution
Assist function is used.

• Performances are largely deteriorated (ex. game).
• Operational irregularities occur.

such as Display divided in half or characters are distorted.
As for slow performance particularly , it's hard to distinguish for users whether the
performance is right or not because it looks normal.
To avoid performance deteriorations in advance, use the codes below in your reference to
run applications in compatible mode regardless the High-Resolution Assist settings.
For some software which enable the same functions of this, without using High-
Resolution Assist function the compatible mode may not work.

CASE 1: The Screen Mode is fixed in the application

static Err AppStart(void)
{

...

/* High Resolution Mode Set */
error = SysLibFind(sonySysLibNameHR, &hrRefNum);
if (error) {

error= SysLibLoad('libr', sonySysFileCHRLib,
&hrRefNum);

}

if (!error) {
UInt32 width, height;

width= height= 160;

High Resolution : Sony HR Library
Notes

Programmer's Companion for Sony CLIÉ™ Handheld 133

HROpen(hrRefNum);
HRWinScreenMode(hrRefNum, winScreenModeSet, &width,
&height, NULL, NULL);
HRClose(hrRefNum);

}

...

return errNone;
}

CASE 2: The Screen Mode is switched frequently in the application

#include <SonyHRLib.h>

UInt16 hrRefNum = sysInvalidRefNum;
Booleanhrlib= false;

...

function FUNCTION(....)
{

WinScreenMode(winScreenModeSetToDefaults, NULL, NULL,
NULL, NULL);
/* If you use above API-call, you must set to below again

*/
if (hrlib) {

UInt32 width, height;

width= height= 160;
HRWinScreenMode(hrRefNum, winScreenModeSet, &width,
&height, NULL, NULL);

}
}

...

static Err AppStart(void)
{

...

/* High Resolution Mode Set */
error = SysLibFind(sonySysLibNameHR, &hrRefNum);
if (error) {

High Resolution : Sony HR Library
Notes

134 Programmer's Companion for Sony CLIÉ™ Handheld

error= SysLibLoad('libr', sonySysFileCHRLib,
&hrRefNum);

}

if (!error) hrlib= true;

if (hrlib) {
UInt32 width, height;

width= height= 160;
HROpen(hrRefNum);
HRWinScreenMode(hrRefNum, winScreenModeSet, &width,
&height, NULL, NULL);

}

...

return errNone;
}

static void AppStop(void)
{

...

if (hrlib) {
HRWinScreenMode(hrRefNum, winScreenModeSetToDefaults,
NULL, NULL, NULL, NULL);
HRClose(hrRefNum);

}

...

}

Memory Stick® Audio : Sony Msa Library
Configuration and Function

Programmer's Companion for Sony CLIÉ™ Handheld 135

8
Memory Stick®
Audio : Sony Msa
Library
Some devices in the CLIÉ™ make it possible to replay ATRAC3 and MP31 form of music
data and obtain music information. These functions are given by the Memory Stick audio
library. By using it, application enables users to provide not only plain music player
function but interface with music expression as an entertainment.

Configuration and Function
Configuration
The Memory Stick audio libray consists of two modules listed below.

• Audio interface (MSA I/F)
It manages interface with application and provides API which can operate audio
that is independent of codec and physical media and hides MsaOut.

• Audio out put control (MSAOut)
It manages audio output control including volume and balance adjustment and
provides API which can control sound output that is independent of music data
and replay condition. API is hidden by MSA I/F so that the application does not
recognize MsaOut.

MSA I/F funcitonal
Obtaining audio information
Msa I/F library provides users audio player replay information and the functions to obtain
album and track information.
The replay information contains a replay list for play, replay status, replay mode, replay

1. This is available only when a version number obtained by using MsaGetAPIVersion() is 2.

Memory St ick® Audio : Sony Msa Library
Configuration and Function

136 Programmer's Companion for Sony CLIÉ™ Handheld

speed, replay position, audio player replay information, and the list of replayed tracks
when in shuffling mode.
The track information includes track names, artist names, and information for the limited
replay mode.

Specifying audio information
Msa I/F library provides users Audio player replay information, the functions to specify
album and track information and the function to edit Memory Stick audio.
The replay information contains a replay list for play, replay status, replay mode, replay
speed, and replay position.
The edit function includes the replay order change and deletion of tracks.

Audio replay control
Msa I/F library provides the basics such as replaying and suspending the audio player.

The Utility for data structure
Msa I/F library provides the functions to convert the sound unit into time, the time into
sound unit and the PBListIndex into Track No.

MsaOut functional
Audio output mode setting
The function that sets audio output mode to the one specified (It will be any of these:
stereo, monaural, main sound, sub sound, and dual sounds). Each mode is represented by a
specific numeric value. You specify a corresponding value to set to a particular mode.
The setting can be changed anytime; the change will be immediately reflected.
Your application should first get audio output control capability information (i.e.
monaural setting, main-sub sounds switching) of a device to control them.

Audio volume control
The function that sets audio volume to a specified level.
Volume of L(left/main) and R(right) channels are set separately.
To enable AVLS function and such, the maximum volume can be also set (for L and R
channels, respectively).
The settings are made by specifing a particular level: 0 represents no sound and
resolution-1 represents the maximum. The volume is controled so that it will not exceed
its maximum.
The setting can be changed anytime; the change will be immediately reflected.
Hardware with sufficient resolution, will convert the volume change to dB linear.
Your application should first get audio output control capability information (i.e. volume
control, separate control of L/R channels, volume level resolution) of a device to control
them.

Memory Stick® Audio : Sony Msa Library
Configuration and Function

Programmer's Companion for Sony CLIÉ™ Handheld 137

Audio mute control
The function that sets audio mute ON/OFF.
The setting can be changed anytime; the change will be immediately reflected.
Depending on capability of a device, the change will be made gradually to prevent
emitting any noise.
Your application should first get audio output capablity information (i.e. audio mute
control) of a device to control it.

Audio output information retrieval
The function that gets audio output information as audio output peak level and spectrum
data.
Audio output level of L (left/main) and R (right) channels are obtained separately.
Spectrum data is also obtained separately for each band.
The output and spectrum data can be obtained by specifing the specific level value: 0
represents no sound, and resolution-1 represents the maximum.
Hardware with sufficient resolution or equivalent function, will convert the value to dB
linear.
Your application should first get audio output capability information (i.e. audio output
peak level, separate control of L/R channels, resolution of output peak level, spectrum
data retrieval, number of bands, resolution of spectrum data retrieval) of a device and
interpret them.

Glossary
Album Several songs on the Memory Stick media or Database1 and are the same as on CD and

MD.
This information is saved on the Database.
The application can specify only one album to replay. This is called current album.

Track Audio track and normally a unit of one track. On the Memory Stick media, it corresponds
to one audio file.
One album is composed of several tracks.

Track No A number for all the tracks in the Album in order of replay. Starts from 1 up to 400- in the
greatest. Never use the same number twice. Excludes zero.
Usually, it replays in order of the track number, unless the list is re-specified.

PBList (PlayBack
List, PBList)

A series of tracks in order of replay position. (List of TrackNo) 400 is the greatest.
There are two kinds: One is made by default of an Album. The other is set by user (An
application).
By editing the list, several "replay units" can be created from the same album.

1. This is available only when a version number obtained by using MsaGetAPIVersion() is 2.

Memory St ick® Audio : Sony Msa Library
Audio Interface (MSA I/F) reference

138 Programmer's Companion for Sony CLIÉ™ Handheld

PB list is changeable. However, the album remains the same even though the list has
changed.

PB List index A series of numbers in the PB List in order of replay.
Always starts from 1 to 400 in the greatest.
PB list index is not directly related to the track number.

Background
Playback1

Playing audio while another application is active.

SU/ Sound unit A unit of audio data held together in some standard. On the ATRAC3, regardless the bit
rate, 23.2msec (44.1KHz 1024 sample) data is contained. On th MP3, when the bit rate is
128Kbps, 26.1msec (fixed sampling freqency: 44.1KHz) data is contained.

PB Mode PB Mode information is as below. All will be clear when the MSA Library closes.

Repeat replay Repeat/Non-repeat

Replay extent All tracks/1Track/of your choice

Kinds of PBList Album (default)/Program (user definition)

The order of replay Ascending/descending/Shuffle

Confirmation for the limited use of contents
Replay/skip it then go next/Stop

PB Status PB Status information is as below.

Status Stopping/ replaying

PBrate Replay direction(BWD/FWD). Consisting of the decoding SU
number in 1 Block and decoding distance.

Position Track number, the beginning position of the track (sound unit)

Audio Interface (MSA I/F) reference
Data Structures

MsaErr
On the Msa Function, if an error occurs, the error parameter contains one of the following.

msaErrParam The parameter is invalid.

msaErrNotOpen The library isn’t open.

1. This function is not supported by Audio Adapter.

Memory Stick® Audio : Sony Msa Library
Audio Interface (MSA I/F) reference

Programmer's Companion for Sony CLIÉ™ Handheld 139

msaErrStillOpen The library is still open.

msaErrMemory The memory error occurs.

msaErrNoVFSMgr The file system error occurs.

msaErrAlreadyOpen The library has been open already.

msaErrNotImplemented
Not being implemented.

msaErrSecurity Security error occurs.

msaErrPBListSet The error occurs in setting the PB list.

msaErrNotShuffleMode
Not a shuffle mode.

msaErrNoAlbum No album is inside.

msaErrNoMedia No Memory Stick media is inserted.

msaErrInvalidMedia
No Memory Stick media resoponding to OpenMG™ jukebox
is inserted.

msaErrDifferentMode
The operation is made in a different mode.

msaErrEnumerationEmpty
No Album information is in the Memory Stick.

msaErrEnumerationdetail
The error occurs in aquiring Album information.

msaErrNotConnected
Audio device is not connected.

msaErrReadFail MP3 file reading error occurs.

msaErrNotEnoughSpace
Disable to allocate memory for MP3 file.

msaErrInvalidFormat
Invalid file format of MP3.

msaErrNotMP3File
Not MP3 file.

AlbumInfoType1

Defines the form of album info that is obtainable by MsaAlbumEnumerate().
Refer to SonyMsaLib.h

1. This is available only when a version number obtained by using MsaGetAPIVersion() is 2.

Memory St ick® Audio : Sony Msa Library
Audio Interface (MSA I/F) reference

140 Programmer's Companion for Sony CLIÉ™ Handheld

typedef struct{
UInt16 albumtype;
UInt16 albumRefNum;
UInt16 volRef;
Char *nameP;
UInt16 fileNameLength;
UInt8 maskflag;
UInt8 reserve1
UInt16 code;
MemHandle infoH;
UInt32 reserve2;

}AlbumInfoType

Field Descriptions <- albumtype Audio format of Album

<- albumRefNum Reference number of Album

<- volRef Volume reference number of Album

<- nameP File path of Album

-> fileNameLength
Buffer size of nameP

<-> maskflag Bit field of acquiring information

-> code Specifies the character code of acquiring information

<-> infoH Handle with obtained information

MsaPBList
Structure used when obtainning PBList that is specified by MsaGetPBList()or
specifying PBList by MsaSetPBList().

typedef struct{
UInt16 format;
UInt16 reserve1;
UInt32 creatorID;
UInt32 appinfo;
UInt32 reserve2;
UInt16 pblistindex[1];

} MsaPBList,*MsaPBListPtr;

Field Descriptions format Indicates PBList format version. It’s 0x0001 this time.

reserved1 Reservation. Not in use.

creatorID Indicates CreatorID of the application where PBList is
specified. Default is msaLibCreatorID.

appinfo The value that the applicaion uses likewise distinguishing
applications.

Memory Stick® Audio : Sony Msa Library
Audio Interface (MSA I/F) reference

Programmer's Companion for Sony CLIÉ™ Handheld 141

reserved2 Reserved. Not in use.

pblistindex[1] PBList Index of the first track.

MsaPBStatus
Structure used when obtainning PBStatus that is specified by MsaGetPBStaus()or
specifying PBStatus by MsaSetPBStatus().

typedef struct{
MsaPlayStatus status;
UInt32 pbRate;
UInt16 currentTrackNo;
UInt32 currentSU;

}MsaPBStatus, *MsaPBStatusPtr;

Field Descriptions status Status of the player During the stop or replay

pbRate The speed of replay. See information below and glossary.

currentTrackNo PBList (PB List Index)

currentSU Off set from the top Sound Unit

MsaPlayStatusEnum
Defines status of the player that is obtainable by MsaGetPBStatus()

typedef enum{
msa_PLAYSTATUS,
msa_STOPSTATUS,
msa_OTHERSTATUS

}MsaPlayStatus;

Field Descriptions msa_PLAYSTATUS Player is replaying.

msa_STOPSTATUS Player is stopping.

msa_OTHERSTATUS Other than these above.

MsaPBMode
Structure used when obtainning PB Mode that is specified by MsaGetPBMode()or
specifying PBMode by MsaSetPBMode().

typedef struct{
MsaPlayloop loop;
MsaScope scope;
MsaPbListType pblisttype;

bit31 30 15 0

Direction DecSU ItvSU

Memory St ick® Audio : Sony Msa Library
Audio Interface (MSA I/F) reference

142 Programmer's Companion for Sony CLIÉ™ Handheld

MsaSequence seq;
MsaConfirm confirm;
UInt8 reserve;
UInt16 pblistindex1;
UInt32 startTime;
UInt16 pblistindex2;
UInt32 endTime;

} MsaPBMode, *MsaPBModePtr;

Field Descriptions loop Indicates whether it repeats after the replay of PBList.

scope The scope of replay.

pbListType Type of PBList.

seq The form of order for replaying.

confirm Confirmation form to replay tracks, including the one with
limit numbers to replay.

reserve Reservation. Not in use.

pblistindex1 The beginning PBListIndex during the AB repeat.

startTime The Starting time of the AB repeat (sound unit).

pblistindex2 The ending PBListIndex during the AB repeat.

endTime The end time of the AB repeat (sound unit).

MsaPlayloop Enum
Defines continuous replay after finishing the PBList that is obtainable by
MsaGetPBMode().

typedef enum{
msa_PLAY_NOLOOP,
msa_PLAY_LOOP,
msa_PLAY_NOLIMIT = 0xffff

}MsaPlayloop;

Field Descriptions msa_PLAY_NOLOOP After finishing the PBList, it stops.

msa_PLAY_LOOP After finishing the PBList, it replays from the top.

msa_PLAY_NOLIMIT Haven’t yet settled. It replays unlimitedly.

MsaScopeEnum
Defines a scope to replay that is obtainable by MsaGetPBMode().

typedef enum{
msa_SCOPE_ALL,
msa_SCOPE_ONETRACK,
msa_SCOPE_ARB

Memory Stick® Audio : Sony Msa Library
Audio Interface (MSA I/F) reference

Programmer's Companion for Sony CLIÉ™ Handheld 143

}MsaScope;

Field Descriptions msa_SCOPE_ALL Indicates all tracks in the PBList.

msa_SCOPE_ONETRACK
Indicates a track in the PB List.

msa_SCOPE_ARB Indicates the definable (defined) scope.

MsaPbListType Enum
Defines the form of PBList that is obtainable by MsaGetPBMode().

typedef enum{
msa_PBLIST_ALBUM,
msa_PBLIST_PROGRAM

} MsaPbListType;

Field Descriptions msa_PBLIST_ALBUM Indicates that it’s made by Album default.

msa_PBLIST_PROGRAM
Indicates that it’s defined by user.

MsaSequence Enum
Defines the form of replaying order that is obtainable by MsaGetPBMode().

typedef enum{
msa_SEQUENCE_CONTINUE,
msa_SEQUENCE_REVERSE,
msa_SEQUENCE_SHUFFLE

} MsaSequence;

Field Descriptions msa_SEQUENCE_CONTINUE
Replay from the top of the PBList.

msa_SEQUENCE_REVERSE
Replay from the end of the PBList.

msa_SEQUENCE_SHUFFLE
Replay in shuffle.

MsaConfirm Enum
Defines the form of replay confirmation to the limited track to replay that is obtainable by
MsaGetPBMode().

typedef enum{
Msa_CONFIRM_AUTO,
Msa_CONFIRM_PASS,
Msa_CONFIRM_STOP

} MsaConfirm;

Memory St ick® Audio : Sony Msa Library
Audio Interface (MSA I/F) reference

144 Programmer's Companion for Sony CLIÉ™ Handheld

Field Descriptions msa_CONFIRM_AUTO All of the confirmation related to the copyright turns
automatically OK.

msa_CONFIRM_PASS All of the confirmation related to the copyright turns
automatically cancelled. (Haven’t yet settled.)

msa_CONFIRM_STOP Stops at the time of the confirmation related to the copyright.

MsaTrackInfo
Structure used when getting the track information by MsaGetTrackInfo()

typedef struct{
UInt32 titleoffset;
UInt32 artistoffset;
UInt32 genreoffset;
UInt32 commentoffset;
UInt32 albumoffset;
Char *albumP;
UInt32 totalsu;
UInt16 tracknum;
UInt16 limitinfo;
UInt16 codecmode;
MsaCodecType codectype;
UInt16 frequencey;
Char trackinfo[1];

} MsaTrackInfo, *MsaTrackInfoPtr;

Field Descriptions titleoffset Off set value from trackinfo[0] to title data

artistoffset Off set value from trackinfo[0] to artist data.

genreoffset Off set value from trackinfo[0] to genre data.

commentoffset Off set value from trackinfo[0] to comment data.

albumoffset Off set value from trackinfo[0] to album data.

totalsu Album data: Total replay time(sound unit)
Track data: Replay time.(sound unit)

tracknum Album data: The track numbers in the Album.
Track data: TrackNO

limitinfo A flag to controll the repaly*

bit15 Indicates if the time is limited. If it is, 1 is set.

bit7 Indicates if number of times is limited. If it is, 1 is set.

bit6 Indicates if the content is outdated. If it is, 1 is set.

codecmode Compression mode*

frequency Sampling frequency.

Memory Stick® Audio : Sony Msa Library
Audio Interface (MSA I/F) reference

Programmer's Companion for Sony CLIÉ™ Handheld 145

trackinfo The top data of string information (Title/artist/
genre/comment data)

(* means that those are existing only on the Track data)

MsaCodecType Enum
Defines the form of compress mode that is obtainable by MsaGetTrackInfo().

typedef enum{
msa_CODEC_ATRAC,
msa_CODEC_MP3

}MsaCodecType

Field Descriptions msa_CODEC_ATRAC ATRAC

msa_CODEC_MP3 MP3

MsaTrackRestrictionInfo
Structure used when obtainning restricted replay information of the track by
MsaGetTrackRestrictionInfo()

typedef struct{
DateTimeType pbstartdatetime;
DateTimeType pbfinishdatetime;
UInt8 maxplaytime;
UInt8 curplaytime;
UInt16 reserved;

}MsaTrackRestrictionInfo,*MsaTrackRestrictionInfoPtr;

Field Descriptions Pbstartdatetime The starting date and time of the replay.

Pbfinishdatetime The ending date and time of the replay.

Maxplaytime The maxumum number of the replay permission.

Curplaytime The number of the Replay

reserve Reservation. Not in use.

MsaControlKey Enum
Defines the control forms that can be specified by MsaSetControlKey().

typedef enum{
msaControlkeyNoKey,
msaControlkeyPlayPause,
msaControlkeyFRPlay,
msaControlkeyFFPlay,
msaControlkeyPause,
msaControlkeyStop,
msaControlkeyVolm,

Memory St ick® Audio : Sony Msa Library
Audio Interface (MSA I/F) reference

146 Programmer's Companion for Sony CLIÉ™ Handheld

msaControlkeyVolp,
msaControlkeyPlay,
msaControlkeyCue,
msaControlkeyRev,
msaControlkeyAMSp,
msaControlkeyAMSm,
msaControlkeyFF,
msaControlkeyFR,
msaControlkeyRepeat,
msaControlkeyPlay1Track,
msaControlkeyPlayAllTrack,
msaControlkeyPlaySection,
msaControlkeySetSection,
msaControlkeyOrderNormal,
msaControlkeyOrderReverse,
msaControlkeyOrderShuffle,
msaControlkeyHold,
msaControlkey_NUMCODE

}MsaControlKey;

MsaControlKeyState Enum
Defines the key status that can be specified by MsaSetControlKey().

typedef enum{
msaControlKeySet,
msaControlKeyRelease,
msaControlKeyLong

} MsaControlKeyState;

Field Descriptions msaControlKeySet Key is pressed.

msaControlKeyRelease
Key is released.

msaControlKeyLong Key is long pressed.

MsaTime
Structure used by MsaSuToTime() and MsaTimeToSu()

typedef struct{
UInt16 minute;
UInt16 second;
UInt16 frame;// milli-second

}MsaTime,*MsaTimePtr;

Memory Stick® Audio : Sony Msa Library
Audio Interface (MSA I/F) reference

Programmer's Companion for Sony CLIÉ™ Handheld 147

System I/F

MsaLibOpen
Purpose Opens Memory Stick Audio library to initialize.

Prototype Err MsaLibOpen(UInt16 msaLibRefNum, UInt16 mode)

Parameters -> msaLibRefNum Reference number of library.

-> mode A mode to open library
At present, only msaLibOpenModeAlbum is available.

Result errNone No error.

msaErrAlreadyOpen

msaErrMemory

msaErrDifferentMode

expErrCardNotPresent

Comments An application needs to call this function before using the Memory Stick audio library. If
the Memory Stick audio library has already been opened, MsaLibOpen increases the
open accounts.
Memory Stick audio replay continues to control other applications even though an
applicaion is finished. So the MSA is accessible by multiple libraries or applications. (The
control isn’t available exlusively.)

MsaLibClose
Purpose Closes MSA library.

Prototype Err MsaLibClose(UInt16 msaLibRefNum, UInt16 mode)

Parameters -> msaLibRefNum Reference number of MSA Lib.

-> mode A mode specified when opening library
At present, only msaLibOpenModeAlbum is available.

Result errNone No error.

msaErrStillOpen Library has been used by other modules. (no error)

msaErrNotOpen No library has been opened.

msaErrMemory

msaErrDifferentMode

etc.

Memory St ick® Audio : Sony Msa Library
Audio Interface (MSA I/F) reference

148 Programmer's Companion for Sony CLIÉ™ Handheld

Comments All information is clear when closed.

MsaLibGetCapability
Purpose It obtains the capability to replay.

Prototype Boolean MsaGetCapability(UInt16 msaLibRefNum,
MsaCodecType codectype, UInt32 pbrate)

Parameters -> msaLibRefNum Reference number of MSA Lib

-> codectype Codec type

-> pbrate pbrate (direction,decode su,interval su)

Result True Replay available

False Replay unavailable

Comments MsaGetAPIVersion
Purpose Obtains API version

Prototype UInt32 MsaGetAPIVersion(UInt16 msaLibRefNum)

Parameters -> msaLibRefNum Reference number of MSA Lib

Result Version number returns.

1 Only ATRAC3 is available

2 ATRAC3 and MP3 are available

MsaLibEnforceOpen
Purpose Closes the current Msa libray that has been opened then opens it again.

Prototype Err MsaLibEnforceOpen(UInt16 msaLibRefNum,
UInt16 mode, UInt32 creator)

Parameters -> msaLibRefNum Reference number of MSA Lib

-> mode The mode to open

-> creator CreatorID

Result errNone No error

msaErrStillOpen

Memory Stick® Audio : Sony Msa Library
Audio Interface (MSA I/F) reference

Programmer's Companion for Sony CLIÉ™ Handheld 149

Comments MsaLibEnforceOpen broadcasts EnforceOpen event with Notification.
Follow the instructions below.
Register EnforceOpen event Notification. Then activate AppA which is an application
that MsaLibClose() is put in this Notification handler, and keep it active on back
ground. If MsaLibEnforceOpen is called on AppB, AppA enables to close Msa
Library and AppB enables to open it through Notification.

Obtaining information I/F

MsaAlbumEnumerate1

Purpose Get Album list in a Memory Stick.

Prototype Err MsaAlbumEnumerate(UInt16 msaLibrefNum,
UInt32 *albumIteratorP,AlbumInfoType *infoP)

Parameters -> msaLibrefNum Reference number of MsaLib.

<-> albumIteratorP
Pointer to the last album.
Returns a pointer to the next album.

<-> infoP Pointer to album information specified by
albumIteratorP.

Result errNone No error.

msaErrNotOpen

msaErrDifferentMode

msaErrNoMedia

msaErrInvalidMedia

msaErrNoAlbum

msaErrEnumerationEmpty

msaErrEnumerationdetail

msaErrParam

Comments Searches in /HIFI/PBLIST.MSF and the album file specified by the system.
To get such album information as the number of tracks and title: Set a required bit to
maskflag, and the system returns the information to a handle.
albumIteratorP is a variable used to get the next album information. To get the next
album information, call API by setting the last album information obtained.

1. This is available only when a version number obtained by using MsaGetAPIVersion() is 2.

Memory St ick® Audio : Sony Msa Library
Audio Interface (MSA I/F) reference

150 Programmer's Companion for Sony CLIÉ™ Handheld

To get a list of all albums, call API by setting albumIteratorStart to
albumIteratorP; then, call API again by setting a value returned. Repeat this until
albumIteratorStop is returned to albumIteratorP.

The system sends the followings as a result and returned values.

• No album exists:

• One album exists:

• More than one album exist:

When NULL is set to infoP->nameP, only albumtype,albumRefNum and
volRef are obtained. Other information such as infoP->infoH will not be returned.

Here is a sample code that gets an album list:

AlbumInfoType info;
UInt32 albumIterator=albumIteratorStart;

info.maskflag = msa_INF_INFALL;
info.code = msa_LANG_CODE_ASCII;
while(albumIterator!=albumIteratorStop){

if(MsaAlbumEnumerate(GMsaLibRefNum,&albumIterator,&info){
/* Get Album Information */

}else{
/* Error */

}
}

result albumIteratorP

msaErrEnumerationEmpty albumIteratorStop

result albumIteratorP

errNone albumIteratorStop

result albumIteratorP

errNone a value to get the next album
information

Memory Stick® Audio : Sony Msa Library
Audio Interface (MSA I/F) reference

Programmer's Companion for Sony CLIÉ™ Handheld 151

MsaGetAlbum1

Purpose Get current Reference number of a album.

Prototype Err MsaGetAlbum(UInt16 msaLibRefNum, UInt16 *albumRefNum,
UInt32 *dummy)

Parameters -> msaLibRefNum Reference number of MSA Lib.

<- albumRefNum Reference number of a album.

-> dummy Not used.

Result errNone No error.

msaErrNotOpen

msaErrDifferentMode

msaErrNoMedia

msaErrInvalidMedia

msaErrNoAlbum

msaErrParam

MsaGetPBList
Purpose Obtains the current specified PBList.

Prototype Err MsaGetPBList(UInt16 msaLibRefNum,
MSAPBListPtr pblistP, UInt16 *tracknum)

Parameters -> msaLibRefNum Reference number of MSA Lib

<-> pblistP Pointer to the MSAPBList structre.

<-> tracknum Track number in the PBList

Result errNone No error

msaErrNotOpen:

msaErrDifferentMode:

msaErrNoMedia:

msaErrInvalidMedia:

msaErrNoAlbum:

1. This is available only when a version number obtained by using MsaGetAPIVersion() is 2.

Memory St ick® Audio : Sony Msa Library
Audio Interface (MSA I/F) reference

152 Programmer's Companion for Sony CLIÉ™ Handheld

Comments If PblistP is NULL, it obtains PBList size. Before obtainning PBList, Users must
obtain its size first. If Tracknum is 0, it returns the header information of MsaPBList
structure. (the member, excluding pblistindex)

MsaGetPBStatus
Purpose Obtains the current replay status (PB or Stop/PBrate/Position etc).

Prototype Err MsaGetPBStatus(UInt16 msaLibRefNum, MSAPBStatusPtr
pbstatusP)

Parameters -> msaLibRefNum Reference number of MSA Lib.

<- pbstatusP Pointer to the MSAPBStatus structre.

Result errNone No error

msaErrNotOpen:

msaErrDifferentMode:

msaErrNoMedia:

msaErrInvalidMedia:

msaErrNoAlbum:

msaErrParam:

Comments MsaGetPBMode
Purpose Obtains the current replay status.

Prototype Err MsaGetPBMode(UInt16 msaLibRefNum, MSAPBModePtr pbmodeP)

Parameters -> msaLibRefNum Reference number of MSA Lib.

<- pbmodeP Pointer to the MSAPBMode structre.

Result errNone No error

msaErrNotOpen:

msaErrDifferentMode:

msaErrNoMedia:

msaErrInvalidMedia:

msaErrNoAlbum:

msaErrParam:

Memory Stick® Audio : Sony Msa Library
Audio Interface (MSA I/F) reference

Programmer's Companion for Sony CLIÉ™ Handheld 153

MsaGetPBRate
Purpose Obtains the replay speed.

Prototype Err MsaGetPBRate(UInt16 msaLibRefNum, UInt32 * pbrateP)

Parameters -> msaLibRefNum Reference number of MSA Lib.

<- pbrateP The pointer to the memory for storing the replay speed.

Result errNone No error

msaErrNotOpen:

msaErrDifferentMode:

msaErrNoMedia:

msaErrInvalidMedia:

msaErrNoAlbum:

msaErrParam:

Comments The replay speed is made of direction and DecSU/ItvSU. See below.

MsaGetPBPosition
Purpose Obtains the replying position.

Prototype Err MsaGetPBPosition(UInt16 msaLibRefNum, UInt16
*currenttrack,
UInt32*currentposition)

Parameters -> msaLibRefNum Reference number of MSA Lib.

<- currenttrack The pointer to the replaying PB List Index.

<- currentposition
The pointer to the starting position of the replay.

Result errNone No error

msaErrNotOpen:

msaErrDifferentMode:

msaErrNoMedia:

direction DecSU ItvSU

bit31 30 15 0

Memory St ick® Audio : Sony Msa Library
Audio Interface (MSA I/F) reference

154 Programmer's Companion for Sony CLIÉ™ Handheld

msaErrInvalidMedia:

msaErrNoAlbum:

msaErrParam;

Comments MsaGetTrackInfo
Purpose Obtains the information of Album and each track.

Prototype MsaGetTrackInfo(UInt16 msaLibRefNum, UInt16 trackNo,
UInt8 *maskP, UInt16 code, MemHandle *hdlP)

Parameters -> msaLibRefNum Reference number of MSA Lib.

-> trackNo Track number.

<-> maskP Specifies the bit field of obtainning info.

-> code Specify the code to obtainning information (1byte or 2byte
code).

-> hdlP The pointer to the handle with obtained information.

Result errNone No error

msaErrNotOpen:

msaErrDifferentMode:

msaErrNoMedia:

msaErrInvalidMedia:

msaErrNoAlbum:

msaErrParam:

msaErrMemory:

expErrCardNotPresent:

Comments Obtains AlbumInfo if TrackNo is 0.
For Track information, the system obtains the memory. After obtainning the information,
it releases the memory in the program. The system obtains the specified items by MaskP
and store it to the specified area (including Null).
Also, it calculates the total playing time of album, if the bit of NotGetsu1 is 0. (If it's 1,
the calculations can't be made.)

bit7 6 5 4 3 0

title Artist Genre Comme
nt

Album
Title

Reserve NotGe
tsu

Memory Stick® Audio : Sony Msa Library
Audio Interface (MSA I/F) reference

Programmer's Companion for Sony CLIÉ™ Handheld 155

It sets 1 in the responding bit of maskP, if specified data is obtained. If not, sets 0 in the
bit. If there is information that is unable to obtain, the writing on the off-set value of
MsaTrackInfo can’t be made. Before using off set value, check the bit of maskP first.

MsaGetShufflePlayedList
Purpose On shuffle mode, it obtains the list of replayed PBListIndex number.

Prototype Err MsaGetShufflePlayedList(UInt16 msaLibRefNum,
UInt32 *shuffleplayedlist)

Parameters -> msaLibRefNum Reference number of MSA Lib.

-> shuffleplayedlist
The pointer to the list of replayed PBListIndex number.

Result errNone No error

msaErrNotOpen:

msaErrDifferentMode:

msaErrNoMedia:

msaErrInvalidMedia:

msaErrNoAlbum:

msaErrParam:

msaErrNotShuffleMode:

Comments Available only on shuffle mode. Acquire the area for the size of current PBList (for 32bit)
and pass it as an argument. Bit 1 is allocated for the replayed PBListIndex. The list of
PBListIndex number is allotted as below.

1. This is available only when a version number obtained by using MsaGetAPIVersion() is 2.

bit31 30 3 2 1 0

32 31 4 3 2 1

bit31 30 3 2 1 0

64 63 36 35 34 33

Memory St ick® Audio : Sony Msa Library
Audio Interface (MSA I/F) reference

156 Programmer's Companion for Sony CLIÉ™ Handheld

MsaGetTrackRestrictionInfo
Purpose It obtains the detailed information for the replay restriction.

Prototype Err MsaGetTrackRestrictionInfo(UInt16 msaLibRefNum,
UInt16 trackNo, MsaTrackRestrictionInfoPtr resrictionP)

Parameters -> msaLibRefNum Reference number of MSA Lib.

-> trackNo The pointer to the list of PBListIndex number that has
already replayed.

-> resrictionP The pointer to the detailed information for the replay
restriction.

Result errNone: no error

msaErrNotOpen:

msaErrDifferentMode:

msaErrNoMedia:

msaErrInvalidMedia:

msaErrNoAlbum:

msaErrParam:

expErrCardNotPresent:

Comments If there is a replay restriction on the GetTrackInfo, specify same TrackNO to call this
function. Same as (limittime).

Specifying information I/F

MsaSetAlbum1

Purpose Specify an Album to replay

Prototype Err MsaSetAlbum(UInt16 msaLibrefNum,
UInt16 albumRefNum, UInt32 *dummy)

Parameters -> msaLibrefNum Reference number of MsaLib.

-> albumRefNum Reference number of Album.

1. This is available only when a version number obtained by using MsaGetAPIVersion() is 2.

Memory Stick® Audio : Sony Msa Library
Audio Interface (MSA I/F) reference

Programmer's Companion for Sony CLIÉ™ Handheld 157

-> dummy Not in use

Result errNone No error

msaErrNotOpen

msaErrDifferentMode

msaErrNoMedia

msaErrInvalidMedia

msaErrNoAlbum

Comments By setting albumRefNum, obtained by MsaAlbumEnumerate(), it becomes
available to replay the Album.

MsaSetPBList
Purpose It specifies the PBList.

Prototype Err MsaSetPBList(UInt16 msaLibRefNum, MSAPBListPtr pblistP,
UInt16 tracknum)

Parameters -> msaLibRefNum Reference number of MSA Lib.

-> pblistP The pointer to MSAPBList structre.

-> tracknum The size of PBList to specify.

Result errNone: No error

msaErrNotOpen:

msaErrDifferentMode:

msaErrNoMedia:

msaErrInvalidMedia:

msaErrNoAlbum:

msaErrParam:

msaErrMemory:

expErrCardNotPresent:

Comments During the replay, specification can’t be made. Make sure to do it during the stop.

Memory St ick® Audio : Sony Msa Library
Audio Interface (MSA I/F) reference

158 Programmer's Companion for Sony CLIÉ™ Handheld

MsaSetPBStatus
Purpose It specifies the replaying status.(PBrate/Position etc).

Prototype Err MSAGetPBStatus(UInt16 msaLibRefNum, MSAPBStatusPtr
*pbstatusP)

Parameters -> msaLibRefNum Reference number of MSA Lib.

-> pbstatusP The pointer to MSAPBStatus structure.

Result errNone No error

Comments Can’t specified status simply.
During the replay, specification can’t be made. Make sure to do it when it stops.

MsaSetPBMode
Purpose Specifies the replay status.

Prototype Err MSASetPBMode(UInt16 msaLibRefNum, MSAPBModePtr pbmodeP)

Parameters -> msaLibRefNum Reference number of MSA Lib.

-> pbmodeP The pointer to MSAPBMode structure.

Result errNone No error

msaErrNotOpen:

msaErrDifferentMode:

msaErrNoMedia:

msaErrInvalidMedia:

msaErrNoAlbum:

msaErrParam:

Comments MsaSetPBRate
Purpose Set the replaying speed.

Prototype Err MsaSetPBRate(UInt16 msaLibRefNum, UInt32 pbrateP)

Parameters -> msaLibRefNum Reference number of MSA Lib.

Memory Stick® Audio : Sony Msa Library
Audio Interface (MSA I/F) reference

Programmer's Companion for Sony CLIÉ™ Handheld 159

-> pbrateP The replay speed.

Result errNone No error

msaErrNotOpen:

msaErrDifferentMode:

msaErrNoMedia:

msaErrInvalidMedia:

msaErrNoAlbum:

msaErrParam:

Comments The change of “Replay” and “Stop,” which is Audio replay system status hasn’t occurred.
If called during the replay, the specified speed is reflected soon. During the stop, only the
speed status has changed. It replays at that speed when in replay status.

The replaying speed is consist of direction and DecSU/ItvSU. See below or the
reference.

DecSU=0 can’t be specified. The speed to set will be defined later.

MsaSetPBPosition
Purpose It sets the replaying position.

Prototype Err MSASetPBPosition(UInt16 msaLibRefNum,
UInt16 currenttrack, UInt32 currentposition)

Parameters -> msaLibRefNum Reference number of MSA Lib.

-> currenttrack The track number to replay.

-> currentposition
The position to start to replay.

Result errNone No error

msaErrNotOpen:

msaErrDifferentMode:

msaErrNoMedia:

msaErrInvalidMedia:

msaErrNoAlbum:

direction DecSU ItvSU

bit31 30 15 0

Memory St ick® Audio : Sony Msa Library
Audio Interface (MSA I/F) reference

160 Programmer's Companion for Sony CLIÉ™ Handheld

msaErrParam;

Comments During the replay, the setting isn’t available. Be sure to do it when stopped.

MsaEdit
Purpose Edits the audio file on the Memory Stick.

Prototype Err MsaEdit(UInt16 msaLibRefNum, UInt8 command,
UInt16 track1, UInt16 track2, UInt32 su)

Parameters -> msaLibRefNum Reference number of MSA Lib.

-> command What to Edit.

-> track1 Source track.

-> track2 Destination track (Use “move” alone).

-> su Sound unit (Use “devide” alone). HMS/SU.

Result errNone No error

msaErrNotOpen:

msaErrDifferentMode:

msaErrNoMedia:

msaErrInvalidMedia:

msaErrNoAlbum:

msaErrParam:

Comments If delete (as command) is executed, the data on Memory Stick media is erased.

Playback control I/F

MsaPlay
Purpose Starts to replay.

Prototype Err MsaPlay (UInt16 msaLibRefNum, UInt16 currenttrack,
UInt32 currentposition, Uint32 pbrate)

Parameters -> msaLibRefNum The reference number of MSA Lib.

-> currenttrack The track number to replay.

-> currentposition
The starting position to replay.

Memory Stick® Audio : Sony Msa Library
Audio Interface (MSA I/F) reference

Programmer's Companion for Sony CLIÉ™ Handheld 161

-> pbrate The replay speed.

Result errNone No error

msaErrNotOpen

msaErrDifferentMode:

msaErrNoMedia:

msaErrInvalidMedia:

msaErrNoAlbum:

msaErrParam:

Comments If currenttrack is 0xffff, current holding track and position are used. If
msaPBRate is 0xFFFFFFFF, current holding information is used.
During the replay, 0 is set on AutoOffTimer (=never power off).
Using the call of this function, the replay command to the audio replay system is issued.
To know the actual success, it’s recommended to check the replay is in the status. If error,
the event is issued.

MsaStop
Purpose Stops to replay.

Prototype Err MsaStop (UInt16 msaLibRefNum, Boolean reset)

Parameters -> msaLibRefNum Reference number of MSA Lib.

-> reset True if the current status:PBStatus is clear. False if current
status: PBStatus is remained.

Result errNone No error

msaErrNotOpen:

msaErrDifferentMode:

msaErrNoMedia:

msaErrInvalidMedia:

msaErrNoAlbum:

Comments If stopped, AutoOffTimer is available.

Initial value of PBStatus

status: msa_STOPSTATUS

pbRate: Normal speed Dir 0 DecSU 6 InvSU 6

currentTrackNo: 1

Memory St ick® Audio : Sony Msa Library
Audio Interface (MSA I/F) reference

162 Programmer's Companion for Sony CLIÉ™ Handheld

currentSU: 0

MsaSetControlKey
Purpose Specifies a Virtual key.

Prototype Err MsaSetControlKey(UInt16 msaLibRefNum,
MsaControlKey controlkey, MsaControlKeyState keystatus)

Parameters -> msaLibRefNum Reference number of MSA Lib.

-> controlkey Types of Virtual key.

-> keystatus Status of Virtual key(Set/Release/Long).

Result errNone No error

msaErrNotOpen:

msaErrDifferentMode:

msaErrNoMedia:

msaErrInvalidMedia:

msaErrNoAlbum:

msaErrParam;

Comments If there is a constant interval between Set and Release, it notifies the long key press of
VirtualKey to TrackPlayer.

Utility I/F

MsaSuToTime
Purpose Converts sound unit number to MsaTime structure.

Prototype Err MsaSuToTime(UInt16 msaLibRefNum,UInt32 SU,
MsaTimePtr timeP)

Parameters -> msaLibRefNum Reference number of MSA Lib.

-> SU Sound unit number from the top track.

<- timeP Pointer to MsaTime structre.

Result ErrNone No error

msaErrNotOpen:

msaErrDifferentMode:

Memory Stick® Audio : Sony Msa Library
MsaOut API

Programmer's Companion for Sony CLIÉ™ Handheld 163

Comments MsaTimeToSu
Purpose Converts MsaTime structure to sound unit number.

Prototype Err MsaTimeToSu(UInt16 msaLibRefNum, MsaTimePtr timeP,
UInt32 *SU)

Parameters -> msaLibRefNum Reference number of MSA Lib.

-> timeP Pointer to MsaTime structre.

<- SU Sound unit number out of the top track.

Result ErrNone No error

msaErrNotOpen:

msaErrDifferentMode:

Comments MsaPBListIndexToTrackNo
Purpose Converts PBListIndex number to TrackNo.

Prototype Err MsaPBListIndexToTrackNo(UInt16 msaLibRefNum,
UInt16 pblistindex, UInt16 *trackno)

Parameters -> msaLibRefNum Reference number of MSA Lib.

-> pblistindex PBListindex number.

<- trackno TrackNO.

Result ErrNone No error

msaErrNotOpen:

msaErrDifferentMode:

msaErrNoMedia:

msaErrInvalidMedia:

msaErrNoAlbum:

msaErrParam:

MsaOut API
Data structure
Here is the list of the data structure defined by MsaOut.

Memory St ick® Audio : Sony Msa Library
MsaOut API

164 Programmer's Companion for Sony CLIÉ™ Handheld

MsaOutErr
Error number of MsaOut module.

typedef Err MsaOutErr;
#define msaOutErrClass (sonyMsaErrorClass|0x40)
#define msaOutErrNone (0)
#define msaOutErrInvalidParam (msaOutErrClass| 1)
#define msaOutErrBandOutOfRange (msaOutErrClass| 2)
#define msaOutErrLevelOutOfRange (msaOutErrClass| 3)
#define msaOutErrFreqOutOfRange (msaOutErrClass| 4)
#define msaOutErrPatternOutOfRange (msaOutErrClass| 5)
#define msaOutErrAlreadyStopped (msaOutErrClass| 6)
#define msaOutErrAlreadyOpened (msaOutErrClass| 7)
#define msaOutErrAlreadyClosed (msaOutErrClass| 8)
#define msaOutErrClosed (msaOutErrClass| 9)
#define msaOutErrHwr (msaOutErrClass|10)
#define msaOutErrNotSupported (msaOutErrClass|11)

Field Descriptions MsaOutErrNone Successfully executed.

MsaOutErrInvalidParam
Specified parameter is invalid.
NULL pointer is specified.

MsaOutErrBandOutOfRange
Specified band number is out of range.

MsaOutErrLevelOutOfRange
Specified level is out of range.

MsaOutErrFreqOutOfRange
Specified frequencey number is out of range.

MsaOutErrPatternOutOfRange
Specified pattern number is out of range.

MsaOutErrAlreadyStopped
It is already stopped.

MsaOutErrClosed It is closed.

MsaOutErrHwr Hardware error occurred.

MsaOutErrNotSupported
Specified function is not supported.

MsaOutOutputMode
Set value of audio output mode.

typedef enum {
msaOutOutputStereo = 0,
msaOutOutputMonoral,

Memory Stick® Audio : Sony Msa Library
MsaOut API

Programmer's Companion for Sony CLIÉ™ Handheld 165

msaOutOutputMain,
msaOutOutputSub,
msaOutOutputDual

} MsaOutOutputMode;

Field Descriptions msaOutOutputStereo
Stereo output.

msaOutOutputMonoral
Monaural output.

msaOutOutputMain Main sound output.

msaOutOutputSub Sub sound output.

msaOutOutputDual Dual sounds output.

MsaOutMuteSwitch
Set value of mute mode.

typedef enum {
msaOutMuteOFF = 0,
msaOutMuteON

} MsaOutMuteSwitch;

Field Descriptions msaOutMuteOFF Mute is OFF.

msaOutMuteON Mute is ON.

MsaOutInfoType
set value/ status

typedef struct {
MsaOutOutputMode outputMode;
UInt16 volumeL;
UInt16 volumeR;
UInt16 volumeLimitL;
UInt16 volumeLimitR;
MsaOutMuteSwitchType muteSwitch;
MsaOutEQSwitchType EQSwitch;
UInt16 *EQvalueP;
UInt16 BBLevel;
UInt16 beepLevel;

} MsaOutInfoType, *MsaOutInfoPtr;

Field Descriptions outputMode Audio output mode.

volumeL Volume of channel L.

volumeR Volume of channel R.

Memory St ick® Audio : Sony Msa Library
MsaOut API

166 Programmer's Companion for Sony CLIÉ™ Handheld

volumeLimitL Maximum volume of channel L.

volumeLimitR Maximum volume of channel R.

muteSwitch Mute status.

MsaOutMuteON
Mute is ON.

MsaOutMuteOFF
Mute is OFF.

EQSwitch State of EQualizer switch.

EQvalueP Pointer to the value table of EQualizer level.

BBLevel Bassboost level.

beepLevel Beep level.

MsaOutCapabilityType
Audio/beep output control capability information

typedef struct {
#define msaOutIncapable (0)
#define msaOutCapable (1)

UInt32 monoral:1;
UInt32 bilingual:1;
UInt32 volumeL:1;
UInt32 volumeR:1;
UInt32 volumeLLimit:1;
UInt32 volumeRLimit:1;
UInt32 deEmphasis:1;
UInt32 mute:1;
UInt32 EQ:1;
UInt32 EQL:1;
UInt32 EQR:1;
UInt32 BB:1;
UInt32 beep:1;
UInt32 levelL:1;
UInt32 levelR:1;
UInt32 spectrumL:1;
UInt32 spectrumR:1;
UInt32 reservedFlag:15;
UInt16 volumeReso;
UInt16 volumeLimitReso;
UInt16 volumeLimitForAVLS;
UInt16 volumeDefault;
UInt16 EQReso;
UInt16 EQNumBand;
UInt16 BBMaxLevel;

Memory Stick® Audio : Sony Msa Library
MsaOut API

Programmer's Companion for Sony CLIÉ™ Handheld 167

UInt16 beepMaxLevel;
UInt16 beepMaxFreq;
UInt16 beepMaxPattern;
UInt16 levelReso;
UInt16 spectrumReso;
UInt16 spectrumNumBand;

} MsaOutCapabilityType, *MsaOutCapabilityPtr;

Field Descriptions monoral:1 Monaural output is:

msaOutCapableavailable.

msaOutIncapableunavailable.

bilingual:1 Main/sub sounds switching is:

msaOutCapableavailable.

msaOutIncapableunavailable.

volumeL:1

volumeR:1 Audio volume control (channel L/channel R) is:

msaOutCapable
available.

msaOutIncapable
unavailable.

If both channels are msaOutIncapable, a device does not
have audio volume control function.
If only channel R is msaOutIncapable, audio volume will
be controled by channel L.

volumeLLimit:1

volumeRLimit:1 Audio maximum volume control(channel L/channel R) is:

msaOutCapable
available.

msaOutIncapable
unavailable.

If both channels are msaOutIncapable, a device does not
have this function.
If only channel R is msaOutIncapable, audio maximum
volume will be controled by channel L.

mute:1 Mute control is:

msaOutCapable
available.

msaOutIncapable
unavailable.

Memory St ick® Audio : Sony Msa Library
MsaOut API

168 Programmer's Companion for Sony CLIÉ™ Handheld

EQ:1 Reserved.

EQL:1 Reserved.

EQR:1 Reserved.

BB:1 Reserved.

beep:1 Reserved.

levelL:1

levelR:1 Audio output level retrieval function(channel L/channel R) is:

msaOutCapable
available.

msaOutIncapable
unavailable.

If both channels are msaOutIncapable, a device does not
have this function.
If only channel R is msaOutIncapable, central value/average of
audio output level will be obtained from channel L.

spectrumL:1

spectrumR:1 Spectrum data retrieval funtion(channel L/channel R) is:

msaOutCapable
available.

msaOutIncapable
unavailable.

If both channels are msaOutIncapable, a device does not
have this function.
If R channel is msaOutIncapable, central value/average of
spectrum data will be obtained from channel L.

volumeReso Set resolution of audio volume:
1 to 0xffff.

volumeLimitReso Set resolution of maximum audio volume:
1 to 0xffff.

volumeLimitForAVLS
Recommended volume set value of AVLS function:
0 to volumeReso-1.

volumeDefault Volume set value at default:
0 to volumeReso-1.

EQReso Reserved.

EQNumBand Reserved.

BBMaxLevel The maximum level number of Bass boost.

beepMaxLebel Reserved.

Memory Stick® Audio : Sony Msa Library
MsaOut API

Programmer's Companion for Sony CLIÉ™ Handheld 169

beepMaxFreq Reserved.

beepMaxPattern Reserved.

levelReso Received resolution of audio output peak level:
1 to 0xffff.

spectrumReso Received resolution of spectrum data:
1 to 0xffff.

spectrumNumBand Number of bands of spectrum data:
0 to 32.

MsaOutBeepPattern Enum
The pattern of the Beep sound which can be set up by MsaOutStartBeep() is defined.
Some Beep Pattern is not defined but is silent. These may be defined in the future.

typedef enum {
msaOutBeepPatternPlay = 0,
msaOutBeepPatternStop,
msaOutBeepPatternPause,
msaOutBeepPatternAMSp,
msaOutBeepPatternAMSm,
msaOutBeepPatternFirst,
msaOutBeepPatternWarn,
msaOutBeepPatternErr,
msaOutBeepPatternSkip,
msaOutBeepPatternOK,
msaOutBeepPatternCancel,
msaOutBeepPatternClick,
msaOutBeepPatternReset,
msaOutBeepPattern13,
msaOutBeepPattern14,
msaOutBeepPattern15

} MsaOutBeepPattern;

Audio output control I/F
Here is the detail specification of audio output control APIs.

MsaOutSetOutputMode
Purpose Set audio output mode.

Prototype MsaOutErr MsaOutSetOutputMode(UInt16 msaLibRefNum,
MsaOutOutputMode mode);

Parameters -> msaLibRefNum Reference number of MSA Lib.

Memory St ick® Audio : Sony Msa Library
MsaOut API

170 Programmer's Companion for Sony CLIÉ™ Handheld

-> mode Specified audio output mode.

msaOutOutputStereo
stereo output

msaOutOutputMonoral
monaural output

msaOutOutputMain
main sound output

msaOutOutputSub
sub sound output

msaOutOutputDual
dual sounds output

Result msaOutErrNone Successfully executed.

msaOutErrInvalidParam
Specified mode is invalid.

msaOutErrNotSupported
The function is not supported.

Comments Audio output mode will be set to the one specified at mode.
The mode will be changed immediately, even if performed during playback.

Compatibility Depending on audio output mode control capability information returned from
MsaOutGetCapability(), a selected mode might be unavailable.

Control capability of PEG-N7x0C are:

• Monaural/stereo output
• Main-sub sounds switching (Haven’t yet settled.)

Control capability of Audio Adapter is:

• Unsupported

MsaOutSetVolume
Purpose Set output volume level.

Prototype MsaOutErr MsaOutSetVolume(UInt16 msaLibRefNum, UInt16
lValue, UInt16 rValue);

Parameters -> msaLibRefNum Reference number of MSA Lib.

-> lValue Output volume level of channel L.

-> rValue Output volume level of channel R.

Result msaOutErrNone Successfully executed.

Memory Stick® Audio : Sony Msa Library
MsaOut API

Programmer's Companion for Sony CLIÉ™ Handheld 171

msaOutErrLevelOutOfRange
Specified volume is out of range.

msaOutErrNotSupported
The function is not supported.

Comments Audio volume will be set to those specified at lValue and rValue.
Specifiy any of 0 to (resolution-1) to lValue for volume of channel L and to rValue
for volume of channel R.
If specified volume is larger than the maximum set by MsaOutSetVolumeLimit(),
it will be adjusted to the set maximum.
The volume level will be changed immediately, even if performed during playback.

Compatibility Depending on volume control capability information returned from
MsaOutGetCapability(), the setting of rValue or of both lValue and rValue
can be invalid.

Control capabilities of PEG-N7x0C and Audio Adapter are:

• Setting of both L and R channels
• Resolution: 32

MsaOutVolumeUp
Purpose Raise volume by one level.

Prototype MsaOutErr MsaOutVolumeUp(UInt16 msaLibRefNum);

Parameters -> msaLibRefNum Reference number of MSA Lib.

Result msaOutErrNone Successfully executed.

msaOutErrLevelOutOfRange
Specified volume level is out of range.

msaOutErrNotSupported
The function is not supported.

Comments Audio volume will be turned up by one resolution.
Even if a device allows individual setting of channels L and R, the volume of these
channels will be turned up at the same time.
If the volume of either channel L or R is larger than that set by
MsaOutSetVolumeLimit(), it will be adjusted to the set
maximum(msaOutErrLevelOutOfRange).
The volume level will be changed immediately, even if performed during playback..

Compatibility Depending on volume control capability information returned from
MsaOutGetCapability(), this function call can be invalid.

Memory St ick® Audio : Sony Msa Library
MsaOut API

172 Programmer's Companion for Sony CLIÉ™ Handheld

Control capabilities of PEG-N7x0C and Audio Adapter are:

• Setting of both L and R channels.
• Resolution: 32

MsaOutVolumeDown
Purpose Turn down the volume by one level.

Prototype MsaOutErr MsaOutVolumeDown(UInt16 msaLibRefNum);

Parameters -> msaLibRefNum Reference number of MSA Lib.

Result msaOutErrNone Successfully executed.

msaOutErrLevelOutOfRange
Specified volume level is out of range.

msaOutErrNotSupported
The function is not supported.

Comments Turns down audio volume by one resolution.
Even if a device allows individual setting of channels L and R, the volume of these will be
turned down at the same time.
If the volume of either channel L or R is set to 0, it will remaine at 0.
(msaOutErrLevelOutOfRange).
The volume level will be changed immediately, even if performed during playback.

Compatibility Depending on volume control capability information returned from
MsaOutGetCapability(), this function call can be invalid.

Control capabilities of PEG-N7x0C and Audio Adapter are:

• Setting of both L and R channels.
• Resolution: 32

MsaOutSetVolumeLimit
Purpose Set maximum volume.

Prototype MsaOutErr MsaOutSetVolumeLimit(UInt16 msaLibRefNum, UInt16
lLimit, UInt16 rLimit);

Parameters -> msaLibRefNum Reference number of MSA Lib.

-> lLimit Maximum volume level of channel L.

Memory Stick® Audio : Sony Msa Library
MsaOut API

Programmer's Companion for Sony CLIÉ™ Handheld 173

-> rLimit Maximum volume level of channel R.

Result msaOutErrNone Successfully executed.

msaOutErrLevelOutOfRange
Specified volume is out of range.

msaOutErrNotSupported
The function is not supported.

Comments Sets maximum volume to those set at lLimit and rLimit.
Even if specified maximum volume is larger than that set by MsaOutSetVolume(), it
will be set as specified.
Specify any of 0 to (resolution-1) to lLimit for channel L and to rLimit for channel R.
The volume level will be changed immediately, even if performed during playback..

Compatibility Depending on volume control capability information returned from
MsaOutGetCapability(), the setting of rLimit or of both lLimit and rLimit
can be invalid.

Control capabilities of PEG-N7x0C and Audio Adapter are:

• Setting of both L and R channels.
• Resolution: 32

MsaOutSetMute
Purpose Set mute status.

Prototype MsaOutErr MsaOutSetMute(UInt16 msaLibRefNum,
MsaOutMuteSwitchType switch);

Parameters -> msaLibRefNum Reference number of MSA Lib.

-> switch Mute status is:

msaOutMuteON
ON.

msaOutMuteOFF
OFF.

Result msaOutErrNone Successfully executed.

msaOutErrInvalidParam
Specified mute status is invalid.

msaOutErrNotSupported
The function is not supported.

Memory St ick® Audio : Sony Msa Library
MsaOut API

174 Programmer's Companion for Sony CLIÉ™ Handheld

Comments Enables audio mute by using switch.
The mute status wil be changed immedately, even if performed during playback.

Compatibility Depending on mute control capability information returned from
MsaOutGetCapability(), the setting of switch can be invalid.

Control capability of PEG-N7x0C and Audio Adapter are:

• Mute function.

Beep output control I/F

MsaOutSetBBLevel
Purpose Set Bass Boost function.

Prototype MsaOutErr MsaOutSetBBLevel(UInt16 msaLibRefNum, UInt16
level);

Parameters -> msaLibRefNum Reference number of MSA Lib.

-> level Level of Bass Boost

Result errNone Success

otherwise Failure

Comments Applied to L and R channel.

Compatibility level must not exceed the value of the maximum Bass Boost level obtained from
MsaOutGetCapability().

Control capability of PEG-N7x0C are:

• Unsupported
Control capability of Audio Adapter is:

• Usable level value: 0 or 1

MsaOutStartBeep
Purpose Sound the beep.

Prototype MsaOutErr MsaOutStartBeep(UInt16 msaLibRefNum, UInt16 freq,
MsaOutBeepPattern pattern);

Parameters -> msaLibRefNum Reference number of MSA Lib.

-> freq Specify the frequency[Hz].

Memory Stick® Audio : Sony Msa Library
MsaOut API

Programmer's Companion for Sony CLIÉ™ Handheld 175

-> pattern Specify the beep pattern.

Result errNone Success

otherwise Failure

Comments In Audio Adapter, the music is muted while the beep is sounding.

Compatibility Control capability of PEG-N7x0C are:

• Unsupported
Control capability of Audio Adapter is:

• Usable frequency: 400 - 4kHz
• The number of the maximum patterns: 16

Setting information retrieval I/F
Here is the detail specification of APIs that get setting information.

MsaOutGetOutputMode
Purpose Get current audio output mode.

Prototype MsaOutErr MsaOutGetOutputMode(UInt16 msaLibRefNum,
MsaOutOutputMode *modeP);

Parameters -> msaLibRefNum Reference number of MSA Lib.

<-> modeP Pointer to memory that store audio output mode.

msaOutOutputStereo
Stereo output

msaOutOutputMonoral
Monaural output

msaOutOutputMain
Main sound output

msaOutOutputSub
Sub sound output

msaOutOutputDual
Dual sounds output

Result msaOutErrNone Successfully executed.

msaOutErrInvalidParam
Null pointer is specified.

Memory St ick® Audio : Sony Msa Library
MsaOut API

176 Programmer's Companion for Sony CLIÉ™ Handheld

msaOutErrNotSupported
The function is not supported.

Comments Stores audio output mode to the location specified by modeP.

Compatibility Depending on volume control capability information returned from
MsaOutGetCapability(), the information in modeP can be invalid.

Control capabilities of PEG-N7x0C are:

• Monaural/stereo output
• Main-sub sound switching

Control capabilities of Audio Adapter is:

• Unsupported

MsaOutGetVolume
Purpose Get current volume level.

Prototype MsaOutErr MsaOutGetVolume(UInt16 msaLibRefNum, UInt16
*lValueP,UInt16 *rValueP);

Parameters -> msaLibRefNum Reference number of MSA Lib.

<-> lValueP Pointer to a memory where volume level of channel L is
stored.

<-> rValueP Pointer to a memory where volume level of channel R is
stored.

Result msaOutErrNone Successfully executed.

msaOutErrInvalidParam
Null pointer is specified.

msaOutErrNotSupported
The function is not supported.

Comments Stores current volume level to locations specified by lValueP and rValueP,
respectively.
Specify any of 0 to (resolution-1) to lLimit for volume level of channel L and to
rLimit for volume level of channel R.

Compatibility Depending on volume control capability information returned from
MsaOutGetCapability(), the setting of rValueP or of both lValueP and
rValueP can be invalid.

Control capabilities of PEG-N7x0C and Audio Adapter are:

• Setting of both L and R channels.

Memory Stick® Audio : Sony Msa Library
MsaOut API

Programmer's Companion for Sony CLIÉ™ Handheld 177

• Resolution: 32

MsaOutGetVolumeLimit
Purpose Get current maximum volume set value.

Prototype MsaOutErr MsaOutGetVolumeLimit(UInt16 msaLibRefNum, UInt16
*lLimitP, UInt16 *rLimitP);

Parameters -> msaLibRefNum Reference number of MSA Lib.

<-> lLimitP Pointer to a memory where maximum volume level of channel
L is stored.

<-> rLimitP Pointer to a memory where maximum volume level of channel
R is stored.

Result msaOutErrNone Successfully executed.

msaOutErrInvalidParam
Null pointer is specified.

msaOutErrNotSupported
The function is not supported.

Comments Stores current maximum volume level to locations specified by lLimitP and rLimitP,
respectively.
Specify any of 0 to (resolution-1) to lLimitP for maximum volume level of channel L
and to rLimitP for maximum volume level of channel R.

Compatibility Depending on volume control capability information returned from
MsaOutGetCapability(), the setting of both lLimitP and rLimitP or only
rLimitP can be invalid.

Control capabilities of PEG-N7x0C and Audio Adapter are:

• The setting can be made for both L and R channels.
• Resolution: 32

MsaOutGetMute
Purpose Get current mute status.

Prototype MsaOutErr MsaOutGetMute(UInt16 msaLibRefNum,
MsaOutMuteSwitchType *switchP);

Parameters -> msaLibRefNum Reference number of MSA Lib.

<-> switchP Pointer to a memory where current mute status is stored.

Memory St ick® Audio : Sony Msa Library
MsaOut API

178 Programmer's Companion for Sony CLIÉ™ Handheld

msaOutMuteON
Mute is ON.

msaOutMuteOFF
Mute is OFF.

Result msaOutErrNone Successfully executed.

msaOutErrInvalidParam
Null pointer is specified.

msaOutErrNotSupported
The function is not supported.

Comments Stores current audio mute status to a location specified by switchP.

Compatibility Depending on volume control information returned from MsaOutGetCapability(),
information in switchP can be invalid.

Control capabilities of PEG-N7x0C and Audio Adapter are:

• Mute function

MsaOutGetInfo
Purpose Get set values/status in block.

Prototype MSAOurErr MsaOutGetInfo(UInt16 msaLibRefNum, MsaOutInfoType
*infoP);

Parameters -> msaLibRefNum Reference number of MSA Lib.

<- infoP Pointer to a memory where every set value/status is stored.

Result msaOutErrNone Successfully executed.

msaOutErrInvalidParam
Null pointer is specified.

Comments Stores current set values/status to a location specified by infoP.

Compatibility It depends on volume control capability information of a particular function returned from
MsaOutGetCapability().

Memory Stick® Audio : Sony Msa Library
MsaOut API

Programmer's Companion for Sony CLIÉ™ Handheld 179

Audio output information retrieval I/F
Lists the detailed specification of APIs that get audio output peak information.

MsaOutGetLevel
Purpose Get output peak level.

Prototype MsaOutErr MsaOutGetLevel(UInt16 msaLibRefNum, UInt16
*lValueP, UInt16 *rValueP);

Parameters -> msaLibRefNum Reference number of MSA Lib.

<-> lValueP Pointer to a memory where output peak level of channel L is
stored.

<-> rValueP Pointer to a memory where output peak level of channel R is
stored.

Result msaOutErrNone Successfully executed.

msaOutErrInvalidParam
Null pointer is specified.

msaOutErrNotSupported
The function is not supported.

Comments Stores current output level to locations specified by lValueP and rValueP.
Specify any of 0 to (resolution-1) to lValueP as output peak level of channel L and
rValueP as output peak level of channel R.

Compatibility Depending on volume control capability information returned from
MsaOutGetCapability(), the information in rValueP or in both lValueP and
rValueP can be invalid.

Control capability of PEG-N7x0C are:

• Setting of both L and R channels
• Resolution: 16

Control capabilities of Audio Adapter is:

• Unsupported

Memory St ick® Audio : Sony Msa Library
MsaOut API

180 Programmer's Companion for Sony CLIÉ™ Handheld

MsaOutGetSpectrum
Purpose Get spectrum data.

Prototype MsaOutErr MsaOutGetSpectrum(UInt16 msaLibRefNum, UInt16
*lValurP, UInt16 *rValueP);

Parameters -> msaLibRefNum Reference number of MSA Lib.

<-> lValueP Pointer to a memory where spectrum data of channel L is
stored.

<-> rValueP Pointer to a memory where spectrum data of channel R is
stored.

Result msaOutErrNone Successfully executed.

msaOutErrInvalidParam
NULL pointer is specified.

msaOutErrNotSupported
The function is not supported.

Comments Stores spectrum data of all bands to a location specified by lValueP and rValueP,
respectively.
Specify any of 0 to (resolution-1) to lValueP as spectrum data of channel L and
rValueP as spectrum data of channel R.

Compatibility Depending on volume control information obtained by MsaOutGetCapability(),
the information in rValueP or in both lValueP and rValueP can be invalid.

Control capabilities of PEG-N7x0C are:

• Setting of both L and R channels.
• Number of bands: 8
• Resolution 16

Control capabilities of Audio Adapter is:

• Unsupported

Memory Stick® Audio : Sony Msa Library
Notes

Programmer's Companion for Sony CLIÉ™ Handheld 181

System I/F
Lists the detailed specification of APIs of MsaOut system.

MsaOutGetCapability
Purpose Get audio/beep output capability information.

Prototype MsaOutErr MsaOutGetCapability(UInt16 msaLibRefNum,
MsaOutCapabilityType *capabilityP);

Parameters -> msaLibRefNum Reference number of MSA Lib.

<-> capabilityP Pointer to a memory where control capability information is
stored.

Result msaOutErrNone Successfully executed.

msaOutErrInvalidParam
NULL pointer is specified.

msaOutErrNotSupported
The function is not supported.

Comments Stores audio/beep output control and status retrieval capabilities to a location specified by
capabilityP.

Notes
Determining If Memory Stick Audio Library Is
Available
To determine if the Memory Stick audio library is available on a device, as shown in
“Availability of library”, check sonySysFtrInfoLibrMsa bit in Libr field for
SonySysFtrSysInfoType obtained by using sonySysFtrNumSysInfoP as a
feature number.1

Power Auto-Off
During playback (including background playing), Auto-Off is set to Forever. So, your
application does not need to disable Auto-Off while MsaPlay is executed.

1. Some other way of device detection may be provided in the future.

Memory St ick® Audio : Sony Msa Library
Notes

182 Programmer's Companion for Sony CLIÉ™ Handheld

Audio remote control : Sony Rmc Library
Audio remote control API

Programmer's Companion for Sony CLIÉ™ Handheld 183

9
Audio remote
control : Sony Rmc
Library
It is a library for using more highly the audio remote control which can be used only as a
key event in usual.1

Audio remote control API
Data structure

RmcRegEnum
Priority processing level of a callback function registered using RmcRegister() is
defined as below:

typedef enum RmcRegisterEnum {
rmcRegTypeWeak,
rmcRegTypeStrong

} RmcRegEnum;

Field Descriptions rmcRegTypeWeak Indicates low priority processing level. A callback function
registered in this level can be stopped temporarily by another
application using RmcDisableKeyHandler().

rmcRegTypeStrong Indicates high priority processing level. A callback function
registered in this level cannnot be stopped by another
application using RmcDisableKeyHandler().

1. Using with Audio Adapter is not recommended.

Audio remote control : Sony Rmc Library
Audio remote control API

184 Programmer's Companion for Sony CLIÉ™ Handheld

RmcStatusType
The structure used to get the status of audio remote control library by
RmcGetStatus().

typedef struct{
UInt32 creatorID;
UInt32 reserved;

} RmcStatusType;

Field Descriptions creatorID CreatorID of an application which registered a callback
function.

reserved Reserved. Not usable.

RmcKeyCodeEnum
Key identification number which will be returned from GetRmcKey() macro whenever
an operation was performed using PEG-N700C-supplied remote control.

typedef enum {
rmcKeyOther = 0, // Unknown keys
rmcKeyPlay, // Play
rmcKeyFrPlay, // FR/Play
rmcKeyFfPlay, // FF/Play
rmcKeyStop, // Stop
rmcKeyDown, // Down
rmcKeyUp, // Up
rmcKeyNum // Num of all RMC keys

} RmcKeyCodeEnum;

Field Descriptions rmcKeyOther Button which will not occur by using supplied remote control

rmcKeyPlay Play button

rmcKeyFrPlay FR Play button

rmcKeyFfPlay FF Play button

rmcKeyStop Stop button

rmcKeyDown Volume Down button

rmcKeyUp Volume Up button

rmcKeyNum Number of buttons on supplied remote control

Audio remote control : Sony Rmc Library
Audio remote control API

Programmer's Companion for Sony CLIÉ™ Handheld 185

Audio remote control functions

RmcLibOpen
Purpose Start to use the audio remote control library.

Prototype Err RmcLibOpen (UInt16 refNum)

Parameters -> refNum Reference number of the audio remote control library.

Result errNone No error

rmcErrNotAvailable
Audio remote control is not available.

memErrNotEnoughSpace
Insufficient memory

Comments Does processing to open the audio remote control library.

RmcLibClose
Purpose Closes the audio remote control library.

Prototype Err RmcLibClose (UInt16 refNum)

Parameters -> refNum Reference number of audio remote control library

Result errNone No error

rmcErrNotOpen Audio remote control library hasn’t opened yet.

rmcErrStillOpen Audio remote control library is still opened.

Comments It performs the procedure to complete audio remote control library.

RmcRegister
Purpose Register function which will be called back every time audio remote control-related event

is issued.

Prototype Err RmcRegister(UInt16 refNum, RmcRegEnum type,
RmcKeyHandleProcPtr callbackP, UInt32 creatorID)

Parameters -> refNum Library reference number

-> type Priority processing level of registered function

Audio remote control : Sony Rmc Library
Audio remote control API

186 Programmer's Companion for Sony CLIÉ™ Handheld

-> callbackP Pointer to callback function

-> creatorID CreatorID of registered application

Result errNone No error.

rmcErrNotOpen Audio remote control library hasn’t opened yet.

rmcErrRegister The function is already registered by another application.

Comments To unregister a particular callback function, put NULL into RmcKeyHandleProcPtr
and call the function.
Regardless of type, only one callback function can be registered to a library. Overwriting
is not allowed.
This function is generally used by an application that wants to get remote control event
even after it is finished. In that case, data base where a specified callback function is
stored must remain locked.
Be sure not to delete an application which registered a function, or fatal error will occur.
Note that function call of those registered using rmcRegTypeStrong cannot be
cancelled by RmcDisableKeyHandler().

RmcDisableKeyHandler
Purpose Stops calling a registered call back function.

Prototype Err RmcDisableKeyHandler(UInt16 refNum)

Parameters -> refNum Reference number of the library

Result errNone No error

rmcErrNotOpen Audio remote control library hasn’t opened yet.

rmcErrRegister Registered with rmcRegTypeStrong.

Comments In general, when an application on the back ground continues to obtain remote control
events, this function enables an application on the foreground to obtain them. But a calling
can be stopped only when the corresponding call back function is registered as type =
rmcRegTypeWeak by RmcRegsiter(). If the calling of that function is stopped
with this function, make sure to call it again by RmcEnableKeyHandler()before
finishing the application.

Audio remote control : Sony Rmc Library
Audio remote control API

Programmer's Companion for Sony CLIÉ™ Handheld 187

RmcEnableKeyHandler
Purpose Restarts to call a registered call back function.

Prototype Err RmcEnableKeyHandler(UInt16 refNum)

Parameters -> refNum Reference number of the library

Result errNone No error

rmcErrNotOpen Audio remote control library hasn’t opened yet.

rmcErrRegister Already available for calling.

Comments Usually, it’s used along with RmcDisableKeyHandler().

RmcGetStatus
Purpose Obtains the library status.

Prototype Err RmcGetStatus(UInt16 refNum, RmcStatusType *status)

Parameters -> refNum Reference number of the library

<- status Pointer to RmcStatusType

Result errNone No error

rmcErrNotOpen Audio remote control library hasn’t opened yet.

Comments The application can determine whether call back function is registered on its own by the
returned value to the creatorID field of status.

RmcKeyRates
Purpose Specifies or obtains the timing of remote control event.

Prototype Err RmcKeyRates(UInt16 refNum, Boolean set,
UInt16 *initDelayP, UInt16 *periodP)

Parameters -> refNum Reference number of the library

-> set Set to true if it’s specified. False if it obtains the current value.

-> initDelayP The amount of time of the initial delay till auto repeat in
system tick.

Audio remote control : Sony Rmc Library
Note

188 Programmer's Companion for Sony CLIÉ™ Handheld

-> periodP Auto repeat period, in system tick.

Result errNone No error

rmcErrNotOpen Audio remote control library hasn’t opened yet.

Comments Usually the application doesn’t use it.

The constants defined by an application

RmcKeyHandleProcPtr
Purpose Handles remote control key events.

Prototype void (*RmcKeyHandleProcPtr)(KeyDownEventType *keyDown)

Parameters -> keyDown Event structre defined by PalmOS. See PalmOS documents for
your reference.

Result Returns nothing.

Comments It is called when audio remote control event is issued except that the calling is stopped by
RmcDisableKeyHandler().

It starts up from SysHandleEvent(). In this case, SysHandleEvent()returns
true.

Note
Determining If Audio Remote Control Library Is
Available
To determine whether the audio remote control library is available on a device, as shown
in “Availability of library”, check sonySysFtrSysInfoLibrRmc bit in libr field for
SonySysFtrSysInfoType obtained by using sonySysFtrNumSysInfoP as a
feature number.1
To determine whether the audio remote control library is available on a device, check
sonySysFtrSysInfoLibrRmc bit in libr field for SonySysFtrSysInfoType
obtained by using sonySysFtrNumSysInfoP as a feature number.
For more information about event support in the system , see “Audio Remote Control”.

1. Some other way of device detection may be provided in the future.

User Interface Guidel ine

Programmer's Companion for Sony CLIÉ™ Handheld 189

A
User Interface
Guideline
This is a guideline for developers who want to use the Jog Dial navigator in their
applications. Users should expect the Jog Dial navigator to influence programs in similar
ways. By following these guidelines, developers can ensure that their application's user
interface responds to the Jog Dial navigator appropriately.

• When continuing to press the Jog Dial navigator and then releasing,
vchrJogPush is executed with the initial first press and vchrJogRelease
is executed upon release. Unless the application is a kind of launcher, both
actions are basically considered as an Enter function, however it is recommended
to use it as an Enter function when the Jog Dial navigator is pressed down rather
than released unless continuing to press the Jog Dial navigator down has a
special purpose. In the case of a launcher application, it is recommended to use
vchrJogRelease as an Enter function.

• It's possible to add new meanings: When the Jog Dial navigator is rotated
clockwise(vchrJogUp is issued), this will mean “Increase.” When it is rotated
counter-clockwise(vchrJogDown is issued), this will mean “decrease.” Those
are for the volume adjustment of audio player and other purposes.

• When a Back key is pressed, vchrJogBack is issued. Since this code is
designed for the system use, including JogAssist, the use on the application is
banned in general. However, in case using the application, make sure to program
it to behave the same way as JogAssist. (see JogAssist processing)

• We distinguish between two types of scrolling. The first type is when the
background remains in place, but the cursor moves around on screen. When the
Jog Dial navigator is rotated counter-clockwise, vchrJogDown is called.
When it is rotated clockwise, vchrJogUp is called. In this case, when
vchrJogDown is called, the cursor's position should be moved from the top to
the bottom of a vertical list that indicates items, or from left to the right of a
horizontal list. The opposite scrolling should occur in the case of a vchrJogUp

User Interface Guidel ine

190 Programmer's Companion for Sony CLIÉ™ Handheld

call. In the case of a circular list, the cursor should be moved in the same
direction as the Jog Dial navigator while the list/wheel holds its position.

• The second type of scrolling is when the cursor remains fixed onscreen while the
background scrolls behind it (for example, when the cursor is at the bottom of a
page, and the user scrolls down). In this case, when the Jog Dial navigator is
rotated counter-clockwise and vchrJogDown is called, a vertical list of items

User Interface Guidel ine

Programmer's Companion for Sony CLIÉ™ Handheld 191

should be scrolled up, and a horizontal list should be scrolled from right to the
left. When Jog Dial navigator is rotated clockwise, vchrJogUp is called and all
movement is the opposite as mentioned above. In the case of a circular list, the
list/wheel will rotate behind the cursor in the same rotate direction as the Jog Dial
navigator.

User Interface Guidel ine

192 Programmer's Companion for Sony CLIÉ™ Handheld

External Interface
Cradle interface

Programmer's Companion for Sony CLIÉ™ Handheld 193

B
External Interface
This is a reference of external interface. For more details, see CLIÉ™ developer site
<http://www.us.sonypdadev.com/>. Note that some devices have no external interface.
Additionally, this is designed to explain the equipment loaded into the CLIÉ™. There is
no guarantee that all of the developed device based on this reference will connect properly.

Cradle interface
Pin Specification

Pin No Name In brief

1 USB D- USB Data-

2 USB D+ USB Data+

3 DTR Data Terminal Ready

4 RXD Receive Data

5 RTS Request to Send

6 TXD Transmit Data

7 CTS Clear to Send

8 NC -

9 DC_B+ Power terminal post

10 HOT SYNC Hot Sync

Pin No 1 Pin No 13

http://www.us.sonypdadev.com/

External Interface
Audio remote control interface

194 Programmer's Companion for Sony CLIÉ™ Handheld

Audio remote control interface
Pin Specification

11 UNREG OUT Power supply

12 CNT Accessory detection

13 GND Ground

Pin No Name

5 GND

6 KEY

7 DATA(NC)

8 B+(2.5V)

5 7

6 8

Programmer's Companion for Sony CLIÉ™ Handheld 195

A
AlbumInfoType 139

E
Error codes of Expansion Manager 59
Error codes of VFS Manager 60
ExpCardInfo 83
ExpCardInfoType 59
ExpCardPresent 83
ExpSlotEnumerate 84

F
Feature number 15
FileInfoType 58

H
HRBmpBitsSize 129
HRBmpCreate 129
HRBmpSize 129
HRClose 107
HRFntGetFontSize 130
HRFntSetFont 130
HRFontSelect 130
HRGetAPIVersion 107
HROpen 107
HRWinClipRectangle 108
HRWinCopyRectangle 108
HRWinCreateBitmapWindow 109
HRWinCreateOffscreenWindow 109
HRWinCreateWindow 110
HRWinDisplayToWindowPt 110
HRWinDrawBitmap 111
HRWinDrawChar 111
HRWinDrawChars 112
HRWinDrawGrayLine 112
HRWinDrawGrayRectangleFrame 112
HRWinDrawInvertedChars 113
HRWinDrawLine 113
HRWinDrawPixel 113
HRWinDrawRectangle 114
HRWinDrawRectangleFrame 114
HRWinDrawTruncChars 114
HRWinEraseChars 115
HRWinEraseLine 115
HRWinErasePixel 116

HRWinEraseRectangle 116
HRWinEraseRectangleFrame 116
HRWinFillLine 117
HRWinFillRectangle 117
HRWinGetClip 117
HRWinGetDisplayExtent 118
HRWinGetFramesRectangle 118
HRWinGetPixel 118
HRWinGetWindowBounds 119
HRWinGetWindowExtent 119
HRWinGetWindowFrameRect 119
HRWinInvertChars 120
HRWinInvertLine 120
HRWinInvertPixel 120
HRWinInvertRectangle 121
HRWinInvertRectangleFrame 121
HRWinPaintBitmap 121
HRWinPaintChar 122
HRWinPaintChars 122
HRWinPaintLine 122
HRWinPaintLines 123
HRWinPaintPixel 123
HRWinPaintPixels 123
HRWinPaintRectangle 124
HRWinPaintRectangleFrame 124
HRWinRestoreBits 124
HRWinSaveBits 125
HRWinScreenMode 125
HRWinScrollRectangle 127
HRWinSetClip 128
HRWinSetWindowBounds 128
HRWinWindowToDisplayPt 128

M
MsaAlbumEnumerate 149
MsaCodecType Enum 145
MsaConfirm Enum 143
MsaControlKey Enum 145
MsaControlKeyState Enum 146
MsaEdit 160
MsaErr 138
MsaGetAlbum 151
MsaGetAPIVersion 148
MsaGetPBList 151
MsaGetPBMode 152
MsaGetPBPosition 153

Index

196 Programmer's Companion for Sony CLIÉ™ Handheld

MsaGetPBRate 153
MsaGetPBStatus 152
MsaGetShufflePlayedList 155
MsaGetTrackInfo 154
MsaGetTrackRestrictionInfo 156
MsaLibClose 147
MsaLibEnforceOpen 148
MsaLibGetCapability 148
MsaLibOpen 147
MsaOutBeepPattern Enum 169
MsaOutErr 164
MsaOutGetCapability 181
MsaOutGetInfo 178
MsaOutGetLevel 179
MsaOutGetMute 177
MsaOutGetOutputMode 175
MsaOutGetSpectrum 180
MsaOutGetVolume 176
MsaOutGetVolumeLimit 177
MsaOutInfoType 165, 166
MsaOutMuteSwitch 165
MsaOutOutputMode 164
MsaOutSetBBLevel 174
MsaOutSetMute 173
MsaOutSetOutputMode 169
MsaOutSetVolume 170
MsaOutSetVolumeLimit 172
MsaOutStartBeep 174
MsaOutVolumeDown 172
MsaOutVolumeUp 171
MsaPBList 140
MsaPBListIndexToTrackNo 163
MsaPbListType Enum 143
MsaPBMode 141
MsaPBStatus 141
MsaPlay 160
MsaPlayloop Enum 142
MsaPlayStatusEnum 141
MsaScopeEnum 142
MsaSequence Enum 143
MsaSetAlbum 156
MsaSetControlKey 162
MsaSetPBList 157
MsaSetPBMode 158
MsaSetPBPosition 159
MsaSetPBRate 158
MsaSetPBStatus 158

MsaStop 161
MsaSuToTime 162
MsaTime 146
MsaTimeToSu 163
MsaTrackInfo 144
MsaTrackRestrictionInfo 145

R
RmcDisableKeyHandler 186
RmcEnableKeyHandler 187
RmcGetStatus 187
RmcKeyCodeEnum 184
RmcKeyHandleProcPtr 188
RmcKeyRates 187
RmcLibClose 185
RmcLibOpen 185
RmcRegEnum 183
RmcRegister 185
RmcStatusType 184

S
sonySysFtrNumJogAstMaskP 20
sonySysFtrNumJogAstMOCardNoP 20
sonySysFtrNumJogAstMODbIDP 20
sonySysFtrNumStringInfoP 19
sonySysFtrNumSysInfoP 15
sonySysNotifyHoldStatusChangeEvent 21
sonySysNotifyMsaEnforceOpenEvent 21
sonySysNotifyMsaStatusChangeEvent 20
sysNotifyCardInsertedEvent 55
sysNotifyCardRemovedEvent 55
sysNotifyVolumeMountedEvent 55
sysNotifyVolumeUnmountedEvent 55

V
vchrJogBack 26
vchrJogBack Assist 31
vchrJogDown 25
vchrJogPush 25
vchrJogPush/PushRepeat/Release Assist 36
vchrJogPushedDown 26
vchrJogPushedUp 26
vchrJogPushedUp/PushedDown Assist 35
vchrJogPushRepeat 25
vchrJogRelease 26
vchrJogUp 25

Programmer's Companion for Sony CLIÉ™ Handheld 197

vchrJogUp/Down Assist 33
vchrRmcKeyPush 43
vchrRmcKeyRelease 43
VFSAnyMountParamType 58
VFSDirCreate 72
VFSDirEntryEnumerate 73
VFSExportDatabaseToFile 79
VFSFileAttributesGet 69
VFSFileAttributesSet 70
VFSFileClose 63
VFSFileCreate 61
VFSFileDateGet 70
VFSFileDateSet 71
VFSFileDBGetRecord 82
VFSFileDBGetResource 80
VFSFileDBInfo 81
VFSFileDelete 66
VFSFileEOF 68
VFSFileOpen 62
VFSFileRead 64
VFSFileReadData 63
VFSFileRename 67
VFSFileResize 72
VFSFileSeek 68
VFSFileSize 71
VFSFileTell 69
VFSFileWrite 65
VFSImportDatabaseFromFile 79
VFSSlotMountParamType 58
VFSVolumeEnumerate 76
VFSVolumeFormat 75
VFSVolumeInfo 76
VFSVolumeLabelGet 77
VFSVolumeLabelSet 77
VFSVolumeSize 78
VolumeInfoType 58

198 Programmer's Companion for Sony CLIÉ™ Handheld

	Programmer's Companion for Sony CLIÉ™ Handheld
	Table of Contents
	Introduction
	Purpose of this manual
	How to read this manual
	PEG-N700C, N710C
	PEG-S300, S500C
	Audio Adapter(PEGA-SA500)

	CLIÉ™ SDK Components
	Directory components
	Header file

	Software Development Environment
	CodeWarrior for Palm Release 6
	Palm OS SDK 3.5
	Palm OS Emulator

	Installing CLIÉ™ SDK
	Copying SDK
	Adding an access path
	Adding a header file

	History

	Part I: System Function
	Palm OS® System Features
	Features
	Feature Creator
	Feature number
	sonySysFtrNumSysInfoP
	sonySysFtrNumStringInfoP
	sonySysFtrNumJogAstMaskP
	sonySysFtrNumJogAstMOCardNoP
	sonySysFtrNumJogAstMODbIDP

	Notification
	Event
	Broadcaster

	Device Detection
	How to distinguish the CLIÉ™ Handheld
	Availability of functions
	Availability of library

	Jog Dial™ Navigator
	Jog Event
	Virtual key
	Event interval
	Event processing

	Note
	Determining If Function Is Available

	JogAssist
	JogAssist processing
	vchrJogBack Assist
	vchrJogUp/Down Assist
	vchrJogPushedUp/PushedDown Assist
	vchrJogPush/PushRepeat/Release Assist

	JogAssist Mask Specification
	JogAssist Mask Data
	JogAssist Mask Pointer
	JogAssist Mask Owner
	Support to JogAssist mask system

	Notes
	Determining If JogAssist Is Available
	Preferences
	Mask Setting

	Audio Remote Control
	Remote Control Event
	Virtual Key
	Event intervals
	Event processing

	Notes
	Determining If Audio Remote Control Is Available
	Auto-On
	Application of Remote Control Interface

	Hold
	Hold User Interface
	Turn on and off
	Hold on spec

	Application Interface
	Getting current Hold status
	Receiving change in Hold status

	Note
	Determining If Function Is Available

	Memory Stick® File System
	File System Format
	Logical Format
	Directory structure
	Name Specification
	Volume and Slot

	File System Notification
	Event
	sysNotifyCardInsertedEvent
	sysNotifyCardRemovedEvent
	sysNotifyVolumeMountedEvent
	sysNotifyVolumeUnmountedEvent

	The sequence of event issuing
	handled Field
	Handling Instructions for Notification

	File System API
	Data Structure
	FileInfoType
	VFSAnyMountParamType
	VFSSlotMountParamType
	VolumeInfoType
	ExpCardInfoType

	Constants
	Error codes of Expansion Manager
	Error codes of VFS Manager

	File Stream APIs
	VFSFileCreate
	VFSFileOpen
	VFSFileClose
	VFSFileReadData
	VFSFileRead
	VFSFileWrite
	VFSFileDelete
	VFSFileRename
	VFSFileSeek
	VFSFileEOF
	VFSFileTell
	VFSFileAttributesGet
	VFSFileAttributesSet
	VFSFileDateGet
	VFSFileDateSet
	VFSFileSize
	VFSFileResize

	Directory APIs
	VFSDirCreate
	VFSDirEntryEnumerate

	Volume APIs
	VFSVolumeFormat
	VFSVolumeEnumerate
	VFSVolumeInfo
	VFSVolumeLabelGet
	VFSVolumeLabelSet
	VFSVolumeSize

	Utility APIs
	VFSImportDatabaseFromFile
	VFSExportDatabaseToFile
	VFSFileDBGetResource
	VFSFileDBInfo
	VFSFileDBGetRecord

	Expansion APIs
	ExpCardPresent
	ExpCardInfo
	ExpSlotEnumerate

	Note
	Determining If File System Is Available

	Part II: Library
	High Resolution : Sony HR Library
	Screen mode and API
	Glossary
	Incompatibility of existing API for High Resolution
	High Resolution and existing API
	Font setting
	Drawing on an off-screen window in high-resolution mode

	Using High resolution API
	Library loading
	Switching screen mode

	High-Resolution API
	System API
	HROpen
	HRClose
	HRGetAPIVersion

	Window API
	HRWinClipRectangle
	HRWinCopyRectangle
	HRWinCreateBitmapWindow
	HRWinCreateOffscreenWindow
	HRWinCreateWindow
	HRWinDisplayToWindowPt
	HRWinDrawBitmap
	HRWinDrawChar
	HRWinDrawChars
	HRWinDrawGrayLine
	HRWinDrawGrayRectangleFrame
	HRWinDrawInvertedChars
	HRWinDrawLine
	HRWinDrawPixel
	HRWinDrawRectangle
	HRWinDrawRectangleFrame
	HRWinDrawTruncChars
	HRWinEraseChars
	HRWinEraseLine
	HRWinErasePixel
	HRWinEraseRectangle
	HRWinEraseRectangleFrame
	HRWinFillLine
	HRWinFillRectangle
	HRWinGetClip
	HRWinGetDisplayExtent
	HRWinGetFramesRectangle
	HRWinGetPixel
	HRWinGetWindowBounds
	HRWinGetWindowExtent
	HRWinGetWindowFrameRect
	HRWinInvertChars
	HRWinInvertLine
	HRWinInvertPixel
	HRWinInvertRectangle
	HRWinInvertRectangleFrame
	HRWinPaintBitmap
	HRWinPaintChar
	HRWinPaintChars
	HRWinPaintLine
	HRWinPaintLines
	HRWinPaintPixel
	HRWinPaintPixels
	HRWinPaintRectangle
	HRWinPaintRectangleFrame
	HRWinRestoreBits
	HRWinSaveBits
	HRWinScreenMode
	HRWinScrollRectangle
	HRWinSetClip
	HRWinSetWindowBounds
	HRWinWindowToDisplayPt

	Bitmap API
	HRBmpBitsSize
	HRBmpSize
	HRBmpCreate

	Fonts API
	HRFntGetFontSize
	HRFntSetFont
	HRFontSelect

	Notes
	Determining If High Resolution Library Is Available
	Sub-Launch
	Switching a screen mode
	BmpCompress
	About High Resolution Assist

	Memory Stick® Audio : Sony Msa Library
	Configuration and Function
	Configuration
	MSA I/F funcitonal
	MsaOut functional
	Glossary

	Audio Interface (MSA I/F) reference
	Data Structures
	MsaErr
	AlbumInfoType
	MsaPBList
	MsaPBStatus
	MsaPlayStatusEnum
	MsaPBMode
	MsaPlayloop Enum
	MsaScopeEnum
	MsaPbListType Enum
	MsaSequence Enum
	MsaConfirm Enum
	MsaTrackInfo
	MsaCodecType Enum
	MsaTrackRestrictionInfo
	MsaControlKey Enum
	MsaControlKeyState Enum
	MsaTime

	System I/F
	MsaLibOpen
	MsaLibClose
	MsaLibGetCapability
	MsaGetAPIVersion
	MsaLibEnforceOpen

	Obtaining information I/F
	MsaAlbumEnumerate
	MsaGetAlbum
	MsaGetPBList
	MsaGetPBStatus
	MsaGetPBMode
	MsaGetPBRate
	MsaGetPBPosition
	MsaGetTrackInfo
	MsaGetShufflePlayedList
	MsaGetTrackRestrictionInfo

	Specifying information I/F
	MsaSetAlbum
	MsaSetPBList
	MsaSetPBStatus
	MsaSetPBMode
	MsaSetPBRate
	MsaSetPBPosition
	MsaEdit

	Playback control I/F
	MsaPlay
	MsaStop
	MsaSetControlKey

	Utility I/F
	MsaSuToTime
	MsaTimeToSu
	MsaPBListIndexToTrackNo

	MsaOut API
	Data structure
	MsaOutErr
	MsaOutOutputMode
	MsaOutMuteSwitch
	MsaOutInfoType
	MsaOutCapabilityType
	MsaOutBeepPattern Enum

	Audio output control I/F
	MsaOutSetOutputMode
	MsaOutSetVolume
	MsaOutVolumeUp
	MsaOutVolumeDown
	MsaOutSetVolumeLimit
	MsaOutSetMute

	Beep output control I/F
	MsaOutSetBBLevel
	MsaOutStartBeep

	Setting information retrieval I/F
	MsaOutGetOutputMode
	MsaOutGetVolume
	MsaOutGetVolumeLimit
	MsaOutGetMute
	MsaOutGetInfo

	Audio output information retrieval I/F
	MsaOutGetLevel
	MsaOutGetSpectrum

	System I/F
	MsaOutGetCapability

	Notes
	Determining If Memory Stick Audio Library Is Available
	Power Auto-Off

	Audio remote control : Sony Rmc Library
	Audio remote control API
	Data structure
	RmcRegEnum
	RmcStatusType
	RmcKeyCodeEnum

	Audio remote control functions
	RmcLibOpen
	RmcLibClose
	RmcRegister
	RmcDisableKeyHandler
	RmcEnableKeyHandler
	RmcGetStatus
	RmcKeyRates

	The constants defined by an application
	RmcKeyHandleProcPtr

	Note
	Determining If Audio Remote Control Library Is Available

	User Interface Guideline
	External Interface
	Cradle interface
	Pin Specification

	Audio remote control interface
	Pin Specification

	Index

