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About This Document

The Dana API Reference is part of the Dana Software Development Kit (SDK). AlphaSmart
intends this document as a guide for developers interested in creating applications for Dana.

This development kit does not contain information regarding the design and implementation of
standard Palm OS applications. For this information, please refer to the Palm OS SDK
documentation provided by Palm at www.palmos.com. Relevant documents include:

¢ Palm OS Reference

¢ Palm OS Companion
¢ Constructor for Palm OS

This document assumes the reader is familiar with basic Palm OS concepts detailed in the Palm
OS Companion. This document also uses the basic typographical conventions found in Palm
documentation.

¢ Code elements, such as functions and structures, will use a fixed width font.
¢ Bold type will be used for emphasis.

¢ Document names, such as Palm OS Companion, are italicized.

Parts of the Dana feature set are based on technology licensed from HandEra, Inc. The APIs in
the Dana SDK are similar to those in the HandEra SDK, but some modifications have been made
in order to support the Dana hardware platform - in particular Dana’s 160 x 560 pixel screen.
Developers who have already modified their applications for the HandEra platform should find
modifying their application for the Dana platform even simpler, since they are already familiar
with many of the APIs and supporting Dana’s larger screen requires fewer modifications
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Chapter 1. Screen Extension

The Screen Extension provides an interface to the larger screen size on the Dana. The interface

provides calls to determine the user interface area of the screen and rotation of the drawing. The
Screen Extension also provides backward compatibility modes to existing Palm OS applications
written for the standard Palm sized screens of 160 x 160. The use of this Software Development
Kit (SDK) allows the developer to utilize the extra screen area on the device.

Screen Extension Feature Set

Before making a Screen Extension API call, an application needs to ensure that the Screen
Extension itself is present and is compatible with the API call. Attempting to make Screen
Extension calls on a non-Dana device will crash the application — this is an inherent limitation of
any Palm OS extension. The application should make a Ft r Get function call to determine if the
extension is present and what its version number is.

Ul nt 32 version
if FtrGet (A phaSnartSysFtrI D, ScrnFtrNum &version) == 0)

i f (sysGet ROWer Maj or (version) >= 1)
{

the Screen Extension 1.0 is present

}
}

Another method is to use the macro provided in the Screen.h file.

Ul nt 32 version
i f (_ScreenFeaturePresent (&version) == true)

/1 use Screen APl here

}

The Screen Extension calls are mainly focused on screen management. There is one call that
assists a user in changing the default table font used by the Palm OS.

and font management. The calls, grouped by category, are listed in the following tables, with
brief descriptions of each function.
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Screen Management Functions

ScrnGetRotateMode Get the current rotation mode.
ScrnSetRotateMode Set new rotation mode.
ScrnTableSetFontID Set the table font used by the Palm OS
ScrnGetSystemState Get the current screen state

Screen API Types
This section details the enumerated data types and structures used by the API functions.

ScrnScreenModeType
screenModeWideTall Application is being displayed in the full screen.
screenModeCentered Application is being displayed as a legacy application.
ScrnRotateModeType
RotateScrnModeO No rotation.
RotateScrnMode90 Screen rotates 90 degrees.
RotateScrnMode270 Screen rotates 270 degrees.

Screen API Functions

ScrnGetRotateMode
Purpose Get the current rotation mode.
Prototype voi d ScrnGet Rot at eMbde ( ScrnRot at eMbdeType *rotation);
Parameters <- rotation One of the rotation modes..
Result None

Compatibility  Implemented only if Screen Extension is present.

Comments This function will suffice for the majority of applications. However, if the
application is sublaunched by a 3" party application, then the function
ScrnGetSystemState() should be used.
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Purpose

Prototype

Parameters

Result

Compatibility

Comments

ScrnSetRotateMode

Set the rotation mode of the system.

Err ScrnSet Rot ati onMode( Scr nRot at eMbdeType rotation);

-> rotation Rotation mode.
errNone Success
ScrnErrModeUnsupported Invalid mode and rotation combination.

Implemented only if Screen Extension is present.
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Purpose

Prototype

Parameters

Result

Compeatibility

Comments

ScrnTableSetFontID

Change the font that the Palm OS uses for a table.

voi d ScrnTabl eSet Font | D( Tabl ePrt table, FontlID fontlD);

-> table Palm OS table pointer.

-> fontlD The font that the Palm OS should use in
handling the table.

None

Implemented only if Screen Extension is present.
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ScrnGetSystemState

Purpose Get the current screen state, such as its state and orientation.
Prototype voi d ScrnGet Syst entSt at e( Scr nSyst enfSt at eType *state);
Parameters <- state Current screen state

Result None

Compatibility  Implemented only if Screen Extension is present.

Comments This function should be used instead of ScrnGetScreenMode() for applications
that may be sublaunched by 3 party applications, such as phone-lookup

functions.

Screen Extension Error Codes

When an error occurs during a Screen API call, an indication of the error is returned by the
function to the caller. The error may be one of the codes defined in the Palm OS header files.
The most common error return codes are as follows:

sysErrParamErr

Invalid parameter used with internal system function.

sysErrNoFreeResource

There is not enough memory to complete the function.

The Screen Extension also defines new error codes. These constant values are defined in

Screen.h.

scrnErrUnimplemented

Function not implemented.

scrnErrBadParam

Invalid Parameter.

scrnErrModeUnsupported

Screen mode not supported.

scrnErrScreenlLocked

Unable to lock the OS screen.
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Chapter 2: WritePad Extension

This chapter is intended to introduce the use of, and provide a reference to, the WritePad
Extension APIs. This chapter is directed toward Palm OS application developers who wish to
customize or access the WritePad area from within their applications. It is assumed that the
reader is familiar with the C programming language, in particular within the context of the Palm
Os.

Overview

The term WritePad refers to the area of the screen shown below. The WritePad Extension
manages this virtualized area for stylus input.

d v &
@_ . /1

WritePad area

The WritePad area is not always available to the Dana user. If the application takes advantage of
the full screen in O degree rotation then the WritePad area is not available to the user.

When the WritePad is visible, the WritePad Extension follows the user’s pen and draws within
these areas to aid in Graffiti entry. The developer may utilize the WritePad Extension API to
move these areas within the WritePad area with the restriction that the numeric entry must be to
the immediate right of the alpha entry area and the same height.

The WritePad Extension also supports any number of buttons in the WritePad area. The
WritePad API allows the developer to define the list of buttons, and provide a template to draw
these buttons and their inverted state (when pushed).

The use of this Software Development Kit (SDK) allows the developer to modify the location
and number of these controls in the WritePad area, draw the new controls, and specify their
location.

WritePad Extension Feature Set

Before making a WritePad Extension API call, an application needs to ensure that the WritePad
Extension itself is present and is compatible with the API call. Attempting to make WritePad
Extension calls on a non-Dana device will crash the application — this is an inherent limitation of
any Palm OS extension. The application should make a Ft r Get function call to determine if the
extension is present and what its version number is.

Ul nt 32 version;
if FtrGet (Al phaSmart SysFtriI D, WitePadFtrNum &version) == 0)

i f (sysGet ROWer Maj or (version) >= 1)

/1 the WitePad Extension 1.0 or higher is present
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Another method is to use the macro provided in the WritePad.h file.

Ul nt 32 version;
if (_WitePadFeaturePresent (&ersion) == true)

/] use WitePad APl here

}

The WritePad API calls may be grouped into two categories: WritePad window management and
WritePad area and button management. The calls, grouped by category, are listed in the
following tables, with brief descriptions of each call’s function. A listing with a detailed
specification of each call is given in next section.

WritePad Window Management

WrtpMaximizeWindow Draw and activate the WritePad window.
WrtpMinimizeWindow Erase and disable the WritePad window.
WrtpWindowMaximized Returns state of the WritePad window.
WrtpWindowRight Returns whether WritePad is on the right or left in legacy
mode
WrtpGetWindow Get the WritePad window handle so it can be drawn on.
WrtpGetTemplateBitmaps Get bitmaps used by the template window
WrtpSetTemplateBitmaps Set bitmaps for the template windows to use.
WrtpRestoreDefaultTemplates Restore the original WritePad window template and areas.
WrtpGetPenEnabled Returns the state of pen input in the WritePad
WrtpSetPenEnabled Enable/disable pen input in the WritePad

WritePad Area and Button Management

WrtpGetButtonListSize Returns the button list size.
WrtpGetButtonList Returns a pointer to the buttons.
WrtpSetButtonList Sets new buttons.

WrtpGetAreas Returns a point the graffiti areas.
WrtpSetAreas Sets the new graffiti areas.
WrtpGetGraffitiPersistence Returns current setting for graffiti persistence.
WrtpSetGraffitiPersistence Sets a new value for graffiti persistence.
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WritePad API Functions

This section contains a listing of the functions available in the WritePad API, along with a brief
description of each.

WrtpMaximizeWindow

Purpose Maximize the WritePad.

Prototype void WtpMaxi m zeW ndow voi d) ;
Parameters None

Result None

Compatibility  Implemented only if WritePad Extension is present.

Comments If the WritePad is already maximized, the function simply redraws the window.
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WrtpMinimizeWindow

Purpose Minimize the WritePad

Prototype void WtpM nimzeW ndow voi d) ;
Parameters None

Result None

Compatibility  Implemented only if WritePad Extension is present.

Comments If the WritePad is already minimized, the function simply redraws the window.
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WrtpWindowMaxmized

Purpose Used to determine the current state of the WritePad window.

Prototype Bool ean Wt pW ndowvaxi m zed(voi d);

Parameters None

Result Returns true if the window is maximized, false if the window is minimized

Compatibility  Implemented only if WritePad Extension is present.

Comments
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WrtpWindowRight

Purpose Used to determine side of the legacy form that the WritePad is on.
Prototype Bool ean Wt pW ndowRi ght (voi d) ;

Parameters None

Result Returns true if the window is on the right, false if the window is on the left.

Compatibility  Implemented only if WritePad Extension is present.

Comments
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Purpose

Prototype

Parameters

Result

Compatibility

Comments

WrtpGetWindow

Return a WinHandle to the WritePad window to allow drawing directly to
onscreen window.

W nHandl e Wt pGet Wndow voi d);

None

Handle to onscreen window for the WritePad.

Implemented only if WritePad Extension is present.

The WritePad window is redrawn from the template window to erase Graffiti
within it or handle button presses. Drawing directly to this window should only
be used for animation. In addition, applications will need to temporarily disable
the Screen extension while drawing to this window.
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WrtpGetTemplateBitmaps

Purpose Returns pointers to the bitmaps used for the WritePad template.

Prototype Err Wt pCet Tenpl at eBi t maps(

Bi t mapPtr *maxWitePadTenpl at e,

Bi t mapPtr
*sel ect edMaxW it ePadTenpl at e,

Bi t mapPtr *mi nWitePadTenpl at e,

Bi t mapPtr
*sel ectedM nWit ePadTenpl ate) ;

Parameters -> maxWit ePadTenpl ate

-> sel ectedMaxW it ePadTenpl at e

-> m nWitePadTenpl ate

-> sel ectedM nWitePadTenpl ate

Returns Err

A pointer to a maximized
WritePad bitmap ptr used to be
used in the WritePad area.
Pass NULL for this parameter if
you don’t want to retrieve it.

A pointer to an inverted bitmap
ptr used to draw a pushed
button in the WritePad area.
Pass NULL for this parameter if
you don’t want to retrieve it.

A pointer to a bitmap ptr used in
the minimized WritePad area.
Pass NULL for this parameter if
you don’t want to retrieve it.

A pointer to a bitmap ptr used to
draw a pushed minimized
button in the WritePad area.
Pass NULL for this parameter if
you don’t want to retrieve it.

Compatibility  Implemented only if WritePad Extension is present.

Comments

Dana API Reference
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Purpose

Prototype

Parameters

Returns

Compatibility

Comments

WrtpSetTemplateBitmaps

Provide bitmaps for the WritePad template and redraw the WritePad window
with the new bitmaps.

Err Wt pSet Tenpl at eBi t maps(
Bi t mapPtr maxWit ePadTenpl at e,

Bi t mapPtr
sel ect edMaxW i t ePadTenpl at e,

Bi t mapPtr m nWitePadTenpl at e,

Bi t mapPtr
sel ectedM nW it ePadTenpl at e) ;

-> maxWitePadTenpl ate A pointer to a user bitmap that
will be used in the WritePad area
or NULL.

-> sel ect edMaxW i t ePadTenpl at e A pointer to a user bitmap that
will be used to draw a pushed
button in the WritePad area or
NULL

-> mnWitePadTenpl ate A pointer to a user bitmap that
will be used in the minimized
WritePad area or NULL

-> sel ectedM nWitePadTenpl ate A pointer to a user bitmap that
will be used to draw a pushed
minimized button in the WritePad
area or NULL.

Err

Implemented only if WritePad Extension is present.
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Purpose

Prototype

Parameters

Result

Compeatibility

Comments

WrtpRestoreDefaultTemplate

Restore the WritePad template to its default.

Err Wt pRestoreDefaul t Tenpl ate(voi d);

None

Err

Implemented only if WritePad Extension is present.

This routine restores the default templates and draws the active bitmap to the
screen. It also restores the default areas and buttons.

WrtpRestoreDefaultTemplate() is called on reset. Itis up to the developer to
reload their templates at reset.
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WrtpGetPenEnabled

Purpose Returns the current state of all pen input into the WritePad area.
Prototype Err Wt pGet PenEnabl ed( Bool ean enabl ed);

Parameters enabled Set to false to disable all pen input into the WritePad.
Result Err

Compatibility  Implemented only if WritePad Extension is present.

Comments System use only.
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WrtpSetPenEnabled

Purpose Disable or enable pen input into the WritePad area.

Prototype Err Wt pSet PenEnabl ed( Bool ean enabl ed);

Parameters enabled Set to false to disable all pen input into the WritePad.
Result Err

Compatibility  Implemented only if WritePad Extension is present.

Comments System use only.
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Purpose

Prototype

Parameters

Result

Compatibility

Comments

WrtpGetButtonL.istSize

Get the WritePad button list size. Caller should call this function prior to calling
WrtpGetButtonList() to ensure a buffer large enough to receive the data.

U ntl1l6 Wt pGetButtonListSize(Bool ean maxi m zed);

maxim zed Set to true to get the maximized WritePad button list size,
Set to false to get the minimized WritePad button list size

Size of the structure required for WritePadGetButtonList().

Implemented only if WritePad Extension is present.
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WrtpGetButtonL.ist

Purpose Get the WritePad button list.
Prototype Err Wt pGetButtonList(PenBtnListType *buttonList,
Bool ean maxi m zed) ;
Parameters <- buttonList Pointer to the button list
maxi m zed Set to true to get the maximized WritePad button list

Set to false to get the minimized WritePad button list

Result Err

Compatibility  Implemented only if WritePad Extension is present.

Comments PenBtnListType is defined in the PaimOS 3.5 SDK header file “SysEvtMgr.h”.

Make sure to call WrtpGetButtonListSize() first to determine how much
memory is needed for buttonList.
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Purpose

Prototype

Parameters

Result

Compatibility

Comments

WrtpSetButtonL.ist

Set the WritePad button list.

Err Wt pSetButtonLi st (PenBtnListType *buttonList,
Bool ean maxi m zed) ;

-> buttonlLi st Pointer to PenBtnListType structure containing the new
button information for the WritePad area.

mexi mi zed Set to true to set the maximized WritePad button list
Set to false to set the minimized WritePad button list

Err

Implemented only if WritePad Extension is present.

PenBtnListType is defined in the PalmOS 3.5 SDK header file “SysEvtMgr.h”.

This function copies the contents pointed to by buttonList. Caller is responsible
for freeing local copy.
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Purpose

Prototype

Parameters

Result

Compeatibility

Comments

WrtpGetAreas
Get the WritePad alpha and numeric areas.

Err Wt pGet Areas(Rect angl eType *al phaEntry, Rectangl eType
*nuneri cEntry);

<- al phaEntry Pointer to application allocated RectangleType structure
that will be filled with the current information for the
alphabetic character entry rectangle. Pass NULL for this
parameter if you don’t want to retrieve it.

<- nunericEntry Pointer to application allocated RectangleType structure
that will be filled with the current information for the
numeric character entry rectangle. Pass NULL for this
parameter if you don’t want to retrieve it.

Err

Implemented only if WritePad Extension is present.
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Purpose

Prototype

Parameters

Result

Compatibility

Comments

WrtpSetAreas

Set the WritePad alpha and numeric areas.

Err Wt pSet Areas(Rect angl eType *al phaEntry, Rectangl eType
*nuneri céntry);

-> al phaEntry Pointer to rectangle within the WritePad area where
alphabetical characters will be recognized or NULL

-> numeri cEntry  Pointer to rectangle within the WritePad area where
numeric characters will be recognized or NULL

Err
Implemented only if WritePad Extension is present.

The numericEntry rectangle must be to the immediate right of the alphaEntry
rectangle and the same height.
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Purpose

Prototype

Parameters

Result

Compeatibility

Comments

WrtpGetGraffitiPersistence

Get number of timer ticks Graffiti remains on the WritePad.

Unt32 WtpGetGraffitiPersistence(void);

None

Number of timer ticks Graffiti remains on the WritePad.

Implemented only if WritePad Extension is present.

Use SysTicksPerSecond() to find the number of ticks per second.
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WrtpSetGraffitiPersistence

Purpose Set number of timer ticks Graffiti remains on the WritePad.
Prototype void WtpSetGaffitiPersistence(U nt32 ticks);
Parameters -> ticks Number of timer ticks Graffiti should remain on the WritePad.

Compatibility  Implemented only if WritePad Extension is present.

Result None
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WritePad Extension Error Codes

When an error occurs during a WritePad API call, an indication of the error is returned by the
function to the caller. The error may be one of the codes defined in the Palm OS header files.
The most common error return codes are as follows:

sysErrParamErr Invalid parameter used with internal system function.
sysErrNoFreeResource There is not enough memory to complete the function.
dmErrCantOpen Resource database cannot be opened

The WritePad Extension also defines a new error code. Its value is defined in WritePad.h.

wrtpErrBadParam

A parameter passed as an argument to one of the WritePad API functions is
invalid.
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Chapter 3: Keyboard Extension

This chapter is intended to introduce the use of Keyboard Extension API procedures. This
chapter is directed toward Palm OS application developers who wish to access the current state
of the Keyboard. It is assumed that the reader is familiar with the C programming language, in
particular within the context of the Palm OS.

Keyboard Extension Feature Set

Before making a Keyboard Extension API call, an application needs to ensure that the Keyboard
Extension itself is present and is compatible with the API call. Attempting to make Keyboard
Extension calls on a non-Dana device will crash the application — this is an inherent limitation of
any Palm OS extension. The application should make a Ft r Get function call to determine if the
extension is present and what its version number is.

Ul nt 32 version
if FtrGet (Al phaSmart SysFtrl D, WAPKeyboar dAccessFtrNum &version) ==
0)

i f (sysGet ROWer Maj or (version) >= 1)

{

t he Keyboard Extension 1.0 is present

}
}

Another method is to use the macro provided in the KeyboardAccess.h file.

Ul nt 32 version
i f (_KybdFeaturePresent (&version) == true)

/'l use Keyboard APl here
}

Keyboard API Types
This section details the enumerated data types and structures used by the API functions.

KeyboardLayoutType
kybdLayoutQwerty QWERTY keyboard layout.
kybdLayoutDvorak Dvorak keyboard layout.
kybdLayoutLeft Left handed keyboard layout.
kybdLayoutRight Right handed keyboard layout.
KeyboardEvent
MS byte Modifier key bits.
LS byte Icode (AlphaSmart keycode)
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Keyboard API Functions

This section contains a listing of the functions available in the Keyboard API, along with a brief
description of each.

Purpose

Prototype

Parameters

Result

Compatibility

Comments

KybdGetLayout

Get the current layout of the keyboard.

Keyboar dLayout Type KybdGet Layout (voi d);

None

Keyboar dLayout Type contains the current layout of the keyboard:
QWERTY, Dvorak, Right Handed, or LeftHanded.

Implemented only if Keyboard Extension is present.

On non US versions, the function will always return QWERTY. The user can
change the layout of the keyboard using the Keyboard application in the layout
form.
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Purpose

Prototype

Parameters

Result

Compeatibility

Comments

KybdGetModifiers

Get the current state of the modifier keys on the keyboard.

Keyboar dEvent KybdGet Modi fi ers(void);

None

Keyboar dEvent contains the current state of the modifier keys. A
key bit = 1 indicates that the key is down. A key
bit = 0 indicates that the key is up. This state is
the logical state of the key and not necessarily
the physical state of the key. The modifier key
states are affected by Sticky Keys.

Implemented only if Keyboard Extension is present.

The bit definitions for all the modifier keys can be found in
WideTallAppChars.h.
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Purpose

Prototype

Parameters

Result

Compatibility

Comments

KybdGetKeyboardEmulation

Get the current state of the keyboard emulation when connected to a
computer..

Bool ean KybdGet Keyboar dEnul ati on (void);

None
true Connected to a USB computer.
false Not connected to a USB computer.

Implemented only if Keyboard Extension is present.

System use only.
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Purpose

Prototype

Parameters

Result

Compatibility

Comments

KybdSetKeyboardEmulation

Set the state of the keyboard emulation.

Bool ean KybdSet Keyboar dEnul ati on (Bool ean val ue);

<- val ue Determines the state of the keyboard emulation.
None
Implemented only if Keyboard Extension is present.

System use only.
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