

Welcome to

Developing Palm OS 2.0
Applications

Part II: System Management

Navigate this online document as follows:

To see bookmarks Type Control-7
To see information on
Adobe Acrobat Reader

Type Control-?

To navigate Click on
any blue hypertext link
any Table of Contents entry
arrows in the menu bar

U.S. Robotics¨

Developing Palm OSª2.0
Applications

Part II

©1996, 1997 U.S. Robotics, Inc. All rights reserved.

Documentation stored on the compact disk may be printed by licensee for personal use.
Except for the foregoing, no part of this documentation may be reproduced or transmit-
ted in any form by any means, electronic or mechanical, including photocopying, record-
ing, or any information storage and retrieval system, without permission in writing from
U.S. Robotics.

U.S. Robotics, the U.S. Robotics logo and GrafÞti are registered trademarks, and Palm
Computing, HotSync, the Palm OS, and the Palm OS logo are trademarks of U.S. Robot-
ics and its subsidiaries.

All other trademarks or registered trademarks are the property of their respective
owners.

ALL SOFTWARE AND DOCUMENTATION ON THE COMPACT DISC ARE SUBJECT
TO THE LICENSE AGREEMENT.

Contact Information:

Metrowerks U.S.A. and international Metrowerks Corporation
2201 Donley Drive, Suite 310
Austin, TX 78758
U.S.A.

Metrowerks Canada Metrowerks Inc.
1500 du College, Suite 300
Ville St-Laurent, QC
Canada H4L 5G6

Metrowerks Mail order Voice: 1-800-377Ð5416
Fax: 1-512-873Ð4901

U.S. Robotics, Palm Computing Division
Mail Order

U.S.A. and Canada: 1-800-881-7256
elsewhere 1-408-848-5604

Metrowerks World Wide Web http://www.metrowerks.com

U.S. Robotics, Palm Computing Division
World Wide Web

http://www.usr.com/palm

Registration information register@metrowerks.com

Technical support support@metrowerks.com

Sales, marketing, & licensing sales@metrowerks.com

CompuServe goto Metrowerks

Table of Contents
Table of Contents . v

About This Document. . 11
Palm OS SDK Documentation 11
What This Guide Contains 12
Conventions Used in This Guide 12

1 Using Palm OS System Managers 13
The Alarm Manager. 14

Alarm Manager Overview. 15
Using the Alarm Manager 17
Alarm Manager Function Summary 17

The Error Manager . 17
Displaying Development Errors 18
Using the Error Manager Macros 19
Understanding the Try-and-Catch Mechanism 20
Using the Try and Catch Mechanism 21
Error Manager Function Summary 22

The Feature Manager 22
The System Version Feature 23
Application-DeÞned Features 23
Using the Feature Manager 23
Feature Manager Function Summary 24

The Sound Manager. 25
Using the Sound Manager 25
Sound Manager Function Summary 25

The String Manager . 26
The System Manager 27

System Boot and Reset 27
Power Management 28
The Microkernel . 30
Application Support 31
System Manager Functions 35

The System Event Manager 36
Developing Palm OS 2.0 Applications, Part II v

Table of Contents

Event Translation: Pen Strokes to Key Events. 37
Pen Queue Management 37
Key Queue Management 38
Auto-Off Control . 39
System Event Manager Function Summary 40

The Time Manager . 41
Using Real-Time Clock Functions. 41
Using System Ticks Functions 41
Time Manager Structures 42
Time Manager Function Summary 43

2 Palm OS System Functions . 45
Alarm Manager API. 45

AlmGetAlarm . 45
AlmSetAlarm . 46
Functions for System Use Only. 47

Error Manager Functions 48
ErrDisplay . 48
ErrDisplayFileLineMsg 49
ErrFatalDisplayIf . 50
ErrNonFatalDisplayIf 51
ErrThrow . 52

Event Manager Functions 53
EvtAddEventToQueue 53
EvtAddUniqueEventToQueue 53
EvtCopyEvent . 54
EvtDequeuePenPoint 54
EvtDequeuePenStrokeInfo. 55
EvtEnableGrafÞti. 55
EvtEnqueueKey . 56
EvtEventAvail 57
EvtFlushKeyQueue 57
EvtFlushNextPenStroke 58
EvtFlushPenQueue 58
EvtGetEvent . 59
EvtGetPen. 59
vi Developing Palm OS 2.0 Applications, Part II

Table of Contents

EvtGetPenBtnList 60
EvtKeyQueueEmpty 60
EvtKeyQueueSize 61
EvtPenQueueSize 61
EvtProcessSoftKeyStroke 62
EvtResetAutoOffTimer 62
EvtSysEventAvail 63
EvtWakeup . 63

Functions for System Use Only 64
Feature Functions. 66

FtrGet . 66
FtrGetByIndex . 67
FtrSet . 68
FtrUnregister . 69

For System Use Only 70
Find Functions . 71

FindDrawHeader 71
FindGetLineBounds 71
FindSaveMatch . 72
FindStrInStr . 72

Float Manager Functions 74
Using the New Floating Point Arithmetic 74
Using 1.0 Floating-Point Functionality 74
FplAdd . 75
FplAToF. 75
FplBase10Info . 75
FplDiv . 76
FplFloatToLong . 77
FplFloatToULong 77
FplFree . 78
FplFToA . 78
FplInit . 79
FplLongToFloat . 79
FplMul . 80
FplSub . 80

Miscellaneous System Functions 81
Developing Palm OS 2.0 Applications, Part II vii

Table of Contents

CmBroadcast . 81
Crc16CalcBlock . 81
MdmDial . 81
MdmHangUp . 83
PhoneNumberLookup 83
ResLoadForm . 84
ResLoadMenu . 84

System Preferences Functions 85
PrefGetAppPreferences 85
PrefGetAppPreferencesV10 86
PrefGetPreference 87
PrefGetPreferences 88
PrefOpenPreferenceDBV10 88
PrefSetAppPreferences 89
PrefSetAppPreferencesV10 89
PrefSetPreference 90
PrefSetPreferences 91

Password Functions. 92
PwdExists . 92
PwdRemove . 92
PwdSet . 93
PwdVerify. 93

String Manager Functions 94
StrAToI . 94
StrCat. 94
StrCaselessCompare 95
StrChr . 95
StrCompare . 96
StrCopy . 96
StrDelocalizeNumber 97
StrIToA . 97
StrIToH . 98
StrLen . 98
StrLocalizeNumber 99
StrNCaselessCompare 99
StrNCat 100
StrNCompare 100
viii Developing Palm OS 2.0 Applications, Part II

Table of Contents

StrNCopy 101
StrPrintF 101
StrStr . . 102
StrToLower . 102
StrVPrintF 102

Sound Manager Functions 105
SndDoCmd . 105
SndGetDefaultVolume 106
SndPlaySystemSound. 106
SndSetDefaultVolume. 107
Functions for System Use Only. 107

System Functions . . 108
SysAppLaunch . 108
SysAppLauncherDialog 109
SysBatteryInfo . . 109
SysBinarySearch 110
SysBroadcastActionCode 111
SysCopyStringResource 112
SysCreateDataBaseList 112
SysCreatePanelList 113
SysCurAppDatabase 113
SysErrString 114
SysFatalAlert . 114
SysFormPointerArrayToStrings 115
SysGraffitiReferenceDialog 115
SysHandleEvent . 116
SysInsertionSort . 117
SysInstall . 119
SysKeyboardDialog 119
SysKeyboardDialogV10 120
SysLibLoad 120
SysQSort . 121
SysRandom . 122
SysReset . 123
SysSetAutoOffTime. 123
SysStringByIndex 124
SysTaskDelay . 124
Developing Palm OS 2.0 Applications, Part II ix

Table of Contents

SysTicksPerSecond 125
SysUIAppSwitch 125
Functions for System Use Only. 126

Time Manager Functions 135
DateAdjust . 135
DateDaysToDate 135
DateSecondsToDate 136
DateToAscii . 136
DateToDays . 137
DateToDOWDMFormat 137
DayOfMonth . 138
DayOfWeek . 138
DaysInMonth . 139
TimAdjust. . 139
TimDateTimeToSeconds. 140
TimGetSeconds . 140
TimGetTicks . . 140
TimSecondsToDateTime. 141
TimSetSeconds . . 141
TimeToAscii . . 142
Functions for System Use Only. 143

Index . 145
x Developing Palm OS 2.0 Applications, Part II

About This Document

Developing Palm OS 2.0 Applications, Part II, is part of the Palm OS
Software Development Kit (SDK). This introduction provides an
overview of the SDK documentation, discusses what materials are
included in this document, and what conventions are used.

Palm OS SDK Documentation
The following documents are part of the SDK:

Document Description

Palm OS 2.0 Tutorial 21 Phases step developers through using the different parts
of the system. Example applications for each phase are in-
cluded in the SDK.

Developing Palm OS
2.0 Applications.
Part I: Interface Man-
agement

A programmerÕs guide and reference document that dis-
cusses all important aspects of developing an applications.

Developing Palm OS
2.0 Applications.
Part II. System Man-
agement.

A programmerÕs guide and reference document for all sys-
tem managers, such as the string manager or the system
event manager. See What This Guide Contains for details.

Developing Palm OS
2.0 Applications,
Part III. Memory and
Communications Man-
agement

ProgrammerÕs guide and reference document about

¥ Memory management; both the database manager and
the memory manager.

¥ The Palm OS communications library for serial commu-
nication.

¥ The Palm OS network library, which provides basic net-
work services.

Palm OS 2.0 Cookbook. Provides a variety of design guidelines, including localiza-
tion, UI design, and optimization. Information about using
CodeWarrior for Pilot to create projects and executables.
Developing Palm OS 2.0 Applications, Part II 11

About This Document

What This Guide Contains

What This Guide Contains
This section provides an overview of the chapters in this guide.

¥ Chapter 1, ÒUsing Palm OS System Managers,Ó discusses the
managers that provide system functionality, including the sys-
tem event manager, time manager, and error manager.

¥ Chapter 2, ÒPalm OS System Functions,Ó provides reference-
style information for each API function that allows applica-
tions to interact with the system.

Conventions Used in This Guide
This guide uses the following typographical conventions:

This style... Is used for...

fixed width font Code elements such as function,
structure, Þeld, bitÞeld.

fixed width underline Emphasis (for code elements).

bold Emphasis (for other elements).

blue and underlined Hot links.

black and underlined 2.0 function names (headings only)

red and underlined 2.0 function names (in Table of
Contents only)
12 Developing Palm OS 2.0 Applications, Part II

1
Using Palm OS
System Managers
In contrast to desktop computer operating systems, Palm OS con-
sists of only one library. This library, however, contains several man-
agers, which are groups of functions that work together to imple-
ment certain functionality. As a rule, all functions that belong to one
manager use the same three-letter preÞx and work together to im-
plement a certain aspect of functionality.

In this chapter, you learn about all Palm OS managers that arenÕt di-
rectly responsible for interface management or memory manage-
ment. As you investigate the managers more closely youÕll Þnd that
some of them are mostly services provided by the system, while
others contain a large number of API calls.

This chapter presents the managers in alphabetical order for easier
access.

¥ The Alarm Manager provides support for setting real-time
alarms to perform some periodic activity or display a reminder.

¥ The Error Manager can be used by applications or system soft-
ware for displaying unexpected runtime errors, such as those
that typically show up during program development.

Final production versions of applications or system software are
not expected to use error manager.

¥ The Feature Manager provides information about the system
software version and the optional system features and third-
party extensions that are installed. An application can also use
the feature manager to keep track of its own data.

¥ The Sound Manager lets applications and system modules con-
trol sound manager settings and play custom and predeÞned
system sounds.
Developing Palm OS 2.0 Applications, Part II 13

Using Palm OS System Managers

The Alarm Manager

¥ The String Manager is a set of string manipulation functions
available to applications. Use these routines instead of the
standard C routines.

¥ The System Manager is responsible for the basic operation
of the system, including booting and resetting the system,
managing power, managing the microkernel, and
supporting applications.

¥ The System Event Manager provides an interface to the low-
level pen and key event queues, translates taps on silk-screened
icons into key events, sends pen strokes in the GrafÞti area to the
GrafÞti recognizer, and puts the system into low-power doze
mode when there is no user activity.

¥ The System Manager provides real-time clock functions and sys-
tem tick functions.

The Alarm Manager
The Palm OS alarm manager provides support for setting real-time
alarms, for performing some periodic activity, or for displaying a re-
minder. This section helps you use the alarm manager by discussing
these topics:

¥ Alarm Manager Overview

¥ Using the Alarm Manager

¥ Alarm Manager Function Summary
14 Developing Palm OS 2.0 Applications, Part II

Using Palm OS System Managers

The Alarm Manager

Alarm Manager Overview
The alarm manager:

¥ Works closely with the time manager to handle real-time alarms.

¥ Sends launch codes to applications that set a speciÞc time alarm
to inform the application the alarm is due.

¥ Handles alarms by application in a two cycle operation

Ð First, it notiÞes each application that the alarm has occurred.

Ð Second, it allows each application to display some UI.

¥ Allows only one alarm to be set per application

However, the alarm manager

¥ DoesnÕt provide reminder dialog boxes.

¥ DoesnÕt play the alarm sound.

The following section looks in some detail at how the alarm manag-
er and applications interact when processing an alarm.

Alarm Queue

The alarm queue contains all alarm requests. Triggered alarms are
queued up until the alarm manager can send the launch code to the
application that created the alarm. However, if the alarm queue be-
comes full, the oldest entry that has been both triggered and notiÞed
is deleted to make room for a new alarm.

Alarm Manager Processing

When an alarm is triggered, the alarm manager notiÞes each appli-
cation that set an alarm for that alarm time via the sysAppLaunch-
CmdAlarmTriggered launch code.

After each application has processed this launch code, the alarm
manager sends each application the sysAppLaunchCmdDisplay-
Alarm launch code in order for the application to display the alarm.

If a new alarm time is triggered while an older alarm is still being
displayed, all applications with alarms scheduled for this second
alarm time are sent the sysAppLaunchCmdAlarmTriggered
launch code, but the display cycle is postponed until all earlier
alarms have Þnished displaying.
Developing Palm OS 2.0 Applications, Part II 15

Using Palm OS System Managers

The Alarm Manager

Alarm Scenario

The alarm manager typically Þrst notiÞes each application that an
alarm has been triggered, then notiÞes each application to display
the alarm. HereÕs how an application and the alarm manager typi-
cally interact when processing an alarm

1. When the alarm time is reached, the alarm manager Þnds the
Þrst application in the alarm queue that set an alarm for this
alarm time.

2. The alarm manager sends this application the
sysAppLaunchCmdAlarmTriggered launch code.

3. The application can now:

Ð Set the next alarm.

Ð Play a short sound.

Ð Perform some maintenance activity.

4. The alarm manager Þnds in the alarm queue the next appli-
cation that set an alarm and repeats steps 2 and 3.

5. This is process is repeated until no more applications are
found with this alarm time.

6. The alarm manager then Þnds once again the Þrst application
in the alarm queue who set an alarm for this alarm time and
sends this application the sysAppLaunchCmdDisplay-
Alarm launch code

7. The application can now:

Ð Display a dialog box

Ð Display some other type of reminder

8. The alarm manager processes the alarm queue for the next
application that set an alarm for the alarm being triggered
and step 6 and 7 are repeated.

9. This is process is repeated until no more applications are
found with this alarm time.
16 Developing Palm OS 2.0 Applications, Part II

Using Palm OS System Managers

The Error Manager

Using the Alarm Manager
An applications can use the Palm OS function AlmSetAlarm to set
and/or clear an alarm.

An application can Þnd out its current alarm setting by using the
AlmGetAlarm function. This function returns the alarm date and
time (expressed in seconds since 1/1/1904). The return value is 0 if
no active alarm exists for the application.

Alarm Manager Function Summary
The following alarm manager functions are for application use:

¥ AlmGetAlarm

¥ AlmSetAlarm

The Error Manager
The error manager can be used by applications or system software
for displaying unexpected runtime errors such as those that typical-
ly show up during program development. Final versions of applica-
tions or system software wonÕt use the error manager.

The error manager API consists of a set of functions for displaying
an alert with an error message, Þle name, and the line number
where the error occurred. If a debugger is connected, it is entered
when the error occurs.

The error manager also provides a Òtry and catchÓ mechanism that
applications can use for handling such runtime errors as out of
memory conditions, user input errors, etc. This mechanism is close-
ly modeled after the try/catch functionality of the recent ANSI C
speciÞcation.

This section helps you understand and use the error manager, dis-
cussing the following topics:

¥ Displaying Development Errors

¥ Understanding the Try-and-Catch Mechanism

¥ Using the Error Manager Macros

¥ Error Manager Function Summary
Developing Palm OS 2.0 Applications, Part II 17

Using Palm OS System Managers
The Error Manager
Displaying Development Errors
The error manager provides some compiler macros that can be used
in source code. These macros display a fatal alert dialog on the
screen and provide buttons to reset the device or enter the debugger
after the error is displayed. There are three macros: ErrDisplay,
ErrFatalDisplayIf, and ErrNonFatalDisplayIf.

¥ ErrDisplay always displays the error message on the screen.

¥ ErrFatalDisplayIf and ErrNonFatalDisplayIf display
the error message only if their Þrst argument is TRUE.

The error manager uses the compiler deÞne ERROR_CHECK_LEVEL
to control the level of error messages displayed. You can set the
value of the compiler deÞne to control which level of error checking
and display is compiled into the application. Three levels of error
checking are supported: none, partial, and full.

During development, it makes sense to set full error checking for
early development, partial error checking during alpha and beta test
periods, and no error checking for the Þnal product. At partial error
checking, only fatal errors are displayed; error conditions that are
only possible are ignored under the assumption that the application
developer is already aware of the condition and designed the soft-
ware to operate that way.

If you set
ERR_CHECK_LEVEL to...

The compiler...

ERROR_CHECK_NONE (0) DoesnÕt compile in any error calls.

ERROR_CHECK_PARTIAL (1) Compiles in only ErrDisplay
and ErrFatalDisplayIf calls.

ERROR_CHECK_FULL (2) Compiles in all three calls.
18 Developing Palm OS 2.0 Applications, Part II

Using Palm OS System Managers
The Error Manager
Using the Error Manager Macros
Calls to the error manager to display errors are actually compiler
macros that are conditionally compiled into your program. Most of
the calls take a boolean parameter, which should be set to TRUE to
display the error, and a pointer to a text message to display if the
condition is true.

Typically, the boolean parameter is an in-line expression that evalu-
ates to TRUE if there is an error condition. As a result, both the ex-
pression that evaluates the error condition and the message text are
left out of the compiled code when error checking is turned off. You
can call ErrFatalDisplayIf, or ErrDisplay, but using
ErrFatalDisplayIf makes your source code look neater.

For example, assume your source code looks like this:
result = DoSomething();
ErrFatalDisplayIf (result < 0, Òunexpected

result from DoSomethingÓ);

With error checking turned on, this code displays an error alert dia-
log if the result from DoSomething() is less than 0. Besides the
error message itself, this alert also shows the Þle name and line
number of the source code that called the error manager. With error
checking turned off, both the expression evaluation err < 0 and
the error message text are left out of the compiled code.

The same net result can be achieved by the following code:
result = DoSomething();
#if ERROR_CHECK_LEVEL != ERROR_CHECK_NONE
if (result < 0)
ErrDisplay (Òunexpected result from

DoSomethingÓ);
#endif

However, this solution is longer and requires more work than sim-
ply calling ErrFatalDisplayIf. It also makes the source code
harder to follow.
Developing Palm OS 2.0 Applications, Part II 19

Using Palm OS System Managers
The Error Manager
Understanding the Try-and-Catch Mechanism
The try-and-catch mechanism of the error manager is closely mod-
eled after the ANSI C try and catch standard.

The error manager is aware of the machine state of the Palm OS de-
vice and can therefore correctly save and restore this state. The built-
in try and catch of the compiler canÕt be used because itÕs machine
dependent.

Try and catch is basically a neater way of implementing a goto if an
error occurs. A typical way of handling errors in the middle of a
routine is to go to the end of the routine as soon as an error occurs
and have some general-purpose cleanup code at the end of every
routine. Errors in nested routines are even trickier because the result
code from every subroutine call must be checked before continuing.

When you set up a try/catch, you are providing the compiler with a
place to jump to when an error occurs. You can go to that error han-
dling routine at any time by calling ErrThrow. When the compiler
sees the ErrThrow call, it performs a goto to your error handling
code. The greatest advantage to calling ErrThrow, however, is for
handling errors in nested subroutine calls.

Even if ErrThrow is called from a nested subroutine, execution im-
mediately goes to the same error handling code in the higher-level
call. The compiler and runtime environment automatically strip off
the stack frames that were pushed onto the stack during the nesting
process and go to the error handling section of the higher-level call.
You no longer have to check for result codes after calling every sub-
routine; this greatly simpliÞes your source code and reduces its size.
20 Developing Palm OS 2.0 Applications, Part II

Using Palm OS System Managers
The Error Manager
Using the Try and Catch Mechanism
The following example illustrates the possible layout for a a typical
routine using the error managerÕs try and catch mechanism.

Listing 1.1 Try and Catch Mechanism Example

ErrTry {
 p = MemPtrNew(1000);

if (!p) ErrThrow(errNoMemory);
MemSet(p, 1000, 0);
CreateTable(p);
PrintTable(p);

 }

 ErrCatch(err) {
 // Recover or clean up after a failure in the
 // above Try block."err" is an int
 // identifying the reason for the failure.

 // You may call ErrThrow() if you want to
 // jump out to the next Catch block.

 // The code in this Catch block doesnÕt
 // execute if the above Try block completes

// without a Throw.

if (err == errNoMemory)
ErrDisplay("Out of Memory");

else
ErrDisplay("Some other error");

 } ErrEndCatch
// You must structure your code exactly as

 //above. You canÕt have an ErrTry without an
//ErrCatch { } ErrEndCatch, or vice versa.

Any call to ErrThrow within the ErrTry block results in control
passing immediately to the ErrCatch block. Even if the subroutine
CreateTable called ErrThrow, control would pass directly to the
Developing Palm OS 2.0 Applications, Part II 21

Using Palm OS System Managers
The Feature Manager
ErrCatch block. If the ErrTry block completes without calling
ErrThrow, the ErrCatch block is not executed.

You can nest multiple ErrTry blocks. For example, if you wanted to
perform some cleanup at the end of CreateTable in case of error,

¥ Put ErrTry/ErrCatch blocks in CreateTable

¥ Clean up in the ErrCatch block Þrst

¥ Call ErrThrow to jump to the top-level ErrCatch

Error Manager Function Summary
The following error manager functions are available for application
use:

¥ ErrDisplay

¥ ErrDisplayFileLineMsg

¥ ErrFatalDisplayIf

¥ ErrNonFatalDisplayIf

¥ ErrThrow

The Feature Manager
A feature is a 32-bit value that has special meaning to both the fea-
ture publisher and to users of that feature. Features can be pub-
lished by the system or by applications.

Each feature is identiÞed by a feature creator and a feature number:

¥ The feature creator is usually the database creator type of the ap-
plication that publishes the feature.

¥ The feature number is any 16-bit value used to distinguish be-
tween different features of a particular creator.

Once a feature is published, it remains present until it is explicitly
deleted. A feature published by an application sticks around even
after the application quits.
22 Developing Palm OS 2.0 Applications, Part II

Using Palm OS System Managers
The Feature Manager
The System Version Feature
An example for a feature is the system version. This feature is pub-
lished by the system and contains a 32-bit representation of the sys-
tem version. The system version has a feature creator of ÒpsysÓ and
a feature number of 1. Currently, the different versions of the system
software have the following number:

The Þrst version of the Palm OS system software has the following
values

Any application can Þnd out the system version by looking for this
feature.

Application-DeÞned Features
When an application adds or removes capabilities from the base sys-
tem, it can create features to test for the presence or absence of those
capabilities. This allows an application to be compatible with multi-
ple versions of the system by reÞning its behavior, depending on
which capabilities are present or not. Future hardware platforms
may lack some capabilities present in the Þrst platform, so checking
the system version feature is important.

This section introduces the feature manager by discussing these
topics:

¥ Using the Feature Manager

¥ Feature Manager Function Summary

Using the Feature Manager
Applications may Þnd the feature manager useful for their own pri-
vate use. For example, an application may want to publish a feature
that contains a pointer to some private data it needs for processing
launch codes. Because an applicationÕs global data is not generally
available while it processes launch codes, using the feature manager
is usually the easiest way for an application to get to its data.

0x01003001 Pilot 1000 and Pilot 5000 (Palm OS 1.0)

0x02003000 PalmPilot and PalmPilot Professional (Palm OS 2.0)
Developing Palm OS 2.0 Applications, Part II 23

Using Palm OS System Managers
The Feature Manager
To check whether a particular feature is present, call FtrGet and
pass it the feature creator and feature number. If the feature exists,
FtrGet returns the 32-bit value of the feature. If the feature doesnÕt
exist, an error code is returned.

To publish a new feature or change the value of an existing one, call
FtrSet and pass the feature creator and number, and the 32-bit
value of the feature. A published feature remains available until it is
explicitly removed by a call to FtrUnregister or until the system
resets; simply quitting an application doesnÕt remove a feature pub-
lished by that application.

Features are split into two groups: ROM-based and RAM-based.
ROM-based features are stored in a separate table in ROM and can
never be removed; only system-deÞned features are in this table. All
features installed at runtime are in the RAM table. FtrGetByIndex
accepts a parameter that speciÞes whether to search the ROM table
or RAM table.

Call FtrUnregister to remove RAM-based features created at
runtime by calling FtrSet.

You can get a complete list of all published features by calling
FtrGetByIndex repeatedly. Passing an index value starting at 0 to
FtrGetByIndex and incrementing repeatedly by 1 eventually re-
turns all available features.

Feature Manager Function Summary
The following feature manager functions are available for applica-
tion use:

¥ FtrGet

¥ FtrGetByIndex

¥ FtrSet

¥ FtrUnregister
24 Developing Palm OS 2.0 Applications, Part II

Using Palm OS System Managers
The Sound Manager
The Sound Manager
The Palm OS sound manager lets applications and system modules
play custom and predeÞned system sounds and control sound man-
ager settings.

The sound manager provides an extendable API for playing custom
sounds and system sounds, and for controlling default sound set-
tings. Although the API accommodates multichannel design, only a
single sound channel is currently supported. The user can control
the alarm, system, and master sound amplitudes, typically using the
Preferences application.

Currently supported system sounds are Information, Warning, Er-
ror, Startup, Alarm, ConÞrmation, and Click.

Using the Sound Manager
To execute a sound manager command, call SndDoCmd and pass the
sound channel pointer (presently, only null is supported and maps
to the shared channel), a pointer to a structure of SndCommandType,
and a ßag indicating whether the command should be performed
asynchronously. Asynchronous execution is not yet implemented;
all commands execute synchronously.

To play a default system sound, such as a click or an error beep, call
SndPlaySystemSound, passing the system sound id. For the com-
plete list of system sound IDs, see SoundMgr.h.

Note: All sound amplitudes greater than 0 are currently played as
MaxVolume.

Sound Manager Function Summary
The following sound manager functions are available for applica-
tion use:

¥ SndDoCmd

¥ SndGetDefaultVolume

¥ SndPlaySystemSound

¥ SndSetDefaultVolume
Developing Palm OS 2.0 Applications, Part II 25

Using Palm OS System Managers
The String Manager
The String Manager
The string manager provides a set of string manipulation functions.
The string manager API is closely modeled after the standard C
string-manipulation functions like strcpy, strcat, etc.

Applications should use the functions built into the string manager
instead of the standard C functions, because doing so makes the ap-
plication smaller:

¥ When your application uses the string manager functions, the
actual code that implements the function is not linked into your
application but is already part of the operating system.

¥ When you use the standard C functions, the code for each func-
tion you use is linked into your application and results in a big-
ger executable.

In addition, many standard C functions donÕt work on the Palm OS
device at all because the OS doesnÕt provide all basic system func-
tions (such as malloc) and doesnÕt support the subroutine calls
used by most standard C functions.

The following functions are available for application use:

¥ StrAToI

¥ StrCat

¥ StrCaselessCompare

¥ StrChr

¥ StrCompare

¥ StrCopy

¥ StrIToA

¥ StrIToH

¥ StrLen

¥ StrStr

¥ StrToLower
26 Developing Palm OS 2.0 Applications, Part II

Using Palm OS System Managers
The System Manager
The System Manager
The Palm OS system manager is responsible for the general opera-
tion of the system, including boot-up, power-up, launching applica-
tions, library management, monitoring the battery, multitasking,
timing, and semaphore support. Applications need to be concerned
with very few system manager API functions. Most of what the sys-
tem manager does is transparent to applications and is explained
here as background information only.

In this section, you learn about the following aspects of the system
manager:

¥ System Boot and Reset Ñ information about the different
reset operations, including system reset calls

¥ Power Management Ñ the three different power modes and
guidelines for application developers

¥ The MicrokernelÑ basic task management provided by the sys-
tem

¥ Application Support Ñ event processing and interapplication
communication from the systemÕs point of view

¥ System Manager Functions Ñ list of all system manager func-
tions available to applications

System Boot and Reset
The system manager provides support for booting the Palm OS de-
vice. Booting occurs only when the user presses the reset switch on
the device (see ÒPalm OS Device Reset SwitchÓ in Developing Palm
OS Applications, Part I). Palm OS differs from a traditional desktop
system in that itÕs never really turned off. Power is constantly sup-
plied to essential subsystems and the on/off key is merely a way of
bringing the device in or out of low-power mode (see Palm OS
Power Modes). The obvious effect of pressing the on/off key is that
the LCD turns on or off. When the user presses the power key to
turn the device off, the LCD is disabled, which makes it appear as if
power to the entire unit is turned off. In fact, the memory system,
real-time clock, and interrupt generation circuitry are still running,
though they are consuming little current.
Developing Palm OS 2.0 Applications, Part II 27

Using Palm OS System Managers
The System Manager
In this version of Palm OS, there is only one user interface applica-
tion running at a time. The User Interface Application Shell (UIAS)
is responsible for managing the current user-interface application.
The UIAS launches the current user-interface application as a sub-
routine and doesnÕt get control back until that application quits.
When control returns to the UIAS, the UIAS immediately launches
the next application as another subroutine. See Power Management
Calls for more information.

System Reset Calls

The system calls SysReset to reset the device. This call does a soft
reset and has the same effect as pressing the reset switch on the unit.
Normally, applications should not use this call.

SysReset is used, for example, by the Sync application. When the
user copies an extension onto the Palm OS device, the Sync applica-
tion automatically resets the device after the sync is completed to
allow the extension to install itself.

The SysColdBoot call is similar, but even more dangerous. It per-
forms a hard reset that clears all user storage RAM on the device,
destroying all user data.

Power Management
This section looks at Palm OS power management, discussing the
following topics:

¥ Palm OS Power Modes

¥ Guidelines for Application Developers

¥ Power Management Calls

Palm OS Power Modes

At any time, the Palm OS device is in one of three power modes:
sleep, doze, or running. The system manager controls transitions be-
tween different power modes and provides an API for controlling
some aspects of the power management.

¥ Sleep mode. If the unit appears to be off, it is actually in
sleep mode and is consuming as little current as possible. At
this rate, a unit could sit for almost a year on a single set of
28 Developing Palm OS 2.0 Applications, Part II

Using Palm OS System Managers
The System Manager
batteries without losing the contents of memory. To enter
sleep mode, the system puts as many peripherals as possible
into low-power mode and sets up the hardware so that an
interrupt from any hard key or the real-time clock wakes up
the system.

When the system gets one of these interrupts while in sleep
mode, it quickly checks that the battery is strong enough to com-
plete the wake-up and then takes each of the peripherals, for ex-
ample, the LCD, serial port, and timers, out of low-power mode.

The system reenters sleep mode when the user presses the on/
off key again, when the system has been idle for the minimum
auto-off time, or when the battery level reaches a critically low
level.

¥ Doze mode. In doze mode, the processor is halted, but all pe-
ripherals including the LCD are powered up. The system can
come out of doze mode much faster than it can come out of sleep
mode since none of the peripherals need to be woken up. In fact,
it takes no longer to come out of doze mode than to process an
interrupt. Usually, when the system appears on, it is actually in
doze mode and goes into running mode only for short periods of
time to process an interrupt or respond to user input like a pen
tap or key press.

¥ Running mode. Running means that the processor is executing
instructions and all peripherals are powered up. A typical appli-
cation puts the system into running mode only about 5% of the
time.

Guidelines for Application Developers

Normally, applications donÕt need to be aware of power manage-
ment except for a few simple guidelines. When an application calls
EvtGetEvent to ask the system for the next event to process, the
system automatically puts itself into doze mode until there is an
event to process. As long as an application uses EvtGetEvent,
power management occurs automatically. If there has been no user
input for the amount of time determined by the current setting of
the auto-off preference, the system automatically enters sleep mode
without intervention from the application.

Applications should avoid providing their own delay loops. In-
stead, they should use SysTaskDelay, which puts the system into
doze mode during the delay to conserve as much power as possible.
Developing Palm OS 2.0 Applications, Part II 29

Using Palm OS System Managers
The System Manager
If an application needs to perform periodic work, it can pass a time
out to EvtGetEvent; this forces the unit to wake up out of doze
mode and to return to the application when the time out expires,
even if there is no event to process. Using these mechanisms pro-
vides the longest possible battery life.

Power Management Calls

The system calls SysSleep to put itself immediately into low-
power sleep mode. Normally, the system puts itself to sleep when
there has been no user activity for the minimum auto-off time or
when the user presses the power key.

The SysSetAutoOffTime routine changes the auto-off time value.
This routine is normally used by the system only during boot, and
by the Preferences application. The Preferences application saves
the user preference for the auto-off time in a preferences database,
and the system initializes the auto-off time to the value saved in the
preferences database during boot. While the auto-off feature can be
disabled entirely by calling SysSetAutoOffTime with a time-out
of 0, doing this depletes the battery.

The current battery level and other information can be obtained
through the SysBatteryInfo routine. This call returns informa-
tion about the battery, including the current battery voltage in hun-
dredths of a volt, the warning thresholds for the low-battery alerts,
the battery type, and whether external power is applied to the unit.
This call can also change the battery warning thresholds and battery
type.

The Microkernel
Palm OS has a preemptive multitasking kernel that provides basic
task management.

Most applications donÕt need the microkernel services because they
are handled automatically by the system. This functionality is pro-
vided mainly for internal use by the system software or for certain
special purpose applications.

The User Interface Application Shell (UIAS) is responsible for man-
aging the current user-interface application, as described in System
Boot and Reset.
30 Developing Palm OS 2.0 Applications, Part II

Using Palm OS System Managers
The System Manager
Usually, the UIAS is the only task running. Occasionally though, an
application launches another task as a part of its normal operation.
One example of this is the Sync application, which launches a sec-
ond task to handle the serial communication with the desktop. The
Sync application creates a second task dedicated to the serial com-
munication and gives this task a lower priority than the main user-
interface task. The result is optimal performance over the serial port
without a delay in response to the user-interface controls.

Normally, there is no user interaction during a sync, so that the seri-
al communication task gets all of the processorÕs time. However, if
the user does tap on the screen, for example, to cancel the sync, the
user-interface task immediately processes the tap, since it has a
higher priority. Alternatively, the Sync application could have been
written to use just one task, but then it would have to periodically
poll for user input during the serial communication, which would
hamper performance and user-interface response time.

Application Support
The system manager provides application support in several func-
tional areas. The following aspects of application support are dis-
cussed in this section:

¥ Launching and Cleanup

¥ Event Processing

¥ Interapplication Communication

¥ Application Utilities

Launching and Cleanup

Usually, applications on the Palm OS device are launched when the
user presses one of the buttons on the case or selects an application
icon from the application launcher screen. Alternatively, an applica-
tion can programmatically launch another application by using the
system manager function SysAppLaunch.

When the current user-interface application quits, the system man-
ager cleans up by deleting any chunks in the dynamic heap(s) that
the application left around and closing any databases left open.
Note, however, that applications should perform those kinds of
cleanup tasks themselves.
Developing Palm OS 2.0 Applications, Part II 31

Using Palm OS System Managers
The System Manager
Event Processing

The system manager provides the infrastructure for event genera-
tion and also contains the support for handling most system-related
events. Hardware activity, such as taps on the digitizer and key
presses, is interpreted by interrupt handlers of the system manager
and converted into events that are eventually sent to the application
through the EvtGetEvent call. In addition, many events returned
by EvtGetEvent are system-related events that can be processed
by the system manager call SysHandleEvent.

Events in Palm OS include hardware- and software-generated
events. The following table provides an overview:

When EvtGetEvent is called by the application, it Þrst checks
whether any events are in the software event queue and returns the
topmost event if so.

Hardware-generated events Software-generated events

Caused directly by user interaction with the
device, such as tapping on the screen with
the pen, or pressing a hardware button.

Generated by the system software as a
side effect of a user interaction.

Include pen-downs, pen-ups (optionally in-
cluding stroke data), and hard button press-
es.

Include events like the quit event that
causes an application to exit, or key-
board events generated by the GrafÞti
recognizer. Applications can deÞne
software-generated events for their
own use.

Typically posted by interrupt routines. Typically posted as the result of a sys-
tem call. Include application-quit
events, window-enter and window-
exit events, user-interface control
events, etc.

¥ Pen-generated events are stored in the
pen queue.

¥ Hard button press events are stored in
the key queue.

Stored in the software event queue.
32 Developing Palm OS 2.0 Applications, Part II

Using Palm OS System Managers
The System Manager
If the software event queue is empty, EvtGetEvent checks the key
and pen queues. The result is that all software events generated by a
particular hardware event are processed before the next hardware
event is processed. For example, a pen-down hardware event may
trigger the system software to generate window-exit and window-
enter software events. Both events are then pulled from the software
event queue and processed before the next hardware event is pro-
cessed.

Some event types returned by EvtGetEvent are not actually posted
into the event queue, but are artiÞcially generated by EvtGetEvent
when all event queues are empty. One example is the pen-moved
event, which is returned if no other events are in the queues and the
pen has moved since the last time EvtGetEvent was called. In this
way, the application is notiÞed of low-priority events, such as pen
movements, but the event queue isnÕt cluttered with them.

In a typical application, SysHandleEvent is called immediately
after EvtGetEvent. If EvtGetEvent returns a pen-up event in the
GrafÞti writing area, SysHandleEvent calls the GrafÞti recognizer
with the pen stroke information obtained from the pen queue and
uses the results of the GrafÞti recognizer to post one or more key-
board events into the key queue. A similar process occurs for pen-
up events detected over a silk-screened icon. SysHandleEvent
converts the pen-up to a keyboard event with a virtual key code rep-
resenting the silk-screened icon.

When an application calls EvtGetEvent, the event manager checks
a number of system-event data structures and returns an event
record to the application with information about the highest-priori-
ty event that needs processing. Events in Palm OS are stored in one
of three event queues: a key queue, a pen queue, or a software event
queue. The event queues are circular buffers containing event
records stored in a Þrst-in, Þrst-out (FIFO) sequence.

HereÕs some additional information on hardware and software
events:

¥ Hardware events are posted into their appropriate event queue
by interrupt routines. The interrupt routine for handling key-
board presses immediately enqueues the keyboard event into
the key queue and sets up a periodic interrupt routine to watch
for auto-repeat and for key debouncing.
Developing Palm OS 2.0 Applications, Part II 33

Using Palm OS System Managers
The System Manager
¥ Software-generated events include window-enter and window-
exit events, application quit events, and user-interface object
events like control enter, control exit, etc. These events are typi-
cally generated as a side effect of a hardware-generated event
like a pen-down. Software can, however, also generate key
events, usually as a result of recognizing a GrafÞti stroke or a tap
on a silk-screened icon.

Software-generated events are posted into the appropriate event
queue, but are not typically posted at interrupt time. Many of
these events are inserted into the event queue by the various
user-interface managers. Others, like key events, are posted by
SysHandleEvent after recognizing a GrafÞti stroke or a tap on
a silk-screened icon.

Interapplication Communication

The system manager provides the API for interapplication commu-
nication. This API permits any application or system routine to send
a launch code to any other application and get results back. For ex-
ample, an application that is to work with the global Þnd must sup-
port the Þnd launch code.

Sending a launch code to another application is like calling a specif-
ic subroutine in that application: the application responding to the
launch code is responsible for determining what to do given the
launch code constant passed on the stack as a parameter.

PredeÞned launch codes are listed in ÒDeveloping Palm OS Appli-
cations, Part IÓ and can be found in SystemMgr.h. All the parame-
ters for a launch code are passed in a single parameter block, and
the results are returned in the same parameter block. ÒHow Launch
Codes Control an ApplicationÓ in ÒDeveloping Palm OS Applica-
tions, Part I, describes launch codes in more detail.

Application Utilities

The SysHandleEvent call allows applications to correctly respond
to system events like key presses, GrafÞti strokes, low-battery warn-
ings, and taps on silk-screened icons. Every application should call
this routine from its event loop, usually before the application even
looks at the event. If an application needs to override any part of the
default system behavior, it could selectively Þlter out events before
calling SysHandleEvent.
34 Developing Palm OS 2.0 Applications, Part II

Using Palm OS System Managers
The System Manager
An application can force a switch to another user-interface applica-
tion by calling SysUIAppSwitch. This routine notiÞes the system
which application to launch next and feeds an application-quit
event into the event queue. If and when the current application re-
sponds to the quit event and returns, the system launches the new
application.

Use the routine SysCurAppDatabase to get the card number and
database ID of the currently running user-interface application. If
your application code is called to process a launch code, it essential-
ly is called as a subroutine from the current user-interface applica-
tion. This routine doesnÕt return your applicationÕs database ID but
the database ID of the application that initiated the launch code.

The routine SysAppLaunch is a general-purpose launch facility for
launching any resource database with executable code in it. It has
numerous options, including whether or not to launch the database
as a separate task, whether to allocate a globals world, and whether
or not to give the database its own stack. This routine is also used to
send launch codes to applications (by telling it to use the callerÕs
stack, no globals world, and not a separate task). Usually, applica-
tions use it only for sending launch codes to other user-interface ap-
plications. An alternative, simpler method of sending launch codes
is the SysBroadcastActionCode call. This routine automatically
Þnds all other user-interface applications and calls SysAppLaunch
to send the launch code to each of them.

System Manager Functions
The following system manager functions are available for applica-
tion use:

¥ SysReset

¥ SysBatteryInfo

¥ SysSetAutoOffTime

¥ SysHandleEvent

¥ SysUIAppSwitch

¥ SysCurAppDatabase

¥ SysBroadcastActionCode

¥ SysAppLaunch
Developing Palm OS 2.0 Applications, Part II 35

Using Palm OS System Managers
The System Event Manager
The System Event Manager
The system event manager

¥ Manages the low-level pen and key event queues.

¥ Translates taps on silk-screened icons into key events.

¥ Sends pen strokes in the GrafÞti area to the GrafÞti recognizer.

¥ Puts the system into low-power doze mode when there is no
user activity.

Most applications have no need to call the system event manager di-
rectly because most of the functionality they need comes from the
higher-level event manager or is automatically handled by the sys-
tem.

Applications that do use the system event manager directly might
do so to enqueue key events into the key queue or to retrieve each of
the pen points that comprise a pen stroke from the pen queue.

This section provides information about the system event manager
by discussing these topics:

¥ Event Translation: Pen Strokes to Key Events

¥ Pen Queue Management

¥ Auto-Off Control

¥ System Event Manager Function Summary
36 Developing Palm OS 2.0 Applications, Part II

Using Palm OS System Managers
The System Event Manager
Event Translation: Pen Strokes to Key Events
One of the higher-level functions provided by the system event
manager is conversion of pen strokes on the digitizer to key events.
For example, the system event manager sends any stroke in the
GrafÞti area of the digitizer automatically to the GrafÞti recognizer
for conversion to a key event. Taps on silk-screened icons, such as
the application launcher, Menu button, and Find button, are also in-
tercepted by the system event manager and converted into the ap-
propriate key events.

When the system converts a pen stroke to a key event, it:

¥ Retrieves all pen points that comprise the stroke from the
pen queue

¥ Converts the stroke into the matching key event

¥ Enqueues that key event into the key queue

Eventually, the system returns the key event to the application as a
normal result of calling EvtGetEvent.

Most applications rely on the following default behavior of the sys-
tem event manager:

¥ All strokes in the predeÞned GrafÞti area of the digitizer are con-
verted to key events

¥ All taps on the silk-screened icons are convert to key events

¥ All other strokes are passed on to the application for processing

Pen Queue Management
The pen queue is a preallocated area of system memory used for
capturing the most recent pen strokes on the digitizer. It is a circular
queue with a Þrst-in, Þrst-out method of storing and retrieving pen
points. Points are usually enqueued by a low-level interrupt routine
and dequeued by the system event manager or application.
Developing Palm OS 2.0 Applications, Part II 37

Using Palm OS System Managers
The System Event Manager
The following table summarizes pen management.

The system event manager provides an API for initializing and
ßushing the pen queue and for queuing and dequeueing points.
Some state information is stored in the queue itself: to dequeue a
stroke, the caller must Þrst make a call to dequeue the stroke infor-
mation (EvtDequeuePenStrokeInfo) before the points for the
stroke can be dequeued. Once the last point is dequeued, another
EvtDequeuePenStrokeInfo call must be made to get the next
stroke.

Applications usually donÕt need to call EvtDequePenStrokeInfo
because the event manager calls this function automatically when it
detects a complete pen stroke in the pen queue. After calling
EvtDequePenStrokeInfo, the system event manager stores the
stroke bounds into the event record and returns the pen-up event to
the application. The application is then free to dequeue the stroke
points from the pen queue, or to ignore them altogether. If the
points for that stroke are not dequeued by the time EvtGetEvent is
called again, the system event manager automatically ßushes them.

Key Queue Management
The key queue is an area of system memory preallocated for captur-
ing key events. Key events come from one of two occurrences:

¥ As a direct result of the user pressing one of the buttons on the
case

¥ As a side effect of the user drawing a GrafÞti stroke on the digi-
tizer, which is converted in software to a key event

The user... The system...

Brings the pen down
on the digitizer.

Stores a pen-down sequence in the pen
queue and starts the stroke capture.

Draws a character. Stores additional points in the pen queue
periodically.

Lifts the pen. Stores a pen-up sequence in the pen
queue and turns off stroke capture.
38 Developing Palm OS 2.0 Applications, Part II

Using Palm OS System Managers
The System Event Manager
The following table summarizes key management:

The system event manager provides an API for initializing and
ßushing the key queue and for enqueuing and dequeuing key
events. Usually, applications have no need to dequeue key events;
the event manager does this automatically if it detects a key in the
queue and returns a keyDownEvent (documented in ÒDeveloping
Palm OS Applications,Ó Part I) to the application through the
EvtGetEvent call.

Auto-Off Control
Because the system event manager manages hardware events like
pen taps and hardware button presses, itÕs responsible for resetting
the auto-off timer on the device. Whenever the system detects a
hardware event, it automatically resets the auto-off timer to 0. If an
application needs to reset the auto-off timer manually, it can do so
through the system event manager call EvtResetAutoOffTimer.

User action System response

Hardware button
press.

Interrupt routine enqueues the appropriate key event into
the key queue, temporarily disables further hardware button
interrupts, and sets up a timer task to run every 10 ms.

Hold down key for ex-
tended time period.

Timer task to supports auto-repeat of the key (timer task is
also used to debounce the hardware).

Release key for certain
amount of time.

Timer task reenables the hardware button interrupts.

Pen stroke in GrafÞti
area of digitizer.

System manager calls the GrafÞti recognizer, which then re-
moves the stroke from the pen queue, converts the stroke
into one or more key events, and Þnally enqueues these key
events into the key queue.

Pen stroke on silk-
screened icons.

System event manager converts the stroke into the appropri-
ate key event and enqueues it into the key queue.
Developing Palm OS 2.0 Applications, Part II 39

Using Palm OS System Managers
The System Event Manager
System Event Manager Function Summary
The following functions are part of the developer API to the system
event manager:

¥ EvtAddEventToQueue

¥ EvtCopyEvent

¥ EvtDequeuePenPoint

¥ EvtDequeuePenStrokeInfo

¥ EvtEnableGrafÞti

¥ EvtEnqueueKey

¥ EvtFlushKeyQueue

¥ EvtFlushNextPenStroke

¥ EvtFlushPenQueue

¥ EvtGetEvent

¥ EvtGetPen

¥ EvtKeyQueueEmpty

¥ EvtKeyQueueSize

¥ EvtKeyQueueEmpty

¥ EvtGetPenBtnList

¥ EvtPenQueueSize

¥ EvtProcessSoftKeyStroke

¥ EvtResetAutoOffTimer

¥ EvtWakeup
40 Developing Palm OS 2.0 Applications, Part II

Using Palm OS System Managers
The Time Manager
The Time Manager
The date and time manager (called time manager in this chapter)
provides access to both the 1-second and 0.01-second timing re-
sources on the Palm OS device.

¥ The 1-second timer keeps track of the real-time clock (date
and time), even when the unit is in sleep mode.

¥ The 0.01-second timer, also referred to as the system ticks, can be
used for Þner timing tasks. This timer is not updated when the
unit is in sleep mode and is reset to 0 each time the unit resets.

The basic time-manager API provides support for setting and get-
ting the real-time clock in seconds and for getting the current system
ticks value (but not for setting it). The system manager provides
more advanced functionality for setting up a timer task that exe-
cutes periodically or in a given number of system ticks.

This section discusses the following topics:

¥ Using Real-Time Clock Functions

¥ Using System Ticks Functions

¥ Time Manager Function Summary

Using Real-Time Clock Functions
The real-time clock functions of the time manager include
TimSetSeconds and TimGetSeconds. Real time on the Palm OS
device is measured in seconds from midnight, Jan 1, 1904. Call
TimSecondsToDateTime and TimDateTimeToSeconds to con-
vert between seconds and a structure specifying year, month, day,
hour, minute, and second.

Using System Ticks Functions
The Palm OS device maintains a tick count that starts at 0 when the
device is reset. This tick increments

¥ 100 times per second when running on the Palm OS device

¥ 60 times per second when running on the Macintosh under the
Simulator
Developing Palm OS 2.0 Applications, Part II 41

Using Palm OS System Managers
The Time Manager
For tick-based timing purposes, applications should use the macro
sysTicksPerSecond, which is conditionally compiled for differ-
ent platforms. Use the function TimGetTicks to read the current
tick count.

Although the TimGetTicks function could be used in a loop to im-
plement a delay, it is recommended that applications use the
SysTaskDelay function instead. The SysTaskDelay function au-
tomatically puts the unit into low-power mode during the delay.
Using TimGetTicks in a loop consumes much more current.

Time Manager Structures
The time manager uses these structures to store information.

Listing 1.2 Time Manager Structures

typedef struct{
Sword second;
Sword minute;
Sword hour;
Sword day;
Sword month;
Sword year;
Sword weekDay; //Days since Sunday (0 to 6)
}DateTimeType;
typedef DateTimeType* DateTimePTr;

typedef struct {
Byte hours;
Byte minutes;
}TimeType;
typedef TimeType * TimePtr;

typedef struct{
Word year :7; //years since 1904 (Mac format)
Word month:4;
Word day :5;
}DateType;
typedef DateType * DatePtr;
42 Developing Palm OS 2.0 Applications, Part II

Using Palm OS System Managers
The Time Manager
Time Manager Function Summary
The following time manager functions are available for application
use:

¥ DateAdjust

¥ DateDaysToDate

¥ DateSecondsToDate

¥ DateToAscii

¥ DateToDays

¥ DateToDOWDMFormat

¥ DayOfMonth

¥ DayOfWeek

¥ DaysInMonth

¥ TimAdjust

¥ TimDateTimeToSeconds

¥ TimGetSeconds

¥ TimGetTicks

¥ TimSecondsToDateTime

¥ TimSetSeconds

¥ TimeToAscii

Note that two functions associated with the Date and Time object,
SelectDay and SelectTime are documented in Developing Palm
OS Applications Part I.
Developing Palm OS 2.0 Applications, Part II 43

Using Palm OS System Managers
The Time Manager
44 Developing Palm OS 2.0 Applications, Part II

2
Palm OS System
Functions

Alarm Manager API

AlmGetAlarm

Purpose Return the alarm date/time in seconds since 1/1/1904 and the call-
er-deÞned alarm reference value for the given application.

Prototype ULong AlmGetAlarm (UInt cardNo,
LocalID dbID,
DWordPtr refP)

Parameters -> cardNo Storage card number of the application.

-> dbID Local ID of the application.

<-> refP Pointer to location for the alarmÕs reference value.

Result Alarm seconds since 1/1/1904; if no alarm is active for the applica-
tion, 0 is returned for the alarm seconds and the reference value is
undeÞned.
Developing Palm OS 2.0 Applications, Part II 45

Palm OS System Functions
Alarm Manager API
AlmSetAlarm

Purpose Set or cancel an alarm for the given application.

Prototype Err AlmSetAlarm (UInt cardNo,
LocalID dbID,
DWord ref,
ULong alarmSeconds,
Boolean quiet)

Parameters -> cardNo Storage card number of the application.

-> dbID Local ID of the application.

-> ref Caller-deÞned value to be passed with
notiÞcations.

-> alarmSeconds Alarm date/time in seconds since 1/1/1904,
 or 0 to cancel the current alarm (if any).

-> quiet Reserved for future upgrade (set to zero).

Result 0 No error.

almErrMemory InsufÞcient memory.

almErrFull Alarm table is full.

Comments If an alarm for this application has already been set, it is replaced
with the new alarm. Action code notiÞcations are sent after the
alarm is triggered and can be used by the application to set the next
alarm.
46 Developing Palm OS 2.0 Applications, Part II

Palm OS System Functions
Alarm Manager API
Functions for System Use Only

AlmAlarmCallback

Prototype void AlmAlarmCallback (void)

WARNING: This function for use by system software only.

AlmCancelAll

Prototype void AlmCancelAll (Boolean enable)

WARNING: This function for use by system software only.

AlmDisplayAlarm

Prototype void AlmDisplayAlarm (Boolean displayOnly)

WARNING: This function for use by system software only.

AlmEnableNotiÞcation

Prototype void AlmEnableNotificatio(Boolean enable)

WARNING: This function for use by system software only.

AlmInit

Prototype Err AlmInit (void)

WARNING: This function for use by system software only.
Developing Palm OS 2.0 Applications, Part II 47

Palm OS System Functions
Error Manager Functions
Error Manager Functions

ErrDisplay

Purpose Display an error alert if error checking is set to partial or full.

Prototype void ErrDisplay (char* message)

Parameters -> message Error message text.

Result No return value.

Comments Call this routine to display an error message, source code Þlename,
and line number. This routine is actually a macro that is compiled
into the code only if the compiler deÞne ERROR_CHECK_LEVEL is set
to 1 or 2 (ERROR_CHECK_PARTIAL or ERROR_CHECK_FULL).

See Also ErrFatalDisplayIf, ErrNonFatalDisplayIf, ÒUsing the
Error Manager Macros.Ó
48 Developing Palm OS 2.0 Applications, Part II

Palm OS System Functions
Error Manager Functions
ErrDisplayFileLineMsg

Purpose Display a nonexitable dialog with an error message. Do not allow
the user to continue.

Prototype void ErrDisplayFileLineMsg(CharPtr filename,
UInt lineno,
CharPtr msg)

Parameters filename Source code Þlename.

lineno Line number in the source code Þle.

msg Message to display.

Result Never returns.

Comment Called by ErrFatalDisplayIf and ErrNonFatalDisplayIf.
This function is useful when the application is already on the device
and being tested by users.

See Also ErrFatalDisplayIf, ErrNonFatalDisplayIf, ErrDisplay
Developing Palm OS 2.0 Applications, Part II 49

Palm OS System Functions
Error Manager Functions
ErrFatalDisplayIf

Purpose Display an error alert dialog if condition is TRUE and error check-
ing is set to partial or full.

Prototype void ErrFatalDisplayIf (Boolean condition,
char* message)

Parameters -> condition If TRUE, display the error.

-> message Error message text.

Result No return value.

Comments Call this routine to display a fatal error message, source code Þlena-
me, and line number. The alert is displayed only if condition is
TRUE. The dialog is cleared only when the user resets the system by
responding to the dialog.

This routine is actually a macro that is compiled into the code if the
compiler deÞne ERROR_CHECK_LEVEL is set to 1 or 2
(ERROR_CHECK_PARTIAL or ERROR_CHECK_FULL).

See Also ErrNonFatalDisplayIf, ErrDisplay, ÒUsing the Error
Manager Macros.Ó
50 Developing Palm OS 2.0 Applications, Part II

Palm OS System Functions
Error Manager Functions
ErrNonFatalDisplayIf

Purpose Display an error alert dialog if condition is TRUE and error check-
ing is set to full.

Prototype void ErrNonFatalDisplayIf (Boolean condition,
char* message)

Parameters -> condition If TRUE, display the error.

-> message Error message text.

Result No return value.

Comments Call this routine to display a nonfatal error message, source code
Þlename, and line number. The alert is displayed only if condition
is TRUE. The alert dialog is cleared when the user selects to continue
(or resets the system).

This routine is actually a macro that is compiled into the code only if
the compiler deÞne ERROR_CHECK_LEVEL is set to 2
(ERROR_CHECK_FULL).

See Also ErrFatalDisplayIf, ErrDisplay, ÒUsing the Error Manag-
er Macros.Ó
Developing Palm OS 2.0 Applications, Part II 51

Palm OS System Functions
Error Manager Functions
ErrThrow

Purpose Cause a jump to the nearest Catch block.

Prototype void ErrThrow (Long err)

Parameters err Error code.

Result Never returns.

Comments Use the macros ErrTry, ErrCatch, and ErrEndCatch in conjunc-
tion with this function.

See Also ErrFatalDisplayIf, ErrNonFatalDisplayIf, ErrDisplay,
ÒUsing the Error Manager Macros.Ó
52 Developing Palm OS 2.0 Applications, Part II

Palm OS System Functions
Event Manager Functions
Event Manager Functions

EvtAddEventToQueue

Purpose Add an event to the event queue.

Prototype void EvtAddEventToQueue (EventPtr event)

Parameters event Pointer to the structure that contains the event.

error Pointer to any error encountered by this function.

Result Returns nothing.

EvtAddUniqueEventToQueue

Purpose Look for an event in the event queue of the same event type and ID
(if speciÞed). The routine replaces it with the new event, if found.

¥ If no existing event is found, the new event is added.

¥ If an existing event is found, the routine proceeds as follows:

Ð if inPlace is TRUE,the existing event is replaced with the
new event

Ð if inPlace is FALSE, the existing event is removed and
the new event will be added to the end

Prototype void EvtAddUniqueEventToQueue
(EventPtr eventP,DWord id, Boolean inPlace)

Parameters eventP Pointer to the structure that contains the event

id ID of event. 0 means match only on the type.

inPlace If TRUE, existing event are replaced.
If FALSE, existing event is deleted and new event
added to end of queue.

Result Returns nothing.
Developing Palm OS 2.0 Applications, Part II 53

Palm OS System Functions
Event Manager Functions
EvtCopyEvent

Purpose Copy an event.

Prototype void EvtCopyEvent (EventPtr source, EventPtr dest)

Parameters source Pointer to the structure containing the event to copy.

dest Pointer to the structure to copy the event to.

Result Returns nothing.

EvtDequeuePenPoint

Purpose Get the next pen point out of the pen queue. This function is called
by recognizers.

Prototype Err EvtDequeuePenPoint(PointType* retP)

Parameters retP Return point.

Result Always returns 0.

Comments Called by a recognizer that wishes to extract the points of a stroke.
Returns the point (-1, -1) at the end of a stroke.

Before calling this routine, you must call
EvtDequeuePenStrokeInfo.

See Also EvtDequeuePenStrokeInfo
54 Developing Palm OS 2.0 Applications, Part II

Palm OS System Functions
Event Manager Functions
EvtDequeuePenStrokeInfo

Purpose Initiate the extraction of a stroke from the pen queue.

Prototype Err EvtDequeuePenStrokeInfo(PointType* startPtP,
 PointType* endPtP)

Parameters startPtP Start point returned here.

startPtP End point returned here.

Result Always returns 0.

Comments Called by the system function EvtGetSysEvent. This routine must
be called before EvtDequeuePenPoint is called.

Subsequent calls to EvtDequeuePenPoint return points at the
starting point in the stroke and including the end point. After the
end point is returned, the next call to EvtDequeuePenPoint re-
turns the point -1, -1.

See Also EvtDequeuePenPoint

EvtEnableGrafÞti

Purpose Set GrafÞti enabled or disabled.

Prototype void EvtEnableGraffiti (Boolean enable)

Parameters enable TRUE to enable Graffiti, FALSE to disable Graffiti.

Result Returns nothing.
Developing Palm OS 2.0 Applications, Part II 55

Palm OS System Functions
Event Manager Functions
EvtEnqueueKey

Purpose Place keys into the key queue.

Prototype Err EvtEnqueueKey (UInt ascii,
UInt keycode,
UInt modifiers)

Parameters ascii ASCII code of key.

keycode Virtual key code of key.

modifiers ModiÞers for key event.

Result Returns 0 if successful, or evtErrParamErr if an error occurs.

Comments Called by the keyboard interrupt routine and the GrafÞti and Soft-
Keys recognizers. Note that because both interrupt- and noninter-
rupt-level code can post keys into the queue, this routine disables
interrupts while the queue header is being modiÞed.

Most keys in the queue take only 1 byte if they have no modiÞers
and no virtual key code, and are 8-bit ASCII. If a key event in the
queue has modiÞers or is a non-standard ASCII code, it takes up to 7
bytes of storage and has the following format:

evtKeyStringEscape 1 byte

ASCII code 2 bytes

virtual key code 2 bytes

modiÞers 2 bytes
56 Developing Palm OS 2.0 Applications, Part II

Palm OS System Functions
Event Manager Functions
EvtEventAvail

Purpose Return TRUE if an event is available.

Prototype Boolean EvtEventAvail (void)

Parameters None

Result Returns TRUE if an event is available, FALSE otherwise.

EvtFlushKeyQueue

Purpose Flush all keys out of the key queue.

Prototype Err EvtFlushKeyQueue (void)

Parameters None.

Result Always returns 0.

Comments Called by the system function EvtSetPenQueuePtr.
Developing Palm OS 2.0 Applications, Part II 57

Palm OS System Functions
Event Manager Functions
EvtFlushNextPenStroke

Purpose Flush the next stroke out of the pen queue.

Prototype Err EvtFlushNextPenStroke (void)

Parameters None

Result Always returns 0.

Comments Called by recognizers that need only the start and end points of a
stroke. If a stroke has already been partially dequeued (by
EvtDequeuePenStrokeInfo) this routine Þnishes the stroke de-
queueing. Otherwise, this routine ßushes the next stroke in the
queue.

See Also EvtDequeuePenPoint

EvtFlushPenQueue

Purpose Flush all points out of the pen queue.

Prototype Err EvtFlushPenQueue (void)

Parameters None

Result Always returns 0.

Comment Called by the system function EvtSetKeyQueuePtr.

See Also EvtPenQueueSize
58 Developing Palm OS 2.0 Applications, Part II

Palm OS System Functions
Event Manager Functions
EvtGetEvent

Purpose Return the next available event.

Prototype void EvtGetEvent (EventPtr event, Long timeout)

Parameters event Pointer to the structure to hold the event returned.

timeout Maximum number of ticks to wait before an event is
returned (-1 means wait indeÞnitely).

Comments Pass timeout= -1 in most instances. When running on the device,
this makes the CPU go into doze mode until the user provides in-
put. For applications that do animation, pass timeout >= 0.

Result Returns nothing.

EvtGetPen

Purpose Return the current status of the pen.

Prototype void EvtGetPen(Sword *pScreenX,
Sword *pScreenY,
Boolean *pPenDown)

Parameters pScreenX x location relative to display.

pScreenY y location relative to display.

pPenDown TRUE or FALSE.

Result Returns nothing.

Comments Called by various UI routines.

See Also KeyCurrentState (documented in Developing Palm OS Applica-
tions, Part I)
Developing Palm OS 2.0 Applications, Part II 59

Palm OS System Functions
Event Manager Functions
EvtGetPenBtnList

Purpose Return a pointer to the silk-screen button array.

Prototype PenBtnInfoPtr asm
EvtGetPenBtnList(UIntPtr numButtons)

Parameters numButtons Pointer to the variable to contain the
number of buttons in the array.

Result Returns a pointer to the array.

Comments The array returned contains the bounds of each silk-screened button
and the ASCII code and modiÞers byte to generate for each button.

See Also EvtProcessSoftKeyStroke

EvtKeyQueueEmpty

Purpose Return TRUE if the key queue is currently empty.

Prototype Boolean EvtKeyQueueEmpty (void)

Parameters None.

Result Returns TRUE if the key queue is currently empty, otherwise returns
FALSE.

Comments Usually called by the key manager to determine if it should enqueue
auto-repeat keys.
60 Developing Palm OS 2.0 Applications, Part II

Palm OS System Functions
Event Manager Functions
EvtKeyQueueSize

Purpose Return the size of the current key queue in bytes.

Prototype ULong EvtKeyQueueSize (void)

Parameters None.

Result Returns size of queue in bytes.

Comments Called by applications that wish to see how large the current key
queue is.

EvtPenQueueSize

Purpose Return the size of the current pen queue in bytes.

Prototype ULong EvtPenQueueSize (void)

Parameters None.

Result Returns size of queue in bytes.

Comments Call this function to see how large the current pen queue is.
Developing Palm OS 2.0 Applications, Part II 61

Palm OS System Functions
Event Manager Functions
EvtProcessSoftKeyStroke

Purpose Translate a stroke in the system area of the digitizer and enqueue the
appropriate key events in to the key queue.

Prototype Err EvtProcessSoftKeyStroke(PointType* startPtP,
PointType* endPtP)

Parameters startPtP Start point of stroke.

endPtP End point of stroke.

Result Returns 0 if recognized, -1 if not recognized.

See Also EvtGetPenBtnList, GrfProcessStroke (documented in Devel-
oping Palm OS Applications, Part I)

EvtResetAutoOffTimer

Purpose Reset the auto-off timer to assure that the device doesnÕt automati-
cally power off during a long operation without user input (for ex-
ample, serial port activity).

Prototype Err EvtResetAutoOffTimer (void)

Parameters None.

Result Always returns 0.

Comments Called by SerialLinkMgr, Can be called periodically by other
managers.

See Also SysSetAutoOffTime
62 Developing Palm OS 2.0 Applications, Part II

Palm OS System Functions
Event Manager Functions
EvtSysEventAvail

Purpose Return TRUE if a low-level system event (such as a pen or key event)
is available.

Prototype Boolean EvtSysEventAvail(Boolean ignorePenUps)

Parameters ignorePenUps If TRUE, this routine ignores pen-up events
when determining if there are any system
events available.

Result Returns TRUE if a system event is available.

Comment Call EvtEventAvail to determine whether high-level software
events are available.

EvtWakeup

Purpose Force the event manager to wake up and send a nilEvent to the
current application. Events are documented in ÒDeveloping Palm OS
Applications, Part IÓ).

Prototype Err EvtWakeup (void)

Parameters None.

Result Always returns 0.

Comments Called by interrupt routines, like the sound manager and alarm
manager.
Developing Palm OS 2.0 Applications, Part II 63

Palm OS System Functions
Functions for System Use Only
Functions for System Use Only
EvtDequeueKeyEvent

Prototype Err EvtDequeueKeyEvent (EventPtr eventP)

WARNING: System Use Only!

EvtEnqueuePenPoint

Prototype Err EvtEnqueuePenPoint (PointType* ptP)

WARNING: System Use Only!

EvtGetSysEvent

Prototype void EvtGetSysEvent (EventPtr eventP,
Long timeout)

WARNING: System Use Only!

EvtInitialize

Prototype void EvtInitialize (void)

WARNING: System Use Only!

EvtSetKeyQueuePtr

Prototype Err EvtSetKeyQueuePtr (Ptr keyQueueP, ULong size)

WARNING: System Use Only!

EvtSetPenQueuePtr

Prototype Err EvtSetPenQueuePtr (Ptr penQueueP, ULong size)
64 Developing Palm OS 2.0 Applications, Part II

Palm OS System Functions
Functions for System Use Only
WARNING: System Use Only!

EvtSysInit

Prototype Err EvtSysInit (void)

WARNING: System Use Only!
Developing Palm OS 2.0 Applications, Part II 65

Palm OS System Functions
Feature Functions
Feature Functions

FtrGet

Purpose Get a feature.

Prototype Err FtrGet (DWord creator,
UInt featureNum,
DWordPtr valueP)

Parameters creator Creator type, should be same as the application
that owns this feature.

featureNum Feature number of the feature.

valueP Value of the feature is returned here.

Result Returns 0 if no error, or ftrErrNoSuchFtr or
ftrErrInternalError if an error occurs.

Comments The value of the feature is application-dependent.

See Also FtrSet
66 Developing Palm OS 2.0 Applications, Part II

Palm OS System Functions
Feature Functions
FtrGetByIndex

Purpose Get a feature by index.

Until the caller gets back ftrErrNoSuchFeature, it should pass
indices for each table (ROM, RAM) starting at 0 and incrementing .

Prototype Err FtrGetByIndex (UInt index,
Boolean romTable,
DWordPtr creatorP,
UIntPtr numP,
DWordPtr valueP)

Parameters index Index of feature.

romTable If TRUE, index into ROM table; otherwise,
index into RAM table.

creatorP Feature creator is returned here.

numP Feature number is returned here.

valueP Feature value is returned here.

Result Returns 0 if no error, or ftrErrInternalError or
ftrErrNoSuchFeature if an error occurs.

Comments This routine is normally only used by shell commands. Most appli-
cations donÕt need it.
Developing Palm OS 2.0 Applications, Part II 67

Palm OS System Functions
Feature Functions
FtrSet

Purpose Set a feature.

Prototype Err FtrSet (DWord creator,
UInt featureNum,
DWord newValue)

Parameters creator Creator type, should be same as the application
that owns this feature.

featureNum Feature number of the feature.

newValue New value.

Result Returns 0 if no error, or ftrErrNoSuchFeature,
memErrChunkLocked, memErrInvalidParam, or
memErrNotEnoughSpace if an error occurs.

Comments The value of the feature is application-dependent.

See Also FtrGet
68 Developing Palm OS 2.0 Applications, Part II

Palm OS System Functions
Feature Functions
FtrUnregister

Purpose Unregister a feature.

Prototype Err FtrUnregister (DWord creator,
UInt featureNum)

Parameters creator Creator type, should be same as the application
that owns the creator.

featureNum Feature number of the feature.

Result Returns 0 if no error, or ftrInternalError,
ftrErrNoSuchFeature, memErrChunkLocked,
memErrInvalidParam, or memErrNotEnoughSpace if an error oc-
curs.
Developing Palm OS 2.0 Applications, Part II 69

Palm OS System Functions
For System Use Only
For System Use Only
FtrInit

Prototype Err FtrInit (void)

WARNING: This function for System use only
70 Developing Palm OS 2.0 Applications, Part II

Palm OS System Functions
Find Functions
Find Functions

FindDrawHeader

Purpose Draw the header line that separates, by database, the list of found
items.

Prototype Boolean FindDrawHeader (FindParamsPtr params,
CharPtr title)

Parameters params Handle of FindParamsPtr.

title Description of the database (for example Memos).

Result Returns TRUE if Find screen is Þlled up. Applications should exit
from the search if this occurs.

FindGetLineBounds

Purpose Returns the bounds of the next available line for displaying a match
in the Find Results dialog.

Prototype void FindGetLineBounds (FindParamsPtr params,
RectanglePtr r)

Parameters params Handle of FindParamsPtr.

r Pointer to a structure to hold the bounds of the next
results line.

Result Returns nothing.
Developing Palm OS 2.0 Applications, Part II 71

Palm OS System Functions
Find Functions
FindSaveMatch

Purpose Saves the record and position within the record of a text search
match. This information is saved so that itÕs possible to later navi-
gate to the match.

Prototype void FindSaveMatch (FindParamsPtr params,
UInt recordNum,
Word pos,
UInt fieldNum,
DWord appCustom,
UInt dbCardNo,
LocalID rdbID)

Parameters params Handle of FindParamsPtr.

recordNum Record index.

pos Offset of the match string from start of record.

appCustom Extra data the application can save with a match.

dbCardNo Card number of the database that contains the match.

rdbID Local ID of the database that contains the match.

Result Returns TRUE if the maximum number of displayable items has
been exceeded

Comments Called by application code when it gets a match.

FindStrInStr

Purpose Perform a case-blind partial word search for a string in another
string. This function assumes that the string to Þnd is in lower-case
characters.

Prototype void FindStrInStr(CharPtr strToSearch,
CharPtr strToFind,
72 Developing Palm OS 2.0 Applications, Part II

Palm OS System Functions
Find Functions
WordPtr posP)

Parameters strToSearch String to search.

strToFind Converted, caseless version of the ASCII text
 string to be found.

posP Pointer to offset in search string of the match.

Result Returns TRUE if the string was found.

Comment To convert a standard ASCII, null-terminated text string into the ap-
propriate format for strToFind, use the conversion table returned
by GetCharCaselessValue in code similar to the following:

CharPtr origStr;
/* Standard null-terminated ascii string */

CharPtr strToFind;
/* Converted string to be passed to */
/* FindStrInStr */

BytePtr convTab;
/* Conversion table returned from */
/* GetCharCaselessValue*/

int i;
convTab = GetCharCaselessValue();
for (i=0; origStr[i] != 0; i++)
 {
 strToFind[i] = convTab[origStr[i]];
 }
strToFind[i] = 0;

/* Now pass strToFind to FindStrInStr...*/

Note that the strToFind element of the parameter block passed by
the systemÕs Find utility is preconverted, so it can be passed straight
through to FindStrInStr, just as in the example in the tutorial.

See Also GetCharCaselessValue (documented in ÒDeveloping Palm OS Ap-
plications, Part I)
Developing Palm OS 2.0 Applications, Part II 73

Palm OS System Functions
Float Manager Functions
Float Manager Functions
Palm OS 2.0 implements ßoating point arithmetic differently than in
Palm OS 1.0 did. The new ßoating-point library provides 32-bit and
64-bit ßoating point arithmethic.

Using the New Floating Point Arithmetic
To take advantage of the new ßoating-point arithmetic, applications
can now use the mathematical symbols + Ð * /instead of using func-
tions like FlpAdd, FlpSubstract, etc.

When compiling the application, you then have to link in the new li-
brary under certain circumstances. Choose from one of these op-
tions:

¥ Simulator application or application for 1.0 device Ñ link in
the new ßoating point library explicitly.

This library adds approximately 8KB to the size of your prc
Þle. The new library provides 32-bit and 64-bit ßoating-point
arithmetic. The original Palm OS Fpl functions only provided
16-bit ßoating-point arithmetic. Linking in the library explic-
itly wonÕt cause problems when you complile for a 2.0 de-
vice.

¥ 2.0 Palm OS deviceÑItÕs not necessary to link in the library.

The compiler generates trap calls to equivalent ßoating-point
functionality in the system ROM.

There are control panel settings in the IDE which let you select the
appropriate ßoating-point model.

Floating-point functionality is identical in either method.

Using 1.0 Floating-Point Functionality
The original Fpl calls (documented in this section) are still available.
They may be useful for applications that donÕt need high precision,
donÕt want to incur the size penalty of new ßoat library,want to run
on 1.0 device. To get 1.0 behavior, use the 1.0 calls (FplAdd, etc) and
donÕt link in the library.
74 Developing Palm OS 2.0 Applications, Part II

Palm OS System Functions
Float Manager Functions
FplAdd

Purpose Add two ßoating-point numbers (returns a + b).

Prototype FloatType FplAdd (FloatType a, FloatType b)

Parameters a, b The ßoating-point numbers.

 Result Returns the normalized ßoating-point result of the addition.

Comment Under Palm OS 2.0, most applications will want to use the arith-
metic symbols instead. See Using the New Floating Point Arith-
metic.

FplAToF

Purpose Convert a zero-terminated ASCII string to a ßoating-point number.
The string must be in the format : [-]x[.]yyyyyyyy[e[-]zz]

Prototype FloatType FplAToF (char* s)

Parameters s Pointer to the ASCII string.

 Result Returns the ßoating-point number.

Comment The mantissa of the number is limited to 32 bits.

See Also FplFToA

FplBase10Info

Purpose Extract detailed information on the base 10 form of a ßoating-point
number: the base 10 mantissa, exponent, and sign.
Developing Palm OS 2.0 Applications, Part II 75

Palm OS System Functions
Float Manager Functions
Prototype Err FplBase10Info (FloatType a,
ULong* mantissaP,
Int* exponentP,
Int* signP)

Parameters a The ßoating-point number.

mantissaP The base 10 mantissa (return value).

exponentP The base 10 exponent (return value).

signP The sign, 1 or -1 (return value).

Result Returns an error code, or 0 if no error.

Comments The mantissa is normalized so it contains at least
kMaxSignificantDigits significant digits when printed as an in-
teger value.

FlpBase10Info reports that zero is "negative"; that is, it returns a
one for xSign. If this is a problem, a simple workaround is:
 if (xMantissa == 0) {
 xSign = 0;

FplDiv

Purpose Divide two ßoating-point numbers (result = dividend/divisor).

Prototype FloatType FplDiv (FloatType dividend,
FloatType divisor)

Parameters dividend Floating-point dividend.

divisor Floating-point divisor.

 Result Returns the normalized ßoating-point result of the division.

Under Palm OS 2.0, most applications will want to use the arith-
metic symbols instead. See Using the New Floating Point Arith-
metic.
76 Developing Palm OS 2.0 Applications, Part II

Palm OS System Functions
Float Manager Functions
FplFloatToLong

Purpose Convert a ßoating-point number to a long integer.

Prototype Long FplFloatToLong (FloatType f)

Parameters f Floating-point number to be converted.

 Result Returns the long integer.

See Also FplLongToFloat, FplFloatToULong

FplFloatToULong

Purpose Convert a ßoating-point number to an unsigned long integer.

Prototype ULong FplFloatToULong (FloatType f)

Parameters f Floating-point number to be converted.

 Result Returns an unsigned long integer.

See Also FplLongToFloat, FplFloatToLong
Developing Palm OS 2.0 Applications, Part II 77

Palm OS System Functions
Float Manager Functions
FplFree

Purpose Release all memory allocated by the ßoating-point initialization.

 Prototype void FplFree()

Parameters None.

Result Returns nothing.

Comments Applications must call this routine after theyÕve called other func-
tions that are part of the ßoat manager.

See Also FplInit

FplFToA

Purpose Convert a ßoating-point number to a zero-terminated ASCII string
in exponential format : [-]x.yyyyyyyye[-]zz

Prototype Err FplFToA (FloatType a, char* s)

Parameters a Floating-point number.

s Pointer to buffer to contain the ASCII string.

Result Returns an error code, or 0 if no error.

See Also FplAToF
78 Developing Palm OS 2.0 Applications, Part II

Palm OS System Functions
Float Manager Functions
FplInit

Purpose Initialize the ßoating-point conversion routines.

Allocate space in the system heap for ßoating-point globals.

Initialize the tenPowers array in the globals area to the powers of
10 from -99 to +99 in ßoating-point format.

Prototype Err FplInit()

Parameters None.

Result Returns an error code, or 0 if no error.

Comments Applications must call this routine before calling any other fpl
function.

See Also FplFree

FplLongToFloat

Purpose Convert a long integer to a ßoating-point number.

Prototype FloatType FplLongToFloat (Long x)

Parameters x A long integer.

 Result Returns the ßoating-point number.
Developing Palm OS 2.0 Applications, Part II 79

Palm OS System Functions
Float Manager Functions
FplMul

Purpose Multiply two ßoating-point numbers.

Prototype FloatType FplMul (FloatType a, FloatType b)

Parameters a, b The ßoating-point numbers.

 Result Returns the normalized ßoating-point result of the multiplication.

Comment Under Palm OS 2.0, most applications will want to use the arith-
metic symbols instead. See Using the New Floating Point Arith-
metic.

FplSub

Purpose Subtract two ßoating-point numbers (returns a - b).

Prototype FloatType FplSub (FloatType a, FloatType b)

Parameters a, b The ßoating-point numbers.

 Result Returns the normalized ßoating-point result of the subtraction.

Comment Under Palm OS 2.0, most applications will want to use the arith-
metic symbols instead. See Using the New Floating Point Arith-
metic.
80 Developing Palm OS 2.0 Applications, Part II

Miscellaneous System Functions

CmBroadcast

Purpose Initiate connection establishment by broadcasting the ÒwakeupÓ
packet.

Prototype Err CmBroadcast (CmParamPtr paramP)

Parameters paramP Pointer to Connection Manager parameters

Result 0 on success; otherwise: cmErrParam, cmErrMemory,
cmErrTimedOut, cmErrComm, cmErrCommBusy, cmErrUserCan,
cmErrCommVersion

Crc16CalcBlock

Purpose Calculate the 16-bit CRC of a data block using the table lookup
method.

Prototype Word Crc16CalcBlock (VoidPtr bufP,
UInt count,
Word crc)

Parameters bufP Pointer to the data buffer.

count Number of bytes in the buffer.

crc Seed crc value.

Result A 16-bit CRC for the data buffer.

MdmDial

Purpose Initialize the modem, dial the phone number and wait for result.

When executing this function, the system goes through these steps:

¥ Switch to the requested initial baud rate.
Developing Palm OS 2.0 Applications, Part II 81

Miscellaneous System Functions
¥ If HW hand-shake is requested, enable CTS/RTS hand-shak-
ing; otherwise, disable it.

¥ Reset the modem.

¥ Execute the setup string (if any).

¥ ConÞgure the modem with required settings;

¥ Dial the phone number.

¥ Wait for CONNECT XXXXX or other response.

¥ If auto-baud is requested, switch to the connected baud rate.

Prototype Err MdmDial (MdmInfoPtr modemP,
CharPtr okDialP,
CharPtr setupP,
CharPtr phoneNumP)

Parameters modemP Pointer to modem info structure (Þlled in by caller)

okDialP (NOT IMPLEMENTED) Pointer to string of chars
allowed in dial string

setupP Pointer to modem setup string without the AT preÞx.

phoneNumP Pointer to phone number string

Result 0 if successful; otherwise mdmErrNoTone, mdmErrNoDCD,
mdmErrBusy, mdmErrUserCan, mdmErrCmdError
82 Developing Palm OS 2.0 Applications, Part II

Miscellaneous System Functions
MdmHangUp

Purpose Hang up the modem.

Prototype Err MdmHangUp (MdmInfoPtr modemP)

Parameters modemP Pointer to modem info structure (Þlled in by caller)

Result 0 if successful;

Warning: This function alters configuration of the serial port
(without restoring it).

PhoneNumberLookup

Purpose This routine called the Address Book application to lookup a phone
number. See the phonelookup.c example program for more infor-
mation.

Prototype void PhoneNumberLookup (FieldPtr fld)

Parameters fld Field object in which the text to match is found.

Comments When trying to match a Þeld, this function Þrst tries to match select-
ed text.

¥ If there is some selected text, the function replaces it with the
phone number if there is a match.

¥ If there is no selected text, the function replaces the text in
which the insertion point is with the phone number if there is
a match.

¥ If there is no match, the function displays the Address Book
short list.

Result Nothing returned; itÕs locked.
Developing Palm OS 2.0 Applications, Part II 83

Miscellaneous System Functions
ResLoadForm

Purpose Copy and initialize a form resource. The structures are complete ex-
cept pointers updating. Pointers are stored as offsets from the begin-
ning of the form.

Prototype void* ResLoadForm (Word rscID)

Parameters rscID The resource ID of the form.

Result The handle of the memory block that the form is in, since the form
structure begins with the WindowType structure, this is also a
WindowHandle.

ResLoadMenu

Purpose Copy and initialize a menu resource. The structures are complete
except pointers updating. Pointers are stored as offsets from the be-
ginning of the menu.

Prototype VoidPtr ResLoadMenu (Word rscID)

Parameters rscID The resource ID of the menu.

Result The handle of the memory block that the form is in, since the form
structure begins with the WindowType structure this is also a Win-
dowHandle.
84 Developing Palm OS 2.0 Applications, Part II

System Preferences Functions

PrefGetAppPreferences

Purpose Return a copy of an applicationÕs preferences. Sometimes, for vari-
able length resources, this routine is called twice:

¥ Once with a NULL pointer and size of zero to Þnd out how
many bytes need to be read.

¥ A second time with an allocated buffer allocated of the cor-
rect size. Note that the application should always check that
the return value is greater than or equal to prefsSize.

Prototype SWord PrefGetAppPreferences (DWord creator,
Word id,
VoidPtr prefs,
Word *prefsSize,
Boolean saved)

Parameters creator Application creator.

id ID number (lets an application have multiple
preferences).

prefs Pointer to a buffer to hold preferences.

prefsSize Pointer to size the buffer passed.

saved If TRUE, retrieve the saved preferences. If FALSE,
retrieve the current preferences.

Result Returns the constant noPreferenceFound if the preference re-
source wasnÕt found.

If the preference resource was found, the application should check
that the value in prefsSize is equal or less than the return value. If
itÕs greater than the size passed, then some bytes were not retrieved.

See Also PrefSetPreferences, PrefGetAppPreferencesV10
Developing Palm OS 2.0 Applications, Part II 85

System Preferences Functions
PrefGetAppPreferencesV10

Purpose Return a copy of an applicationÕs preferences.

Prototype Boolean PrefGetAppPreferencesV10 (ULong type,
Int version,
VoidPtr prefs,
Word prefsSize)

Parameters type Application creator type.

version Version number of the application.

prefs Pointer to a buffer to hold preferences.

prefsSize Size of the buffer passed.

Result Returns FALSE if the preference resource was not found or the pref-
erence resource contains the wrong version number.

Comments The content and format of an application preference is application-
dependent.

See Also PrefSetPreferences, PrefGetAppPreferences
86 Developing Palm OS 2.0 Applications, Part II

System Preferences Functions
PrefGetPreference

Purpose Return a system preference. Use this instead of PrefGetPrefer-
ences.

Prototype DWord PrefGetPreference(
SystemPreferencesChoice choice)

Parameters System preference choice; see Preferences.h for available op-
tions.

Comment This function replaces the 1.0 function PrefGetPreferences.
While PrefGetPreferences only let you retrieve the whole sys-
tem preferences structure, this function lets you specify which pref-
erences to retrieve. You can also choose among different preferences
using an ID, or choose to access the saved or unsaved preferences.

Result Returns the system preference.

See Also PrefSetPreferences, PrefGetAppPreferences,
PrefGetAppPreferencesV10
Developing Palm OS 2.0 Applications, Part II 87

System Preferences Functions
PrefGetPreferences

Purpose Return a copy of the system preferences.

Prototype void PrefGetPreferences (SystemPreferencesPtr p)

Parameters p Pointer to system preferences.

Result Returns nothing. Stores the system preferences in p.

Comments The p parameter points to a memory block allocated by the caller
that is Þlled in by this function.

This function is often called in StartApplication to get localized
settings.

See Also PrefSetPreferences

PrefOpenPreferenceDBV10

Purpose Return a handle to the system preference database.

Prototype DmOpenRef PrefOpenPreferenceDBV10 (void)

Parameters Nothing.

Result Returns the handle, or 0 if an error results.

Note This function is system use only in Palm OS 2.0.

See Also PrefGetPreferences, PrefSetPreferences
88 Developing Palm OS 2.0 Applications, Part II

System Preferences Functions
PrefSetAppPreferences

Purpose Set an applicationÕs preferences in the preferences database.

Prototype void PrefSetAppPreferences (DWord creator,
Word id,
SWord version,
VoidPtr prefs,
Word prefsSize,
Boolean saved)

Parameters creator Application creator type.

id Resource ID (usually 0).

version Version number of the application.

prefs Pointer to a buffer that holds preferences.

prefsSize Size of the buffer passed.

saved If TRUE, set the saved preferences. If not, set the
current preferences.

Result Nothing.

Note Unless you really want to set all preferences, use
PrefSetAppPreference instead.

See Also PrefSetAppPreferencesV10

PrefSetAppPreferencesV10

Purpose Save an applicationÕs preferences in the preferences database.

Prototype void PrefSetAppPreferencesV10 (ULong type,
Int version,
VoidPtr prefs,
Word prefsSize)
Developing Palm OS 2.0 Applications, Part II 89

System Preferences Functions
Parameters type Application creator type.

version Version number of the application.

prefs Pointer to a buffer holding preferences.

prefsSize Size of the buffer passed.

Result Nothing.

Comments The content and format of an application preference is application-
dependent.

See Also PrefSetAppPreferences, PrefGetPreferences

PrefSetPreference

Purpose Set a system preference. Using this function instead of
PrefSetPreferences allows you to set selected preferences with-
out having to access the whole structure.

Prototype void PrefSetPreference(
SystemPreferencesChoice choice,
DWord value)

Parameters choice A SystemPreferencesChoice (see Preferences.h)

value Value to assign to the item in
SystemPreferencesChoice.

Result Returns nothing. Changes the value of the system preference.
90 Developing Palm OS 2.0 Applications, Part II

System Preferences Functions
PrefSetPreferences

Purpose Set the system preferences.

Prototype void PrefSetPreferences (SystemPreferencesPtr p)

Parameters p Pointer to system preferences.

Result Returns nothing.

Comment Unless thereÕs a reason for you to access the whole preferences
structure, call PrefSetPreference instead.

See Also PrefGetPreferences
Developing Palm OS 2.0 Applications, Part II 91

Password Functions
Password Functions

PwdExists

Purpose Return TRUE if the system password is set.

Prototype Boolean PwdExists()

Parameters None

Result Returns TRUE if the system password is set.

PwdRemove

Purpose Remove the encrypted password string and recover data hidden in
databases.

Prototype extern void PwdRemove()

Parameters None

Result Returns nothing
92 Developing Palm OS 2.0 Applications, Part II

Password Functions
PwdSet

 Purpose Use a passed string as the new password. The password is stored in
an encrypted form.

Prototype void PwdSet (CharPtr oldPassword,
CharPtr newPassword)

Parameters oldPassword The old password must be successfully
veriÞed or the new password isnÕt accepted

newPassword CharPtr to a string to use as the password.
NULL means no password.

Result Returns nothing

PwdVerify

Purpose Verify that the string passed matches the system password.

Prototype Boolean PwdVerify (CharPtr string)

Parameters string String to compare to the system password.
NULL means no current password.

Result Returns TRUE if the string matches the system password.
Developing Palm OS 2.0 Applications, Part II 93

String Manager Functions
String Manager Functions

StrAToI

Purpose Convert a string to an integer.

Prototype Int StrAToI (CharPtr str)

Parameters str String to convert.

Result Returns the integer.

Comments Use this function instead of the standard atoi routine.

StrCat

Purpose Concatenate one string to another.

Prototype CharPtr StrCat (CharPtr dst, CharPtr src)

Parameters dst Destination string pointer.

src Source string pointer.

Result Returns a pointer to the destination string.

Comments Use this function instead of the standard strcat routine.
94 Developing Palm OS 2.0 Applications, Part II

String Manager Functions
StrCaselessCompare

Purpose Compare two strings with case and accent insensitivity.

Prototype Int StrCaselessCompare (CharPtr s1, CharPtr s2)

Parameters Two string pointers.

Result Returns 0 if the two strings match, or non-zero if they donÕt.

Comments Use this function instead of the standard stricmp routine. Use it to
Þnd strings but not sort them because it ignores case and accents.

See Also StrCompare

StrChr

Purpose Look for a character within a string.

Prototype CharPtr StrChr (CharPtr str, Int chr)

Parameters str String to search.

chr Character to search for.

Result Returns a pointer to the Þrst occurrence of character in str, or NULL
if not found.

Comments Use this function instead of the standard strchr routine.

This routine does not correctly Þnd a Ô\0Õ character.

See Also StrStr
Developing Palm OS 2.0 Applications, Part II 95

String Manager Functions
StrCompare

Purpose Compare two strings.

Prototype Int StrCompare (CharPtr s1, CharPtr s2)

Parameters s1, s2 Two string pointers.

Result Returns 0 if the strings match.

Returns a positive number if s1 > s2.

Returns a negative number if s1 < s2.

Comments This function is case sensitive. Use it to sort strings but not to Þnd
them.

Use this function instead of the standard strcmp routine.

See Also StrCaselessCompare

StrCopy

Purpose Copy one string to another.

Prototype CharPtr StrCopy (CharPtr dst, CharPtr src)

Parameters s1, s2 Two string pointers.

Result Returns a pointer to the destination string.

Comments Use this function instead of the standard strcpy routine.

This function does not return overlapping strings.
96 Developing Palm OS 2.0 Applications, Part II

String Manager Functions
StrDelocalizeNumber

Purpose Delocalize a number passed in as a string. Convert the number from
any localized notation to US notation (decimal point and thou-
sandth comma). The current thousand and decimal separators have
to be passed in.

Prototype CharPtr StrDelocalizeNumber(
CharPtr s,
Char thousandSeparator,
Char decimalSeparator)

Parameters s Pointer to the number ASCII string.

thousandSeparator Current thousand separator.

decimalSeparator Current decimal separator.

Result Returns a pointer to the changed number and modiÞes the string in
s.

See Also StrLocalizeNumber, LocGetNumberSeparators (documented
in ÒDevelping Palm OS Applications, Part IÓ)

StrIToA

Purpose Convert an integer to ASCII.

Prototype CharPtr StrIToA (CharPtr s, Long i)

Parameters s String pointer to store results.

i Integer to convert.

Result Returns a pointer to the result string.

See Also StrAToI, StrIToH
Developing Palm OS 2.0 Applications, Part II 97

String Manager Functions
StrIToH

Purpose Convert an integer to hexadecimal ASCII.

Prototype CharPtr StrIToH (CharPtr s, ULong i)

Parameters s String pointer to store results.

i Integer to convert.

Result Returns the string pointer s.

See Also StrIToA

StrLen

Purpose Compute the length of a string.

Prototype UInt StrLen (CharPtr src)

Parameters src String pointer

Result Returns the length of the string.

Comments Use this function instead of the standard strlen routine.
98 Developing Palm OS 2.0 Applications, Part II

String Manager Functions
StrLocalizeNumber

Purpose Convert a number (passed in as a string) to localized format, using a
speciÞed thousandSeparator and decimalSeparator.

Prototype void LocalizeNumber(CharPtr s,
Char thousandSeparator,
Char decimalSeparator)

Parameters s Number ASCII string to localize

thousandSeparator Localized thousand separator.

decimalSeparator Localized decimal separator.

Result Returns nothing. Converts the number string in s.

See Also StrDelocalizeNumber

StrNCaselessCompare

Purpose Compares two strings out to N characters with case and accent in-
sensitivity.

Prototype Int StrNCaselessCompare(const Char* s1,
const Char* s2,
DWord n)

Parameters s1 Pointer to Þrst string.

s2 Pointer to second string.

n Number of characters to compare.

Result 0 if they match, non-zero if not: positive if s1 > s2, negative if s1 < s2

See Also StrNCompare
Developing Palm OS 2.0 Applications, Part II 99

String Manager Functions
StrNCat

Purpose Concatenates 1 string to another clipping the destination string to a
max of N characters (including null at end).

Prototype CharPtr StrNCat(CharPtr dstP,
const Char* srcP,
Word n)

Parameters dstP Pointer to destination string.

srcP Pointer to source string.

n Maximum number of characters for dstP.

Result Returns a pointer to the destination string.

StrNCompare

Purpose Compare two strings out to N characters. This function is case and
accent sensitive.

Prototype Int StrNCompare(const Char* s1,
const Char* s2,
DWord n)

Parameters s1 Pointer to Þrst string.

s2 Pointer to second string.

n Number of characters to compare.

Result Returns 0 if the strings match, non-zero if they donÕt match. In that
case:

+ if s1 > s2

- if s1 < s2

See Also StrNCaselessCompare
100 Developing Palm OS 2.0 Applications, Part II

String Manager Functions
StrNCopy

Purpose Copies up to N characters from str string to dst string. Terminates
dst string at index N-1 if src string length was N-1 or less.

Prototype CharPtr StrNCopy(CharPtr dstP,
const Char* srcP,
Word n)

Parameters dstP Destination string.

srcP Source string.

n Maximum number of bytes to copy from src string.

Result Returns a pointer to destination string

StrPrintF

Purpose Implements a subset of the ANSI C sprintf() call.

Currently, only %d, %i, %u, %x and %s are implemented and donÕt ac-
cept Þeld length or format speciÞcations except for the l (long) mod-
iÞer.

Prototype SWord StrPrintF(CharPtr s,
const Char* formatStr,
...)

Parameters s Destination string

formatStr Format string.

 * ... Arguments for format string.

Result Number of characters written to destination string.

See Also StrVPrintF
Developing Palm OS 2.0 Applications, Part II 101

String Manager Functions
StrStr

Purpose Look for a substring within a string.

Prototype CharPtr StrStr (CharPtr str, CharPtr token)

Parameters str String to search.

token String to search for.

Result Returns a pointer to the Þrst occurrence of token in str, or NULL if
not found.

Comments Use this function instead of the standard strstr routine.

See Also StrChr

StrToLower

Purpose Convert all the characters in a string to lowercase.

Prototype CharPtr StrToLower (CharPtr dst, CharPtr src)

Parameters dst, src Two string pointers.

Result Returns a pointer to the destination string.

Comments This function doesnÕt convert accented characters.

StrVPrintF

Purpose Implements a subset of the ANSI C vsprintf() call.

Currently, only %d, %i, %u, %x and %s are implemented and donÕt ac-
cept Þeld length or format speciÞcations except for the l (long) mod-
iÞer.
102 Developing Palm OS 2.0 Applications, Part II

String Manager Functions
Prototype SWord StrVPrintF(CharPtr s,
const Char* formatStr,
VoidPtr argParam)

Parameters s Destination string.

formatStr Format string.

argParam Pointer to argument list.

Result Returns the number of characters written to destination string.

Example HereÕs an example of how to use this call:
#include <stdarg.h>
void MyPrintF(CharPtr s, CharPtr formatStr, ...)
{

va_list args;
Char text[0x100];
va_start(args, formatStr);
StrVPrintF(text, formatStr, args);
va_end(args);
MyPutS(text);

}

See Also StrPrintF
Developing Palm OS 2.0 Applications, Part II 103

String Manager Functions
104 Developing Palm OS 2.0 Applications, Part II

Sound Manager Functions

SndDoCmd

Purpose Send a sound manager command to a speciÞed sound channel.

Prototype Err SndDoCmd (VoidPtr chanP,
 SndCommandPtr cmdP,
 Boolean noWait)

Parameters -> chanP Pointer to sound channel. Present implementation
doesnÕt support multiple channels. Must be zero.

-> cmdP Pointer to a SndCommandType structure which
contains command parameters.

-> noWait 0 = await completion
!0 = immediate return (asynchronous)
asynchronous mode is not presently supported.

Note Passing NIL for the channel pointer causes the command to be sent
to the shared sound channel. This is currently the only option.

Result 0 No error.

sndErrBadParam Invalid parameter.

sndErrBadChannel Invalid channel pointer.

sndErrQFull Sound queue is full.
Developing Palm OS 2.0 Applications, Part II 105

Sound Manager Functions
SndGetDefaultVolume

Purpose Return default sound volume levels.

Prototype void SndGetDefaultVolume (UIntPtr alarmAmpP,
 UIntPtr sysAmpP,
 UIntPtr defAmpP)

Parameters <->alarmAmpP Pointer to storage for alarm amplitude.

<-> sysAmpP Pointer to storage for system sound amplitude.

<-> defAmpP Pointer to storage for master amplitude.

Result Returns nothing.

Comments Any pointer arguments may be passed as NULL. In that case, the cor-
responding setting is not returned.

SndPlaySystemSound

Purpose Play a standard system sound.

Prototype void SndPlaySystemSound (SndSysBeepType beepID)

Parameters -> beepID System sound to play.

Comment The SndSysBeepType enum is deÞned in SoundManager.h as fol-
lows:
typedef enum SndSysBeepType {

sndInfo = 1,
sndWarning,
sndError,
sndStartUp,
sndAlarm,
sndConfirmation,
106 Developing Palm OS 2.0 Applications, Part II

Sound Manager Functions
sndClick
} SndSysBeepType;

Result Returns nothing.

SndSetDefaultVolume

Purpose Set the default sound volume levels.

Prototype void SndSetDefaultVolume (UIntPtr alarmAmpP,
UIntPtr sysAmpP,
UIntPtr defAmpP)

Parameters -> alarmAmpP Pointer to alarm amplitude (0-sndMaxAmp).

-> sysAmpP Pointer to system sound amplitude
(0-sndMaxAmp).

-> defAmpP Pointer to master amplitude (0-sndMaxAmp).

Result Returns nothing.

Comments Any pointer arguments may be passed as NULL. In that case, the cor-
responding setting is not affected.

All sound amplitudes greater than 0 are currently played as
MaxVolume.

Functions for System Use Only

SndInit

Prototype Err SndInit(void)

WARNING: This function for use by system software only.
Developing Palm OS 2.0 Applications, Part II 107

System Functions
System Functions

SysAppLaunch

Purpose Launch the speciÞed application with the given command line argu-
ments, given a card number and database ID of an application re-
source database.

Prototype Err SysAppLaunch(UInt cardNo, LocalID dbID,
UInt launchFlags, Word cmd,
Ptr cmdPBP, DWord* resultP)

Parameters cardNo, dbID cardNo and dbID identify the application.

launchFlags Set to 0.

cmd Launch code.

cmdPBP Launch code parameter block.

resultP Pointer to whatÕs returned by the applicationÕs
PilotMain routine.

Result Returns 0 if no error, or one of sysErrParamErr,
memErrNotEnoughSpace, sysErrOutOfOwnerIDs.

Comments Launching an application with all launch bits cleared makes the ap-
plication a subroutine call from the point of view of the caller.

See Also SysBroadcastActionCode, SysUIAppSwitch,
SysCurAppDatabase
108 Developing Palm OS 2.0 Applications, Part II

System Functions
SysAppLauncherDialog

Purpose Display the launcher, get a choice, ask the system to launch the se-
lected application, clean up, and leave. If there are no applications to
launch, nothing happens.

Prototype void SysAppLauncherDialog()

Parameters None.

Result The system may be asked to launch an application.

SysBatteryInfo

Purpose Retrieve settings for the batteries. Set set to FALSE to retrieve bat-
tery settings. (Applications should not change any of the settings).

Warning: Use this function only to retrieve settings!

Prototype UInt SysBatteryInfo(Boolean set,
UIntPtr warnThresholdP,
UIntPtr criticalThresholdP,
UIntPtr maxTicksP,
SysBatteryKind* kindP,
Boolean* pluggedIn)

Parameters set If FALSE, parameters with non-nil pointers are
retrieved. Never set this parameter to TRUE.

warnThresholdP Pointer to battery voltage warning threshold
in volts*100, or nil.

criticalThresholdP
Pointer to the battery voltage critical threshold
in volts*100, or nil.

maxTicksP Pointer to the battery timeout, or nil.
Developing Palm OS 2.0 Applications, Part II 109

System Functions
kindP Pointer to the battery kind, or nil.

pluggedIn Pointer to pluggedIn return value, or nil.

Result Returns the current battery voltage in volts*100.

Comments Call this function to make sure an upcoming activity wonÕt be inter-
rupted by a low battery warning.

warnThresholdP and maxTicksP are the battery-warning voltage
threshold and time out. If the battery voltage falls below the thresh-
old, or the timeout expires, a lowBatteryChr key event is put on
the queue. Normally, applications call SysHandleEvent which
calls SysBatteryWarningDialog in response to this event.

criticalThresholdP is the battery voltage threshold. If battery
voltage falls below this level, the system turns itself off without
warning and doesnÕt turn on until battery voltage is above it again.

SysBinarySearch

Purpose Search elements in an array according to the passed comparison
function. Only elements which are out of order move. Moved ele-
ments are moved to the end of the range of equal elements. Use the
quick sort if you need to sort many elements.

This function uses the following insertion sort algorithm: Starting
with the second element, each element is compared to the preceding
element. Each element not greater than the last is inserted into sort-
ed position within those already sorted. A binary insertion is per-
formed. A moved element is inserted after any other equal ele-
ments.

Prototype Boolean SysBinarySearch (
VoidPtr baseP, Int numOfElements,
Int width, SearchFuncPtr searchF,
const VoidPtr searchData,const Long other,
ULongPtr position, Boolean findFirst)

Parameters baseP Base pointer to an array of elements,
110 Developing Palm OS 2.0 Applications, Part II

System Functions
numOfElements Number of elements to sort (must be at least 2),

width Width of an element comparison function.

searchF Search function.

searchData Search data.

other Other data passed to the comparison function.

position Pointer to the position result.

findFirst If set to TRUE, the Þrst matching element is
returned (only needed if the array contains
nonunique data).

Result Returns TRUE if an exact match was found at the position in the da-
tabase where the element should be located. FALSE otherwise.

SysBroadcastActionCode

Purpose Send the speciÞed action code (launch code) and parameter block
to the latest version of every UI application.

Prototype Err SysBroadcastActionCode (Word cmd, Ptr cmdPBP)

Parameters cmd Action code to send.

cmdPBP Action code parameter block to send.

Result Returns 0 if no error, or one of the following errors:
sysErrParamErr, memErrNotEnoughSpace,
sysErrOutOfOwnerIDs.

Comment Launch codes are discussed in some detail in Chapter 2 of Develop-
ing Palm OS Applications, Part I.

See Also SysAppLaunch
Developing Palm OS 2.0 Applications, Part II 111

System Functions
SysCopyStringResource

Purpose Copy a resource string to a passed string.

Prototype void SysCopyStringResource (CharPtr string,
UInt theID)

Parameters string String to copy the resource string to.

theID Resource string ID.

Result Stores a copy of the resource string in string.

SysCreateDataBaseList

Purpose Generate a list of databases found on the memory cards matching a
speciÞc type and return the result. If lookupName is true then a
name in a tAIN resource is used instead of the databaseÕs name and
the list is sorted. Only the last version of a database is returned. Da-
tabases with multiple versions are listed only once.

Prototype Boolean SysCreateDataBaseList(ULong type,
 ULong creator,

WordPtr dbCount,
Handle *dbIDs,
Boolean lookupName)

Parameters type Type of database to Þnd (0 for wildcard).

creator Creator of database to Þnd (0 for wildcard).

dbCount Pointer to contain count of matching databases.

dbIDs Pointer to handle allocated to contain the
database list.

lookupName Use tAIN names and sort the list.
112 Developing Palm OS 2.0 Applications, Part II

System Functions
Result Returns FALSE if no panels were found, TRUE if panels were found.
dbCount is updated to the number of databases found; dbIDs is
updated to the list of matching databases found.

SysCreatePanelList

Purpose Generate a list of panels found on the memory cards and return the
result. Multiple versions of a panel are listed once.

Prototype Boolean SysCreatePanelList(
WordPtr panelCount,
Handle *panelIDs)

Parameters panelCountPointer to set to the number of panels.

panelIDs Pointer to handle containing a list of panels.

Result Returns FALSE if no panels were found, TRUE if panels were found.
panelCount is updated to the number of panels found; panelIDs
is updated to the IDs of panels found.

SysCurAppDatabase

Purpose Return the card number and database ID of the current applicationÕs
resource database.

Prototype Err SysCurAppDatabase (UIntPtr cardNoP,
LocalID* dbIDP)

Parameters cardNoP Pointer to the card number; 0 or 1.

dbIDB Pointer to the database ID.

Result Returns 0 if no error, or SysErrParamErr if an error occurs.

See Also SysAppLaunch, SysUIAppSwitch
Developing Palm OS 2.0 Applications, Part II 113

System Functions
SysErrString

Purpose Returns text to describe an error number. This routine looks up the
textual description of a system error number in the appropriate List
resource and creates a string that can be used to display that error.

The actual string will be of the form: "<error message> (XXXX)"
where XXXX is the hexadecimal error number.

This routine looks for a resource of type 'tstl' and resource ID of
(err>>8). It then grabs the string at index (err & 0x00FF) out of that
resource.

Note: The Þrst string in the resource is called index #1 by Con-
structor, NOT #0. For example, an error code of 0x0101 will fetch
the Þrst string in the resource.

Prototype CharPtr SysErrString(Err err,
CharPtr strP,
Word maxLen)

Parameters err Error number

strP Pointer to space to form the string

maxLen Size of strP buffer.

Result Stores the error number string.

SysFatalAlert

Purpose Display a fatal alert until the user taps a button in the alert.

Prototype UInt SysFatalAlert (CharPtr msg)

Parameters msg Message to display in the dialog.

Result The button tapped; Þrst button is zero.
114 Developing Palm OS 2.0 Applications, Part II

System Functions
SysFormPointerArrayToStrings

Purpose Form an array of pointers to strings in a block. Useful for setting the
items of a list.

 Prototype VoidHand SysFormPointerArrayToStrings
(CharPtr c,
Int stringCount)

Parameters c Pointer to packed block of strings, each
terminated by NULL.

stringCount Count of strings in block.

Result Unlocked handle to allocated array of pointers to the strings in the
passed block. The returned array points to the strings in the passed
packed block.

SysGraffitiReferenceDialog

Purpose Pop up the GrafÞti Reference Dialog.

Prototype void SysGraffitiReferenceDialog
(ReferenceType referenceType)

Parameters referenceType Which reference to display. See
GraffitiReference.h for more information.

Result Nothing returned.
Developing Palm OS 2.0 Applications, Part II 115

System Functions
SysHandleEvent

Purpose Handle defaults for system events such as hard and soft key presses.

Prototype Boolean SysHandleEvent (EventPtr eventP)

Parameters eventP Pointer to an event.

Result Returns TRUE if the system handled the event.

Comments Applications should call this routine immediately after calling
EvtGetEvent unless they want to override the default system be-
havior. However, overriding the default system behavior is almost
never appropriate for an application.

See Also EvtProcessSoftKeyStroke, KeyRates (documented in Develop-
ing Palm OS Applications, Part I)
116 Developing Palm OS 2.0 Applications, Part II

System Functions
SysInsertionSort

Purpose Sort elements in an array according to the passed comparison func-
tion. Only elements which are out of order move. Moved elements
are moved to the end of the range of equal elements. If a large
amount of elements are being sorted, try to use the quick sort (see
SysQSort).

This is the insertion sort algorithm: Starting with the second ele-
ment, each element is compared to the preceding element. Each ele-
ment not greater than the last is inserted into sorted position within
those already sorted. A binary search for the insertion point is per-
formed. A moved element is inserted after any other equal ele-
ments.

Prototype void SysInsertionSort (Byte baseP,
Int numOfElements,
Int width,
CmpFuncPtr comparF,
Long other)

Parameters baseP Base pointer to an array of elements.

numOfElements Number of elements to sort (must be at least
2).

width Width of an element.

comparF Comparison function (see Comments).

other Other data passed to the comparison function.

Result Returns nothing.

Comments In Palm OS 2.0, DmComparF has 6 parameters.

These parameters allow a Palm OS application to pass more infor-
mation to the system than before, most noticeably the record (and
all associated information) which allows sorting by unique ID, so
that the Palm OS device and the desktop always match.
Developing Palm OS 2.0 Applications, Part II 117

System Functions
The revised callback is used by new sorting routines (and can be
used the same way by your application):

typedef Int DmComparF (void *,
void *,
Int other,
SortRecordInfoPtr,
SortRecordInfoPtr,

 VoidHand appInfoH);

As a rule, this change in the number of arguments doesnÕt cause
problems when a 1.0 application is run on a 2.0 device, because the
system only pulls the arguments from the stack that are there.

Note, however, that some optimized applications built with tools
other than Metrowerks CodeWarrior for Pilot may have problems as
a result of the change in arguments when running on a 2.0 device.

The 1.0 comparison function (comparF) had this prototype:
int comparF (BytePtr A, BytePtr B, Long other);

The function returns:

¥ > 0 if A > B

¥ < 0 if A< B

¥ 0 if A = B

See Also SysQSort
118 Developing Palm OS 2.0 Applications, Part II

System Functions
SysInstall

Purpose Entry point for System code resource, ÕCODEÕ #0, in the System re-
source Þle.

Prototype void SysInstall (Ptr tableP[])

Parameters tableP Pointer to trap table.

Result Returns nothing

Comments Called by Init() in the ROMMain module.

SysKeyboardDialog

Purpose Pop up the system keyboard if there is a Þeld object with the focus.
The Þeld objectÕs text chunk is edited directly.

Prototype void SysKeyboardDialog (KeyboardType kbdType)

Parameters kbdType The keyboard type. See keyboard.h.

Result Returns nothing. Changes the ÞeldÕs text chunk.

See Also SysKeyboardDialogV10 FrmSetFocus (documented in "Develop-
ing Palm OS Applications, Part I)
Developing Palm OS 2.0 Applications, Part II 119

System Functions
SysKeyboardDialogV10

Purpose Pop up the system keyboard if there is a Þeld object with the focus.
The Þeld objectÕs text chunk is edited directly.

Prototype void SysKeyboardDialogV10 ()

Parameters None.

Result Returns nothing. The ÞeldÕs text chunk is changed.

See Also SysKeyboardDialog, FrmSetFocus (documented in "Developing
Palm OS Applications, Part I)

SysLibLoad

Purpose A utility routine to load a library given its database creator and
type.

Presently, the ÒloadÓ functionality is NOT supported when you use
the Palm OS Simulator.

Prototype Err SysLibLoad(DWord libType,
DWord libCreator,
UIntPtr refNumP)

Parameters libType Type of library database.

libCreator Creator of library database.

refNumP Pointer to variable for returning the library
reference number(on failure,
sysInvalidRefNum is returned in this
variable)

Result 0 if no error; otherwise: sysErrLibNotFound, sysErrNoFreeRAM,
sysErrNoFreeLibSlots, or other error returned from the library's
install entry point
120 Developing Palm OS 2.0 Applications, Part II

System Functions
Comments When an application no longer needs a library that it SUCCESSFUL-
LY loaded via SysLibLoad, it is responsible for unloading the li-
brary by calling SysLibRemove and passing it the library reference
number returned by SysLibLoad. More information should soon
become availabe on the developer support web site.

SysQSort

Purpose Sort elements in an array according to the passed comparison func-
tion. Equal records can be in any position relative to each other be-
cause a quick sort tends to scramble the ordering of records. As a re-
sult, calling SysQSort multiple times can result in a different order
if the records are not completely unique. If you donÕt want this be-
havior, use the insertion sort instead (see SysInsertionSort).

To pick the pivot point, the quick sort algorithm picks the middle of
three records picked from around the middle of all records. That
way, the algorithm can take advantage of partially sorted data.

These optimizations are built in:

¥ The routine contains its own stack to limit uncontrolled
recursion. When the stack is full, an insertion sort is used
because it doesn't require more stack space.

¥ An insertion sort is also used when the number of records is
low. This avoids the overhead of a quick sort which is
noticeable for small numbers of records.

¥ If the records seem mostly sorted, an insertion sort is
performed to move only those few records that need to be
moved.

 Prototype void SysQSort (Byte baseP,
Int numOfElements,
Int width,
CmpFuncPtr comparF,
Long other)

Parameters baseP Base pointer to an array of elements.
Developing Palm OS 2.0 Applications, Part II 121

System Functions
numOfElements Number of elements to sort
(must be at least 2).

width Width of an element.

comparF Comparison function. See Comments for
SysInsertionSort.

other Other data passed to the comparison function.

Result Returns nothing.

See Also SysInsertionSort

SysRandom

Purpose Return a random number anywhere from 0 to sysRandomMax.

Prototype Int SysRandom (ULong newSeed)

Parameters newSeed New seed value, or 0 to use existing seed.

Result Returns a random number.
122 Developing Palm OS 2.0 Applications, Part II

System Functions
SysReset

Purpose Perform a soft reset and reinitialize the globals and the dynamic
memory heap.

Prototype void SysReset (void)

Parameters None.

Result No return value.

Comments This routine resets the system, reinitializes the globals area and all
system managers, and reinitializes the dynamic heap. All database
information is preserved. This routine is called when the user press-
es the hidden reset switch on the device.

When running an application using the simulator, this routine looks
for two data Þles that represent the memory of card 0 and card 1. If
these are found, the Palm OS memory image is created using them.
If they are not found, they are created.

When running an application on the device, this routine simply
looks for the memory cards at Þxed locations.

SysSetAutoOffTime

Purpose Set the time out value in seconds for auto-power-off. Zero means
never power off.

Prototype UInt SysSetAutoOffTime (UInt seconds)

Parameters seconds Time out in seconds, or 0 for no time out.

Result Returns previous value of time out in seconds.
Developing Palm OS 2.0 Applications, Part II 123

System Functions
SysStringByIndex

Purpose Copy a string out of a string list resource by index. String list re-
sources are of type 'tSTL' and contain a list of strings and a preÞx
string.

Warning: ResEdit always displays the items in the list as starting
at 1, not 0. Consider this when creating your string list.

Prototype CharPtr SysStringByIndex(Word resID,
Word index,
CharPtr strP,
Word maxLen)

Parameters resID Resource ID of the string list.

index String to get out of the list.

strP Pointer to space to form the string.

maxLen Size of strP buffer.

Result Returns a pointer to the copied string. The string returned from this
call will be the preÞx string appended with the designated index
string. Indices are 0-based; index 0 is the Þrst string in the resource.

SysTaskDelay

Purpose Put the processor into doze mode for the speciÞed number of ticks.

Prototype Err SysTaskDelay (Long delay)

Parameters delay Number of ticks to wait (see SysTicksPerSecond)

Result Returns 0 if no error.

See Also EvtGetEvent
124 Developing Palm OS 2.0 Applications, Part II

System Functions
SysTicksPerSecond

Purpose Return the number of ticks per second. This routine allows applica-
tions to be tolerant of changes to the ticks per second rate in the sys-
tem.

Prototype Word SysTicksPerSecond(void)

Parameters None

Result Returns the number of ticks per second.

SysUIAppSwitch

Purpose Try to make the current UI application quit and then launch the UI
application speciÞed by card number and database ID.

Prototype Err SysUIAppSwitch(UInt cardNo,
LocalID dbID,
Word cmd,
Ptr cmdPBP)

Parameters cardNo Card number for the new application; currently only
card 0 is valid.

dbID ID of the new application.

cmd Action code (launch code). See Developing Palm OS
Applications, Part I.

cmdPBP Action code (launch code) parameter block.

Result Returns 0 if no error.

See Also SysAppLaunch
Developing Palm OS 2.0 Applications, Part II 125

System Functions
Functions for System Use Only

SysAppExit

Prototype Err SysAppExit (SysAppInfoPtr appInfoP,
Ptr prevGlobalsP, Ptr globalsP)

WARNING: System Use Only!

SysAppInfoPtr

Prototype SysAppInfoPtr SysCurAppInfoP (void)

WARNING: System Use Only!

SysAppStartup

Prototype Err SysAppStartup (SysAppInfoPtr appInfoPP,
Ptr prevGlobalsP, Ptr globalsP)

WARNING: System Use Only!

SysBatteryDialog

Prototype void SysBatteryDialog (void)

WARNING: System Use Only!

SysCardImageDeleted

Prototype void SysCardImageDeleted (UInt cardNo)

WARNING: System Use Only!
126 Developing Palm OS 2.0 Applications, Part II

System Functions
SysCardImageInfo

Prototype Ptr SysCardImageInfo (UInt cardNo, ULongPtr sizeP)

WARNING: System Use Only!

SysColdBoot

Purpose Perform a cold boot and reformat all RAM areas of both memory
cards.

WARNING: System Use Only!

SysCurAppInfoP

Prototype SysCurAppInfoPtr SysCurrAppInfoP (void)

WARNING: System Use Only!

SysDisableInts

Prototype Word SysDisableInts (void)

WARNING: System Use Only!

SysDoze

Prototype void SysDoze (Boolean onlyNMI)

WARNING: System Use Only!

SysEvGroupCreate

Prototype Err SysEvGroupCreate(DWordPtr evIDP, DWordPtr
tagP, DWord init)
Developing Palm OS 2.0 Applications, Part II 127

System Functions
WARNING: System Use Only!

SysEvGroupRead

Prototype Err SysEvGroupRead(DWord evID, DWordPtr valueP)

WARNING: System Use Only!

SysEvGroupSignal

Prototype Err SysEvGroupSignal(DWord evID, DWord mask, DWord
value, SDWord type)

WARNING: System Use Only!

SysEvGroupWait

Prototype Err SysEvGroupWait(DWord evID, DWord mask, DWord
value, SDWord matchType, SDWord timeout)

WARNING: System Use Only!

SysGetTrapAddress

Prototype VoidPtr SysGetTrapAddress (UInt trapNum)

WARNING: System Use Only!

SysInit

Prototype void SysInit (void)

WARNING: System Use Only!
128 Developing Palm OS 2.0 Applications, Part II

System Functions
SysKernelInfo

Prototype Err SysKernelInfo (VoidPtr paramP)

WARNING: System Use Only!

SysLaunchConsole

Prototype Err SysLaunchConsole (void)

WARNING: System Use Only!

SysLibFind

Prototype Err SysLibFind (CharPtr nameP, UIntPtr refNumP)

WARNING: System Use Only!

SysLibInstall

Prototype Err SysLibInstall (SysLibEntryProcPtr libraryP,
 UIntPtr refNumP)

WARNING: System Use Only!

SysLibRemove

Prototype Err SysLibRemove (UInt refNum)

WARNING: System Use Only!

SysLibTblEntry

Prototype SysLibTblEntryPtr SysLibTblEntry (UInt refNum)

WARNING: System Use Only!
Developing Palm OS 2.0 Applications, Part II 129

System Functions
SysMailboxCreate

Prototype Err SysMailboxCreate(DWordPtr mbIDP, DWordPtr
tagP, DWord depth)

WARNING: System Use Only!

SysMailboxDelete

Prototype Err SysMailboxDelete(DWord mbID)

WARNING: System Use Only!

SysMailboxFlush

Prototype Err SysMailboxFlush(DWord mbID)

WARNING: System Use Only!

SysMailboxSend

Prototype Err SysMailboxSend(DWord mbID, VoidPtr msgP, DWord
wAck)

WARNING: System Use Only!

SysMailboxWait

Prototype Err SysMailboxWait(DWord mbID, VoidPtr msgP, DWord
priority, SDWord timeout)

WARNING: System Use Only!
130 Developing Palm OS 2.0 Applications, Part II

System Functions
SysNewOwnerID

Prototype UInt SysNewOwnerID (void)

WARNING: System Use Only!

SysPowerOn

Prototype void SysPowerOn (Ptr card0P, ULong card0Size,
Ptr card1P, ULong card1Size,
DWord sysCardHeaderOffset,
Boolean reFormat)

WARNING: System Use Only!

SysRestoreStatus

Prototype void SysRestoreStatus (Word status)

WARNING: System Use Only!

SysSetA5

Prototype DWord SysSetA5 (DWord newValue)

WARNING: System Use Only!

SysSetTrapAddress

Prototype Err SysSetTrapAddress (UInt trapNum,
VoidPtr procP)

WARNING: System Use Only!
Developing Palm OS 2.0 Applications, Part II 131

System Functions
SysSleep

Prototype void SysSleep (Boolean untilReset,
Boolean emergency)

WARNING: System Use Only!

SysTaskResume

Prototype Err SysTaskResume(DWord taskID)

WARNING: System Use Only!

SysTaskSuspend

Prototype Err SysTaskSuspend(DWord taskID)

WARNING: System Use Only!

SysUILaunch

Prototype void SysUILaunch (void)

WARNING: System Use Only!

SysTaskWait

Prototype Err SysTaskWait(SDWord timeout)

WARNING: System Use Only!
132 Developing Palm OS 2.0 Applications, Part II

System Functions
SysTaskWaitClr

Prototype Err SysTaskWaitClr(void)

WARNING: System Use Only!

SysTaskWake

Prototype Err SysTaskWake(DWord taskID)

WARNING: System Use Only!
Developing Palm OS 2.0 Applications, Part II 133

System Functions
134 Developing Palm OS 2.0 Applications, Part II

Time Manager Functions

DateAdjust

Purpose Return a new date +/- the days adjustment.

Prototype void DateAdjust (DatePtr dateP, Long adjustment)

Parameters dateP A DateType structure with the date to be
adjusted (see DateTime.h).

adjustment The adjustment in seconds.

Result Changes dateP to contain the new date.

Comments This function is useful for advancing a day or week and not worry-
ing about month and year wrapping.

If the time is advanced out of bounds, it is cut at the bounds sur-
passed.

DateDaysToDate

Purpose Return the date, given days.

Prototype void DateDaysToDate (ULong days, DatePtr dateP)

Parameters days Days since 1/1/1904.

dateP Pointer to DateType structure (returned).

Result Returns nothing, stores the date in dateP.

See Also TimAdjust, DateToDays
Developing Palm OS 2.0 Applications, Part II 135

Time Manager Functions
DateSecondsToDate

Purpose Return the date given seconds.

Prototype void DateSecondsToDate (ULong seconds,
DatePtr dateP)

Parameters seconds Seconds since 1/1/1904.

dateP Pointer to DateType structure (returned).

Result Returns nothing; stores the date in dateP.

DateToAscii

Purpose Convert the time passed to an ASCII string in the passed
DateFormatType. Handles long and short formats.

Prototype void DateToAscii(Byte months,
Byte days,
Word years,
DateFormatType dateFormat,
CharPtr pString)

 Parameters months Months (1-12).

days Days (1-31).

years Years (for example 1995).

dateFormat Long or short DateFormatType.

pString Pointer to string which gets the result. Must be of
 length dateStringLength for standard formats or
 longDateStrLength for long date formats.

 Result Returns nothing. Stores the result in pString.

See Also TimeToAscii, DateToDOWDMFormat
136 Developing Palm OS 2.0 Applications, Part II

Time Manager Functions
DateToDays

Purpose Return the date in days since 1/1/1904.

Prototype ULong DateToDays (DateType date)

Parameters date DateType structure.

 Result Returns the days since 1/1/1904.

See Also TimAdjust, DateDaysToDate

DateToDOWDMFormat

Purpose Convert the date passed to an ASCII string.

Prototype void DateToDOWDMFormat(Byte months,
Byte days,
Word years,
DateFormatType dateFormat,
CharPtr pString)

Parameters months Month (1-12).

days Day (1-31).

years Years (for example 1995).

dateFormat FALSE to use AM and PM.

pString Pointer to string which gets the result. The
string must be of length timeStringLength.

Result Returns nothing; stores ASCII string in pString.

See Also DateToAscii
Developing Palm OS 2.0 Applications, Part II 137

Time Manager Functions
DayOfMonth

Purpose Return the day of a month on which the speciÞed date occurs (for
example, dom2ndTue).

Prototype UInt DayOfMonth (UInt month, UInt day, UInt year)

Parameters month Month (1-12).

day Day (1-31).

year Year (for example 1995).

Result Returns the day of the month as a DayOfWeekType, see
DateTime.h.

DayOfWeek

 Purpose Return the day of the week.

Prototype UInt DayOfWeek (UInt month, UInt day, UInt year)

Parameters month Month (1-12).

day Day (1-31).

year Year (for example 1995).

Result Returns the day of the week (Sunday = 0, Monday = 1, etc.).
138 Developing Palm OS 2.0 Applications, Part II

Time Manager Functions
DaysInMonth

Purpose Return the number of days in the month.

Prototype UInt DaysInMonth (UInt month, UInt year)

Parameters month Month (1-12).

year Year (for example, 1995).

Result Returns the number of days in the month for that year.

TimAdjust

Purpose Return a new date, +/- the time adjustment.

Prototype void TimAdjust(DateTimePtr dateTimeP,
Long adjustment)

Parameters dateTimeP A DateType structure (see DateTime.h).

adjustment The adjustment in seconds.

Result Returns nothing. Changes dateTimeP to the new date and time.

Comments This function is useful for advancing a day or week and not worry-
ing about month and year wrapping.

If the time is advanced out of bounds it is cut at the bounds sur-
passed.

See Also DateAdjust
Developing Palm OS 2.0 Applications, Part II 139

Time Manager Functions
TimDateTimeToSeconds

 Purpose Return the date and time in seconds since 1/1/1904.

Prototype ULong TimDateTimeToSeconds (DateTimePtr dateTimeP)

Parameters dateTimeP A DateType structure (see DateTime.h).

Result The time in seconds since 1/1/1904.

See Also TimSecondsToDateTime

TimGetSeconds

Purpose Return seconds since 1/1/1904.

Prototype ULong TimGetSeconds (void)

Parameters None.

Result Returns the number of seconds.

See Also TimSetSeconds

TimGetTicks

Purpose Return the tick count since the last reset. The tick count does not ad-
vance while the device is in sleep mode.

Prototype ULong TimGetTicks (void)

Parameters None.

Result Returns the tick count.
140 Developing Palm OS 2.0 Applications, Part II

Time Manager Functions
TimSecondsToDateTime

 Purpose Return the date and time, given seconds.

Prototype void TimSecondsToDateTime(ULong seconds,
 DateTimePtr dateTimeP)

Parameters seconds Seconds to advance from 1/1/1904.

dateTimeP A DateTimeType structure thatÕs Þlled by the
function.

Result Returns nothing. Stores the date and time given seconds since 1/1/
1904 in dateTimeP.

See Also TimDateTimeToSeconds

TimSetSeconds

Purpose Return seconds since 1/1/1904.

Prototype void TimSetSeconds (ULong seconds)

Parameters seconds Place to return the seconds since 1/1/1904.

Result Returns nothing; modiÞes seconds.

See Also TimGetSeconds
Developing Palm OS 2.0 Applications, Part II 141

Time Manager Functions
TimeToAscii

Purpose Convert the time passed to an ASCII string.

Prototype void TimeToAscii(Byte hours,
Byte minutes,
TimeFormatType timeFormat,
CharPtr pString)

Parameters hours Hours (0-23).

minutes Minutes (0-59).

timeFormat FALSE to use AM and PM.

pString Pointer to string which gets the result. Must be
of length timeStringLength.

Result Returns nothing. Stores pointer to the text of the current selection in
pString.

See Also DateToAscii
142 Developing Palm OS 2.0 Applications, Part II

Time Manager Functions
Functions for System Use Only

TimGetAlarm

Prototype ULong TimGetAlarm (void)

WARNING: System use only!

TimHandleInterrupt

Prototype void TimHandleInterrupt (Boolean periodicUpdate)

Warning: System use only!

TimInit

Prototype Err TimInit (void)

Warning: System use only!

TimSetAlarm

Prototype ULong TimSetAlarm (ULong alarmSeconds)

Warning: System use only!
Developing Palm OS 2.0 Applications, Part II 143

Time Manager Functions
144 Developing Palm OS 2.0 Applications, Part II

Index
Numerics
0.01-second timer 41
1-second timer 41
2.0 functionality

float manager 74

A
accented characters and StrToLower 102
adding event to event queue 53
alarm manager 14Ð17

and alarm sound 15
reminder dialog boxes 15

alarm sound 15, 25
alarms

canceling 46
setting 46

alerts
SysFatalAlert 114

AlmCancelAll 47
AlmDisplayAlarm 47
AlmEnableNotification 47
almErrFull 46
almErrMemory 46
AlmGetAlarm 45
AlmInit 47
AlmSetAlarm 17, 46
amplitude 25
application preferences 85
application-defined features 23
auto-off 30

setting 123
timer 39, 62

auto-repeat 33, 39

B
base 10 form of floating-point number 75
battery 30
battery conservation using modes 29
battery timeout 109
battery voltage warning threshold 109
booting 27
bound of next line for global find 71

buttons
silk-screened icons 33

C
C library

and float manager 74
and string manager 26

canceling alarms 46
cleanup of dynamic heap 31
Click 25
CmBroadcast 81
cmErrComm 81
cmErrCommBusy 81
cmErrCommVersion 81
cmErrMemory 81
cmErrParam 81
cmErrTimedOut 81
cmErrUserCan 81
code #0 resource 119
Confirmation sound 25
connection, initiating 81
conserving battery using modes 29
Crc16CalcBlock 81

D
database ID

and launch codes 35
databases

SysCreateDataBaseList 112
date and time manager 41
DateAdjust 135
DateDaysToDate 135
DateSecondsToDate 136
dateStringLength 136
DateToAscii 136
DateToDays 137
DayOfMonth 138
DayOfWeek 138
DaysInMonth 139
default sound volume 107
dialog boxes (reminder) 15
digitizer

and pen queue 37
Developing Palm OS 2.0 Applications, Part II 145

Index
EvtProcessSoftKeyStroke 62
pen stroke to key event 37

DmComparF 117
doze mode 29

SysTaskDelay 124
dynamic heap

cleanup 31
reinitializing 123

E
ErrCatch 52
ErrDisplay 18, 19, 48
ErrEndCatch 52
ErrFatalDisplayIf 18, 19, 50
ErrNonFatalDisplayIf 51
error manager 17Ð22

try-and-catch mechanism 20
Error sound 25
ERROR_CHECK_FUL 48
ERROR_CHECK_FULL 51
ERROR_CHECK_LEVEL 18, 19, 48, 50, 51
ERROR_CHECK_PARTIAL 48
ErrThrow 20, 52
ErrTry 52
event processing 32
event queue

adding event 53
events

hard button presses 32
hardware generated 32, 33
software generated 32, 34

EvtAddEventToQueue 53
EvtAddUniqueEventToQueue 53
EvtCopyEvent 54
EvtDequePenStrokeInfo 38
EvtDequeuePenPoint 54
EvtDequeuePenStrokeInfo 55
EvtEnableGraffiti 55
EvtEnqueueKey 56
EvtEventAvail 57
EvtFlushKeyQueue 57
EvtFlushNextPenStroke 58
EvtFlushPenQueue 58
EvtGetEvent 32

EvtGetPen 59
EvtGetPenBtnList 60
EvtKeyQueueEmpty 60
EvtKeyQueueSize 61
EvtPenQueueSize 61
EvtProcessSoftKeyStroke 62
EvtResetAutoOffTimer 39, 62
EvtSysEventAvail 63
EvtWakeup 63

F
fatal alert 114
feature manager 22Ð24
features

 See functions starting with Ftr
application-defined 23
system version 23

FIFO queue 33
FindDrawHeader 71
FindGetLineBounds 71
FindSaveMatch 72
FindStrInStr 72
float manager overview 74
flushing pen queue 58
FplAdd 75
FplAToF 75
FplBase10Info 76
FplDiv 76
FplFloatToLong 77
FplFloatToULong 77
FplFree 78
FplFToA 78
FplInit 79
FplLongToFloat 79
FplMul 80
FplSub 80
ftrErrInternalError 66, 67
ftrErrNoSuchFeature 67, 68, 69
ftrErrNoSuchFtr 66
FtrGet 24, 66
FtrGetByIndex 24, 67
ftrInternalError 69
FtrSet 24, 68
FtrUnregister 24, 69
146 Developing Palm OS 2.0 Applications, Part II

Index
G
GetCharCaselessValue

and FindStrInStr 73
global find

FindDrawHeader 71
FindGetLineBounds 71

Graffiti
enabling and disabling 55
events 32

Graffiti recognizer 37
EvtDequeuPenPoint 54

Graffiti Reference Dialog 115

H
hard button press events 32
hardware-generated events 32, 33
header line for global find 71

I
Information sound 25
insertion sort 117
interrrupting Sync application 31

K
kernel 30
key debouncing 33
key events

format 56
from pen strokes 37

key presses 32
key queue 38

size 61
keyboard display 119

L
launch codes 34

and returned database ID 35
SysBroadcastActionCode 35, 111

launcher screen 31
launching applications 31
library vs. managers 13
lists

setting items 115
longDateStrLength 136

low-battery warning 34

M
managers

naming convention 13
vs. libraries 13

MdmDial 82
mdmErrBusy 82
mdmErrCmdError 82
mdmErrNoDCD 82
mdmErrNoTone 82
mdmErrUserCan 82
MdmHangUp 83
memErrChunkLocked 68, 69
memErrInvalidParam 68, 69
memErrNotEnoughSpace 68, 69, 108, 111
modem 81
modes 28

efficient use 29
multiple preferences 85
multitasking kernel 30

N
nilEvent 63
noPreferenceFound 85

P
panel list (SysCreatePanelList) 113
password functions 92
pen

current status 59
strokes and key events 37

pen events 32
pen queue 37

flushing 58
size 61

PhoneNumberLookup 83
power modes 28
preferences

auto-off 30
multiple application preferences 85

PrefGetAppPreferences 85
PrefGetAppPreferencesV10 86
PrefGetPreference 87
Developing Palm OS 2.0 Applications, Part II 147

Index
PrefGetPreferences 88
PrefOpenPreferenceDBV10 88
PrefSetAppPreferences 89
PrefSetAppPreferencesV10 89
PrefSetPreference 90
PrefSetPreferences 91
PwdExists 92
PwdRemove 92
PwdSet 93
PwdVerify 93

Q
quitting application 32

R
real-time clock 41
reinitializing dynamic memory heap 123
reminder dialog boxes 15
reset 123
ResLoadForm 84
ResLoadMenu 84
resource database,SysCurAppDatabase 113
response time 31
running mode 29

S
searching for string 72
searching for substring 102
silk-screen buttons

EvtGetPenBtnList 60
silk-screened icons 33
sleep mode 28

and real-time clock 41
SndDoCmd 105
sndErrBadChannel 105
sndErrBadParam 105
sndErrQFull 105
SndGetDefaultVolume 106
SndInit 107
sndMaxAmp 107
SndPlaySystemSound 106
SndSetDefaultVolume 107
SndSysBeepType 106
soft reset 123

software-generated events 32, 34
sorting array elements 117
sound manager 25

amplitude 25
volume 25

sound manager functions 105Ð107
sprintf (StrPrintF) 101
StartApplication

and PrefGetPreferences 88
Startup sound 25
string

searching 72
string manager 26
string manager functions 94Ð103
string resource

copying 112
strokes

capturing 38
translating 62

StrPrintF 101
StrStr 102
StrToLower 102
StrVPrintF 103
substring, searching for 102
Sync application 31
SysAppLaunch 31, 35, 108
sysAppLaunchCmdAlarmTriggered 15
sysAppLaunchCmdDisplayAlarm 15
SysAppLauncherDialog 109
SysBinarySearch 110
SysBroadcastActionCode 35, 111
SysCopyStringResource 112
SysCreateDataBaseList 112
SysCreatePanelList 113
SysCurAppDatabase 35, 113
sysErrLibNotFound 120
sysErrNoFreeLibSlots 120
sysErrNoFreeRAM 120
sysErrOutOfOwnerID 108
sysErrOutOfOwnerIDs 111
sysErrParamErr 108, 111
SysErrString 114
SysFatalAlert 114
SysFormPointerArrayToStrings 115
SysGraffitiReferenceDialog 115
148 Developing Palm OS 2.0 Applications, Part II

Index
SysHandleEvent 32, 33, 116
SysInsertionSort 117
SysInstall 119
SysKeyboardDialog 119
SysKeyboardDialogV10 120
SysLibLoad 120
SysQSort 121
sysRandomMax 122
SysReset 123
SysSetAutoOffTime 123
SysStringByIndex 124
SysTaskDelay 124
system event manager 36Ð40
system events

checking availability 63
system keyboard display 119
system ticks 41

and Simulator 41
on Palm OS device 41

system version feature 23
sysTicksPerSecond 42
SysUIAppSwitch 35, 125

T
TimAdjust 139

TimDateTimeToSeconds 41, 140
time manager 41

structures 42
TimeToAscii 142
TimGetSeconds 41, 140
TimGetTicks 42, 140
timing 42
TimSecondsToDateTime 41, 141
TimSetSeconds 41, 141
try-and-catch mechanism 20

example 21

U
UIAS 28, 30
User Interface Application Shell 28, 30
using modes efficiently 29

V
voltage warning threshol 109
volume 25
volume default 107
vsprintf (StVPrintF) 102

W
Warning sound 25
Developing Palm OS 2.0 Applications, Part II 149

	Table of Contents
	About This Document
	Palm OS SDK Documentation
	What This Guide Contains
	Conventions Used in This Guide

	Using Palm OS System Managers
	The Alarm Manager
	Alarm Manager Overview
	Alarm Queue
	Alarm Manager Processing
	Alarm Scenario

	Using the Alarm Manager
	Alarm Manager Function Summary

	The Error Manager
	Displaying Development Errors
	Using the Error Manager Macros
	Understanding the Try-and-Catch Mechanism
	Using the Try and Catch Mechanism
	Error Manager Function Summary

	The Feature Manager
	The System Version Feature
	Application-Defined Features
	Using the Feature Manager
	Feature Manager Function Summary

	The Sound Manager
	Using the Sound Manager
	Sound Manager Function Summary

	The String Manager
	The System Manager
	System Boot and Reset
	System Reset Calls

	Power Management
	Palm OS Power Modes
	Guidelines for Application Developers
	Power Management Calls

	The Microkernel
	Application Support
	Launching and Cleanup
	Event Processing
	Interapplication Communication
	Application Utilities

	System Manager Functions

	The System Event Manager
	Event Translation: Pen Strokes to Key Events
	Pen Queue Management
	Key Queue Management
	Auto-Off Control
	System Event Manager Function Summary

	The Time Manager
	Using Real-Time Clock Functions
	Using System Ticks Functions
	Time Manager Structures
	Time Manager Function Summary

	Palm OS System Functions
	Alarm Manager API
	AlmGetAlarm
	AlmSetAlarm
	Functions for System Use Only
	AlmAlarmCallback
	AlmCancelAll
	AlmDisplayAlarm
	AlmEnableNotification
	AlmInit

	Error Manager Functions
	ErrDisplay
	ErrDisplayFileLineMsg
	ErrFatalDisplayIf
	ErrNonFatalDisplayIf
	ErrThrow

	Event Manager Functions
	EvtAddEventToQueue
	EvtCopyEvent
	EvtDequeuePenPoint
	EvtDequeuePenStrokeInfo
	EvtEnableGraffiti
	EvtEnqueueKey
	EvtFlushKeyQueue
	EvtFlushNextPenStroke
	EvtFlushPenQueue
	EvtGetEvent
	EvtGetPen
	EvtGetPenBtnList
	EvtKeyQueueEmpty
	EvtKeyQueueSize
	EvtPenQueueSize
	EvtProcessSoftKeyStroke
	EvtResetAutoOffTimer
	EvtWakeup

	Functions for System Use Only
	EvtDequeueKeyEvent
	EvtEnqueuePenPoint
	EvtGetSysEvent
	EvtInitialize
	EvtSetKeyQueuePtr
	EvtSetPenQueuePtr
	EvtSysInit

	Feature Functions
	FtrGet
	FtrGetByIndex
	FtrSet
	FtrUnregister

	For System Use Only
	FtrInit

	Find Functions
	FindDrawHeader
	FindGetLineBounds
	FindSaveMatch
	FindStrInStr

	Float Manager Functions
	Using the New Floating Point Arithmetic
	Using 1.0 Floating-Point Functionality
	FplAdd
	FplAToF
	FplBase10Info
	FplDiv
	FplFloatToLong
	FplFloatToULong
	FplFree
	FplFToA
	FplInit
	FplLongToFloat
	FplMul
	FplSub

	Miscellaneous System Functions
	CmBroadcast
	Crc16CalcBlock
	MdmDial
	MdmHangUp
	PhoneNumberLookup

	ResLoadForm
	ResLoadMenu

	System Preferences Functions
	PrefGetAppPreferences
	PrefGetAppPreferencesV10
	PrefGetPreference
	PrefGetPreferences
	PrefOpenPreferenceDBV10
	PrefSetAppPreferences
	PrefSetAppPreferencesV10
	PrefSetPreference

	PrefSetPreferences

	Password Functions
	PwdExists
	PwdRemove
	PwdSet
	PwdVerify

	String Manager Functions
	StrAToI
	StrCat
	StrCaselessCompare
	StrChr
	StrCompare
	StrCopy
	StrDelocalizeNumber

	StrIToA
	StrIToH
	StrLen
	StrLocalizeNumber
	StrNCaselessCompare
	StrNCat
	StrNCompare
	StrNCopy
	StrPrintF

	StrStr
	StrToLower
	StrVPrintF

	Sound Manager Functions
	SndDoCmd
	SndGetDefaultVolume
	SndPlaySystemSound
	SndSetDefaultVolume
	Functions for System Use Only
	SndInit

	System Functions
	SysAppLaunch
	SysAppLauncherDialog
	SysBatteryInfo
	SysBinarySearch

	SysBroadcastActionCode
	SysCopyStringResource
	SysCreateDataBaseList
	SysCreatePanelList

	SysCurAppDatabase
	SysErrString

	SysFatalAlert
	SysFormPointerArrayToStrings
	SysGraffitiReferenceDialog

	SysHandleEvent
	SysInsertionSort
	SysInstall
	SysKeyboardDialog
	SysKeyboardDialogV10
	SysLibLoad

	SysQSort
	SysRandom
	SysReset
	SysSetAutoOffTime
	SysStringByIndex

	SysTaskDelay
	SysTicksPerSecond

	SysUIAppSwitch
	Functions for System Use Only
	SysAppExit
	SysAppInfoPtr
	SysAppInfoPtr SysCurAppInfoP (void)
	SysAppStartup
	SysBatteryDialog
	SysCardImageDeleted
	SysCardImageInfo
	SysColdBoot
	SysCurAppInfoP
	SysDisableInts
	SysDoze
	SysEvGroupCreate
	SysEvGroupRead
	SysEvGroupSignal
	SysEvGroupWait
	SysGetTrapAddress
	SysInit
	SysKernelInfo
	SysLaunchConsole
	SysLibFind
	SysLibInstall
	SysLibRemove
	SysLibTblEntry
	SysMailboxCreate
	SysMailboxDelete
	SysMailboxFlush
	SysMailboxSend
	SysMailboxWait
	SysNewOwnerID
	SysPowerOn
	SysRestoreStatus
	SysSetA5
	SysSetTrapAddress
	SysSleep
	SysTaskResume
	SysTaskSuspend
	SysUILaunch
	SysTaskWait
	SysTaskWaitClr
	SysTaskWake

	Time Manager Functions
	DateAdjust
	DateDaysToDate
	DateSecondsToDate
	DateToAscii
	DateToDays
	DateToDOWDMFormat
	DayOfMonth
	DayOfWeek
	DaysInMonth
	TimAdjust
	TimDateTimeToSeconds
	TimGetSeconds
	TimGetTicks
	TimSecondsToDateTime
	TimSetSeconds
	TimeToAscii
	Functions for System Use Only
	TimGetAlarm
	TimHandleInterrupt
	TimInit
	TimSetAlarm

	Index

