

Welcome to

Developing Palm OS 2.0
Applications

Part I: Interface Management

Navigate this online document as follows:

To see bookmarks Type Control-7
To see information on
Adobe Acrobat Reader

Type Control-?

To navigate Click on
any blue hypertext link
any Table of Contents entry
arrows in the menu bar

U.S. Robotics¨

Developing Palm OSª 2.0
Applications

Part I

©1996, 1997 U.S. Robotics, Inc. All rights reserved.

Documentation stored on the compact disk may be printed by licensee for personal use.
Except for the foregoing, no part of this documentation may be reproduced or transmit-
ted in any form by any means, electronic or mechanical, including photocopying, record-
ing, or any information storage and retrieval system, without permission in writing from
U.S. Robotics.

U.S. Robotics, the U.S. Robotics logo and GrafÞti are registered trademarks, and Palm
Computing, HotSync, the Palm OS, and the Palm OS logo are trademarks of U.S. Robot-
ics and its subsidiaries.

All other trademarks or registered trademarks are the property of their respective
owners.

ALL SOFTWARE AND DOCUMENTATION ON THE COMPACT DISK ARE SUBJECT
TO THE LICENSE AGREEMENT.

Contact Information:

Metrowerks U.S.A. and interna-
tional

Metrowerks Corporation
2201 Donley Drive, Suite 310
Austin, TX 78758
U.S.A.

Metrowerks Canada Metrowerks Inc.
1500 du College, Suite 300
Ville St-Laurent, QC
Canada H4L 5G6

Metrowerks Mail order Voice: 1-800-377Ð5416
Fax: 1-512-873Ð4901

U.S. Robotics, Palm Computing
Division Mail Order

U.S.A. and Canada: 1-800-881-7256
elsewhere 1-408-848-5604

Metrowerks World Wide Web http://www.metrowerks.com

U.S. Robotics, Palm Computing
Division World Wide Web

http://www.usr.com/palm

Registration information register@metrowerks.com

Technical support support@metrowerks.com

Sales, marketing, & licensing sales@metrowerks.com

CompuServe goto Metrowerks

Table of Contents
Table of Contents . v

About This Document. . 21
Palm OS SDK Documentation 21
What This Guide Contains 22
Conventions Used in This Guide 23

1 Developing Palm OS Applications 25
Overview of Application Development 26

Designing UI and Program Functionality 26
Constructing UI Resources 28
Using Managers and Filling Out the Program Logic. 29
Building, Debugging, and Testing 30
Building the Application and Running it on the Device . . . 31
Using Other Components of the SDK 31

Internal Structure of an Application 32
The ÔcodeÕ #1 Resource 32
The ÔprefÕ #0 Resource 32
The ÔcodeÕ #0 and ÔdateÕ #0 Resources 33

Naming Conventions 34
Basic Hardware . 35

RAM and ROM . 35
Palm OS Modes of Operation 35
Palm OS Connectivity. 37
Real-Time Clock and Timer 37
Palm OS Device Screen and Sound Generation 38
Palm OS Device Reset Switch 38

Different Palm OS Devices 40
Running 1.0 Applications on the 2.0 Device 40
Compiling 1.0 Applications With Palm OS 2.0 41
Using Palm OS 2.0 Features 41
Running 2.0 Applications on a 1.0 Device 41
Retrieving the System Version Number 42
Developing Palm OS 2.0 Applications, Part I v

Table of Contents

2 Application Control Flow . 43
How Events Control an Application 45

Basic Application Stages. 45
The Startup Routine 46
The Event Loop . 49
The Stop Routine . 53

How Launch Codes Control an Application 54
Parameter Block . 55
Launch Flags . 55

Launch Code Example 56
Summary of all Launch Codes 58
More About Launch Codes. 60

sysAppLaunchCmdAlarmTriggered 60
sysAppLaunchCmdCountryChange 60
sysAppLaunchCmdDisplayAlarm 61
sysAppLaunchCmdFind 61
sysAppLaunchCmdGoto 63
sysAppLaunchCmdInitDatabase 64
sysAppLaunchCmdLookup 65
sysAppLaunchCmdPanelCalledFromApp 66
 sysAppLaunchCmdReturnFromPanel 67
sysAppLaunchCmdSaveData 67
sysAppLaunchCmdSyncNotify 68
sysAppLaunchCmdSystemLock 68
sysAppLaunchCmdSystemReset 68
sysAppLaunchCmdSystemTimeChange. 69

More About Launch Flags 70
Responding to Launch Codes 71

Determining Status When Receiving Launch Code 71
PredeÞned Launch Codes 72

Creating Your Own Launch Codes 72

3 Palm OS User Interface Resources. 73
Using Constructor to Work With Resources 74

Creating Resources 74
Changing Resources 75
vi Developing Palm OS 2.0 Applications, Part I

Table of Contents

Project Resources . 76
Alerts . 77
Form Resource . 79
String Resource. 82
Menus and Menu Bars 82

Menu Overview . 82
Creating a Menu . 83
Menu Bar and Menu Resources 84
Menu User Interaction 84
Event Flow for Menu Resource 86

Catalog Resources . 86
Button Resource . 88
Check Box Resource. 91
Field Resource . 94
Form Bitmap Resource 97
Gadget Resource . 98
GrafÞti Shift Indicator Resource 99
Label Resource . . 100
List Resource. . 101
Popup Trigger Resource 103
Push Button Resource 105
Repeating Button Resource. 108
Scrollbar Resource . 110
Selector Trigger Resource 112
Table Resource . 114

4 Palm OS User Interface Objects 115
A Note on the Rectangle Structure 115

Control Objects . . 116
Control Object Events 117
Structure of a Control 118
Associated Resources 121
Control Functions 121

Date and Time Objects. 122
Date and Time Functions 122

Field Objects . . 122
Developing Palm OS 2.0 Applications, Part I vii

Table of Contents

Field Object Events 123
Structure of a Field 124
Associated Resources 127
Field Functions . 128

Form Objects . . 130
Form Object Events 130

 Structure of a Form 132
Associated Resource 137
Form Functions . 137

Insertion Point Object 139
Insertion Point Functions 139

List Object . . 140
List Object Events 141
Structure of a List 142
Associated Resources 144
List Functions . 144

Menu Objects . 145
Menu Events . 146
Structure of a Menu 146
Menu Functions . 150

Scrollbar Object. . 150
Table Objects . . 154

Table Event . 154
Structure of a Table 154
Associated Resource 157
Table Functions . 157

Window Objects . 159
Window Events . 159
Structure of a Window 159
Window Functions 162

5 Using Palm OS UI Managers . 165
The Alert Manager . 167

Alert Resource Information 167
Alert Manager Functions 167

The GrafÞti Manager 168
viii Developing Palm OS 2.0 Applications, Part I

Table of Contents

Using GrfProcessStroke 168
Using Other High-Level GrafÞti Manager Calls 168
Special-Purpose GrafÞti Manager Calls 169
Accessing GrafÞti ShortCuts 169
2.0 Note on Auto Shifting 169
2.0 Note on GrafÞti Help 170
GrafÞti Manager Functions 170

The Key Manager . . 171
The Pen Manager . . 172

6 Palm OS Events . 173
appStopEvent . 174
ctlEnterEvent . 174
ctlExitEvent . 175
ctlRepeatEvent . . 175
ctlSelectEvent . 176
daySelectEvent . . 176
ßdChangedEvent . . 177
ßdEnterEvent . 177
ßdHeightChangedEvent 178
frmCloseEvent . 178
frmLoadEvent . 179
frmOpenEvent . 179
frmSaveEvent . 179
frmUpdateEvent . 180
keyDownEvent . . 182
lstEnterEvent. . 183
lstExitEvent . 183
lstSelectEvent . 184
menuEvent . 184
nilEvent . . 185
penDownEvent. . 185
penMoveEvent . . 186
penUpEvent . 186
popSelectEvent . . 187
tblEnterEvent . 190
Developing Palm OS 2.0 Applications, Part I ix

Table of Contents

tblExitEvent . 190
tblSelectEvent . 191
winEnterEvent . . 191
winExitEvent . 192

7 Palm OS User Interface Functions 193
Category Functions 193

CategoryCreateList 193
CategoryCreateListV10 194
CategoryEdit 195
CategoryEditV10 196
CategoryFind . 196
CategoryFreeList 197
CategoryFreeListV10 198
CategoryGetName 198
CategoryGetNext. 199
CategoryInitialize 199
CategoryTruncateName 200
CategorySetName 200
CategorySetTriggerLabel 201
CategorySelect 202
CategorySelectV10 203

ClipBoard Functions 204
ClipboardAddItem 204
ClipboardGetItem 204

Control Functions. . 205
CtlDrawControl . 205
CtlEraseControl . 205
CtlGetLabel . 206
CtlGetValue . 206
CtlHandleEvent . 207
CtlHideControl . 208
CtlHitControl . 208
CtlEnabled . 209
CtlSetEnabled . 209
CtlSetLabel . 210
CtlSetUsable . . 211
x Developing Palm OS 2.0 Applications, Part I

Table of Contents

CtlSetValue . 211
CtlShowControl . 212

Field UI Functions . 212
FldCalcFieldHeight 212
FldCompactText . 213
FldCopy . 214
FldCut . 214
FldDelete . 215
FldDirty. . 215
FldDrawField . 216
FldEraseField . 216
FldFreeMemory . 217
FldGetAttributes 217
FldGetBounds . 218
FldGetFont . 218
FldGetInsPtPosition 219
FldGetMaxChars 219
FldGetNumberOfBlankLines 220
FldGetScrollPosition 220
FldGetScrollValues 221
FldGetSelection . 222
FldGetTextAllocatedSize 223
FldGetTextHandle 223
FldGetTextHeight 224
FldGetTextLength 224
FldGetTextPtr . 225
FldGetVisibleLines 225
FldGrabFocus . 226
FldHandleEvent . 227
FldInsert . 228
FldMakeFullyVisible 228
FldPaste. . 229
FldRecalculateField. 230
FldReleaseFocus . 230
FldScrollable. . 231
FldScrollField . 231
Developing Palm OS 2.0 Applications, Part I xi

Table of Contents

FldSendChangeNotiÞcation 232
FldSendHeightChangeNotiÞcation 232
FldSetAttributes . 233
FldSetBounds . 233
FldSetDirty . 234
FldSetFont. . 234
FldSetInsertionPoint 235
FldSetInsPtPosition 235
FldSetMaxChars . 236
FldSetScrollPosition 236
FldSetSelection. . 237
FldSetText . . 238
FldSetTextAllocatedSize 239
FldSetTextHandle 239
FldSetTextPtr . 240
FldSetUsable . 240
FldUndo . 241
FldWordWrap . 241

Font Functions . 243
 FntAverageCharWidth 243
FntBaseLine . 243
FntCharHeight. . 244
FntCharsInWidth. 244
FntCharsWidth . 245
FntCharWidth . 245
FntDescenderHeight 246
FntGetFont . 246
FntGetFontPtr . 246
FntGetScrollValues 247
FntLineHeight . . 247
FntLineWidth . 248
FntProportionalFont 248
FntSetFont . 249
FntWordWrap 249
FntWordWrapReverseNLines 250

Form Functions. . 251
xii Developing Palm OS 2.0 Applications, Part I

Table of Contents

FrmAlert . 251
FrmCloseAllForms 251
FrmCopyLabel . . 252
FrmCopyTitle . 253
FrmCustomAlert 254
FrmDeleteForm . 255
FrmDispatchEvent 255
FrmDoDialog . 256
FrmDrawForm. . 256
FrmEraseForm . . 257
FrmGetActiveForm 257
FrmGetActiveFormID. 258
FrmGetControlGroupSelection 258
FrmGetControlValue 259
FrmGetFirstForm. 259
FrmGetFocus . 260
FrmGetFormBounds 260
FrmGetFormId. . 261
FrmGetFormPtr . 261
FrmGetGadgetData. 262
FrmGetLabel . 262
FrmGetNumberOfObjects 263
FrmGetObjectBounds 263
FrmGetObjectId . 264
FrmGetObjectIndex. 264
FrmGetObjectPosition 265
FrmGetObjectPtr 265
FrmGetObjectType 266
FrmGetTitle . 266
FrmGetUserModiÞedState. 267
FrmGetWindowHandle 267
FrmGotoForm . 268
FrmHandleEvent 268
FrmHelp . 269
FrmHideObject . 269
FrmInitForm. . 270
Developing Palm OS 2.0 Applications, Part I xiii

Table of Contents

FrmPointInTitle 270
FrmPopupForm . 271
FrmReturnToForm 271
FrmSaveAllForms 272
FrmSetActiveForm 272
FrmSetCategoryLabel 273
FrmSetControlGroupSelection 274
FrmSetControlValue 275
FrmSetEventHandler 276
FrmSetFocus. . 276
FrmSetGadgetData 277
FrmSetNotUserModiÞed 277
FrmSetMenu 278
FrmSetObjectBounds 278
FrmSetObjectPosition 279
FrmSetTitle . 280
FrmShowObject . 280
FrmUpdateScrollers 281
FrmUpdateForm 281
FrmVisible . 282

Character Attribute Functions 283
GetCharAttr . . 283
GetCharCaselessValue 283
GetCharSortValue 284

GrafÞti Manager Functions 285
GrfAddMacro . 285
GrfAddPoint . 285
GrfCleanState . 286
GrfDeleteMacro . 286
GrfFindBranch . . 287
GrfFilterPoints . . 287
GrfFlushPoints. . 288
GrfGetAndExpandMacro 288
GrfGetGlyphMapping 289
GrfGetMacro . 290
GrfGetMacroName 290
xiv Developing Palm OS 2.0 Applications, Part I

Table of Contents

GrfGetNumPoints 291
GrfGetPoint . 291
GrfGetState . 292
GrfInitState . 293
GrfMatch . 293
GrfMatchGlyph . 294
GrfProcessStroke 295
GrfSetState . 296
SysShortCutListDialog 296
Functions for System Use Only. 297

GrafÞtiShift Functions 298
GsiEnable . . 298
GsiEnabled . 298
GsiInitialize . 299
GsiSetLocation . . 299
GsiSetShiftState . 300

Insertion Point Functions 301
InsPtEnable . 301
InsPtEnabled . 301
InsPtGetHeight . 302
InsPtGetLocation 302
InsPtSetHeight . . 303
InsPtSetLocation 303
Functions for System Use Only. 304

Key Manager Functions 305
KeyCurrentState . 305
KeyRates . 306
Functions for System Use Only. 306

List UI Functions . 308
LstDrawList . . 308
LstEraseList . 308
LstGetNumberOfItems 309
LstGetVisibleItems 309
LstGetSelection . 310
LstGetSelectionText. 310
LstHandleEvent . 311
Developing Palm OS 2.0 Applications, Part I xv

Table of Contents

LstMakeItemVisible 312
LstPopupList . 312
LstScrollList 313
LstSetDrawFunction 313
LstSetHeight. . 314
LstSetListChoices 314
LstSetPosition . 315
LstSetSelection . . 315
LstSetTopItem . 316

Menu Functions . 317
MenuDispose . 317
MenuDrawMenu. 318
MenuEraseStatus. 318
MenuGetActiveMenu 319
MenuHandleEvent 320
MenuInit . 321
MenuSetActiveMenu 321

Miscellaneous User Interface Functions 322
AbtShowAbout . 322
DayHandleEvent 322
LocGetNumberSeparators 323
KeySetMask 323

Pen Manager Functions 324
PenCalibrate. . 324
PenResetCalibration 325
Functions for System Use Only. 325

Scrollbar Functions . 327
SclDrawScrollBar 327
SclGetScrollBar 327
SclHandleEvent 328
SclSetScrollBar 329

Functions for System Use Only 330
Time Selection Functions 333

SelectDay 333
SelectDayV10 333
SelectTime. . 334

Table Functions. . 335
xvi Developing Palm OS 2.0 Applications, Part I

Table of Contents

TblDrawTable . 335
TblEditing. . 335
TblEraseTable . 336
TblFindRowData 336
TblFindRowID . . 337
TblGetBounds . 337
TblGetColumnSpacing 338
TblGetColumnWidth 338
TblGetCurrentField. 339
TblGetItemBounds 339
TblGetItemInt . 340
TblGetLastUsableRow 340
TblGetNumberOfRows 341
TblGetRowData . 341
TblGetRowHeight 342
TblGetRowID . 342
TblGetSelection . 343
TblGrabFocus . 343
TblHandleEvent . 344
TblHasScrollBar 344
TblInsertRow . 345
TblMarkRowInvalid 346
TblMarkTableInvalid 346
TblRedrawTable . 347
TblReleaseFocus . 347
TblRemoveRow . 348
TblRowInvalid . . 348
TblRowSelectable 349
TblRowUsable . . 349
TblSelectItem . 350
TblSetBounds 350
TblSetColumnEditIndicator 351
TblSetColumnSpacing 351
TblSetColumnUsable 352
TblSetColumnWidth 352
TblSetCustomDrawProcedure 353
Developing Palm OS 2.0 Applications, Part I xvii

Table of Contents

TblSetItemInt . 354
TblSetItemPtr . 355
TblSetItemStyle . 356
TblSetLoadDataProcedure 357
TblSetRowData . 358
TblSetRowHeight 358
TblSetRowID . 359
TblSetRowSelectable 359
TblSetRowStaticHeight 360
TblSetRowUsable 360
TblSetSaveDataProcedure 361
TblUnhighlightSelection 361

Window Functions . 363
WinAddWindow 363
WinClipRectangle 363
WinCopyRectangle 364
WinCreateWindow 365
WinCreateOffscreenWindow. 366
WinDeleteWindow 367
WinDisableWindow 367
WinDisplayToWindowPt 368
WinDrawBitmap 368
WinDrawChars . 369
WinDrawGrayLine 369
WinDrawGrayRectangleFrame 370
WinDrawInvertedChars. 371
WinDrawLine . 371
WinDrawRectangle 372
WinDrawRectangleFrame 373
WinDrawWindowFrame 373
WinEnableWindow 374
WinEraseChars . 374
WinEraseLine . 375
WinEraseRectangle 375
WinEraseRectangleFrame 376
WinEraseWindow 376
xviii Developing Palm OS 2.0 Applications, Part I

Table of Contents

WinFillLine . 377
WinFillRectangle 377
WinGetActiveWindow 378
WinGetClip . 378
WinGetDisplayExtent 379
WinGetDisplayWindow 379
WinGetDrawWindow. 380
WinGetFirstWindow 380
WinGetFramesRectangle 381
WinGetPattern . . 382
WinGetWindowBounds 382
WinGetWindowExtent 383
WinGetWindowFrameRect 383
WinGetWindowPointer 384
WinInitializeWindow 384
WinInvertChars . 385
WinInvertLine . . 385
WinInvertRectangle 386
WinInvertRectangleFrame 386
WinModal. . 387
WinRemoveWindow 387
WinResetClip . 388
WinRestoreBits. . 388
WinSaveBits . . 389
WinScrollRectangle 390
WinSetActiveWindow 391
WinSetClip . 391
WinSetDrawWindow 392
WinSetPattern . 392
WinSetUnderlineMode 393
WinSetWindowBounds 393
WinWindowToDisplayPt 394

Index . 395
Developing Palm OS 2.0 Applications, Part I xix

Table of Contents

xx Developing Palm OS 2.0 Applications, Part I

About This Document

Developing Palm OS 2.0 Applications, Part I, is part of the Palm OS
Software Development Kit. This introduction provides an overview
SDK documentation, discusses what materials are included in this
document and what conventions are used.

Palm OS SDK Documentation
The following documents are part of the SDK:

Document Description

Palm OS 2.0 Tutorial 21 Phases step developers through using the different part
of the system. Example applications for each phase are part
of the SDK.

Developing Palm OS
2.0 Applications.
Part I: Interface Man-
agement

A programmerÕs guide and reference document that intro-
duces all important parts of developing an applications. See
What This Guide Contains for details.

Developing Palm OS
2.0 Applications.
Part II. System Man-
agement.

A programmerÕs guide and reference document for all sys-
tem managers, such as the string manager or the system
event manager.

Developing Palm OS
2.0 Applications,
Part III. Memory and
Communications Man-
agement

ProgrammerÕs guide and reference document about

¥ Memory management; both the database manager and
the memory manager.

¥ The Palm OS communications library for serial com-
munication.

¥ The Palm OS net library, which provides basic net-
work services.

Palm OS 2.0 Cookbook. Information about using CodeWarrior for Pilot to create
projects and executables. Also provides a variety of design
guidelines, including localization design guidelines.
Developing Palm OS Applications, Part I 21

About This Document

What This Guide Contains

What This Guide Contains
This section provides an overview of the chapters in this guide.

¥ Chapter ÒDeveloping Palm OS Applications,Ó helps you un-
derstand the basic principles of application development.
The chapter provides information on:
Ð steps involved in creating an application,
Ð internal structure of an application
Ð naming conventions
Ð basic hardware
Ð the different Palm OS devices

¥ Chapter 2, ÒApplication Control Flow,Ó explains how appli-
cations and the system work together using events and
launch codes.
Ð Events are posted by the system in response to user input

and are then either handled by the system itself or by the
application.

Ð Launch codes are sent to the top level of the event loop.
They are usually sent by the system and require an appli-
cation response. Applications can, however, send launch
codes themselves if desired.

¥ Chapter 3, ÒPalm OS User Interface Resources,Ó provides de-
tailed information about all the UI resources an application
can use a templates for its user interface.

¥ Chapter 4, ÒPalm OS User Interface Objects,Ó discusses the C
structures applications can use to manipulate the UI re-
sources discussed in chapter 3. Each object is related with one
or more UI resources and has a number of Þelds and at-
tributes an application program can change.

¥ Chapter 5, ÒUsing Palm OS UI Managers,Ó discusses the
functionality of all managers related to the Palm OS user in-
terface. For each manager, the chapter provides a functional-
ity overview, discussion of how to use that functionality, and
list of functions.

¥ Chapter 6, ÒPalm OS Events,Ó provides reference-style infor-
mation for each event.

¥ Chapter 7, ÒPalm OS User Interface Functions,Ó provides ref-
erence-style information for each UI function.
22 Developing Palm OS Applications, Part I

About This Document

Conventions Used in This Guide

Conventions Used in This Guide
This guide uses the following typographical conventions:

This style... Is used for...

fixed width font Code elements such as function,
structure, Þeld, bitÞeld.

fixed width underline Emphasis (for code elements).

bold Emphasis (for other elements).

blue and underlined Hot links.

black and underlined 2.0 function names (headings only)

red and underlined 2.0 function names (in Table of
Contents only)
Developing Palm OS Applications, Part I 23

About This Document

Conventions Used in This Guide
24 Developing Palm OS Applications, Part I

1
Developing Palm
OS Applications
This chapter helps you understand the basic principles of Palm OS
application development. It discusses these topics:

¥ Overview of Application Development explains the steps
involved in creating an application.

¥ Internal Structure of an Application provides some information
about resources the system creates for each application and
how they are used.

¥ Naming Conventions briefly explains naming conventions used
for functions and structures.

¥ Basic Hardware gives some background information about
the Palm OS device.

¥ Different Palm OS Devices discusses how to make 1.0
applications run on the new devices, and how to run 2.0
applications on a 1.0 device.
Developing Palm OS 2.0 Applications, Part I 25

Developing Palm OS Applications
Overview of Application Development
Overview of Application Development
This section provides an overview of the application development
process for the Palm OS device. It introduces the different compo-
nents of an application in the order that youÕll most likely work with
them, and provides many links to related sections in this guide and
pointers to other relevant documentation included in your develop-
er package.

You learn about these topics:

¥ Designing UI and Program Functionality
¥ Constructing UI Resources
¥ Using Managers and Filling Out the Program Logic
¥ Building, Debugging, and Testing
¥ Building the Application and Running it on the Device
¥ Using Other Components of the SDK

Designing UI and Program Functionality

The Þrst step in application development is to envision what users
will do as they interact with your application. After that, itÕs useful
to implement a small prototype and have some users interact with
it. When youÕre satisÞed with the basic interface and user interac-
tion, you can move on from the prototype to a complete application.

This section looks at the steps involved in creating a working user
interface.

Designing Screen Layout and User Interaction

Careful UI design is critical for a Palm OS application because using
a Palm OS device differs from using other computers. Here are a
few points to consider when designing your application:
26 Developing Palm OS 2.0 Applications, Part I

Developing Palm OS Applications
Overview of Application Development
The Palm OS development team has put together a set of design
guidelines that were used as the basis for the four applications resi-
dent on the device (MemoPad, Address Book, etc.). These guidelines
are summarized in Chapter 1 of the ÒPalm OS Cookbook.Ó Some in-
formation, such as recommended font size or border width, is in-
cluded for each resource in Chapter 3, ÒPalm OS User Interface Re-
sources.Ó

Note: Follow the design guidelines in chapter 1 of the ÒPalm OS
CookbookÓ to make your application easier to learn and to use.

Do this... Because of this...

Pay attention to pen-based user
input paradigms.

Pen-based user input differs
from keyboard-based user input.

Plan integration with the desk-
top early.

Your conduit/backup strategy
and your integration with desk-
top software can make your pro-
gram much more useful.

Ofßoad some computationally
intensive tasks to the desktop;
use the device as a satellite
viewer.

Device runs on batteries and
doesnÕt have the same process-
ing power than the desktop PC.

Limit data input where possible. GrafÞti and the popup keyboard
are useful tools, but not as easy
to use as a regular keyboard.

Design the layout carefully.
Strive for a balance between
providing enough information
and overcrowding the screen.

Screen size is very limited.
Developing Palm OS 2.0 Applications, Part I 27

Developing Palm OS Applications
Overview of Application Development
Constructing UI Resources

The resource templates that were used to implement all the applica-
tions resident on the device are provided with your development
environment.

The Palm OS 2.0 SDK Constructor tool lets you use the resource
templates to create your own buttons, popup lists, menus, and other
parts of the user interface.

The process of creating new resources is described in detail in the
tutorial; the basic process consists of entering values into the at-
tribute Þelds of the resource templates. Each resource has to have an
ID; and may also need a width, height, label, or other attributes. The
Constructor tool assigns the ID.

Macintosh users can also use ResEdit to create resources, but have to
assign the IDs explicitly in that case.

The recommended (or required) values for the different Þelds in
each resource are provided in Chapter 3, ÒPalm OS User Interface
Resources.ÓThe ÒPalm OS TutorialÓ provides ÒrecipesÓ for creating
each resource type in the TutorialÕs ÒResource RecipesÓ chapter.

When you build your program, the system converts the UI resourc-
es into data structures that the system can work with. Different re-
source types map to different data structures, that is, UI object type.
For example, menu resources map to C structures that have system-
deÞned behavior for turning highlighting on and off. Fields have
system-deÞned behavior for positioning input cursors and process-
ing user input. Note that there isnÕt a 1:1 mapping between resourc-
es and UI objects. This is explained in more detail in the relevant
chapters.

The operating system provides quite a bit of default functionality
for each UI object type. Your program logic can use, replace, or ex-
tend that functionality. Detailed information on all structures and
their Þelds is provided in Chapter 4, ÒPalm OS User Interface Ob-
jects.Ó
28 Developing Palm OS 2.0 Applications, Part I

Developing Palm OS Applications
Overview of Application Development
Using Managers and Filling Out the Program
Logic

To successfully build a Palm OS application, you have to under-
stand how the system itself is structured and how to structure your
application. You learn about Using Events and Launch Codes and
Using Palm OS Managers.

Using Events and Launch Codes

Palm OS applications are single-threaded, event-driven programs.
The events are generated by the system, based on user input and
system interrupts. The program logic may generate events as well.
The programs are structured as a series of event handlers dis-
patched from a single event loop in each program.

Launch codes allow the system (or another application) to send a re-
quest to an application at the top level. For example, one application
that supports global Þnd may bring up the Find dialog and the sys-
tem will query all currently loaded applications that handle the glo-
bal Þnd. In response to a launch code, an application doesnÕt neces-
sarily display its user interface; instead, it only performs the
requested action. This is described in more detail in How Launch
Codes Control an Application.

Note: To make your application interact appropriately with other
applications on the device and to avoid problems later, read
Chapter 1 of the Palm OS Cookbook.

Using Palm OS Managers

The Palm OS system API is divided into functional areas called
managers. Each manager has a distinct three-letter preÞx used on all
API calls and structures and is discussed separately below.

¥ All UI related managers, such as the graffiti or key manages,
are discussed in ÒUsing Palm OS UI Managers.Ó

¥ All system related managers, such the string or system event
manager, are discussed in ÒUsing Palm OS System ManagersÓ
of ÒDeveloping Palm OS Applications, Part II.Ó
Developing Palm OS 2.0 Applications, Part I 29

Developing Palm OS Applications
Overview of Application Development
¥ The memory manager, data manager, and resource manager
are explained in Chapter 1, ÒPalm OS Memory ManagementÓ
of ÒDeveloping Palm OS Applications, Part III.Ó

¥ The communications API is explained in Chapter 2, ÒPalm OS
CommunicationsÓ of ÒDeveloping Palm OS Applications, Part
III.Ó

Note: Avoid using functions from standard desktop C libraries.
These will significantly slow down and enlarge your program.
Many will not work at all on the device. Use functions provided by
the Palm OS managers instead.

Building, Debugging, and Testing

To build your application for initial debugging and testing, you use
the CodeWarrior Interactive Development Environment (IDE) to
build an executable. Documentation for the CodeWarrior IDE is pro-
vided with CodeWarrior.

On the Macintosh, you can then use the PalmPilot Simulator to run
the executable on a simulated Palm OS device on the Macintosh
screen. You can interact with the simulated buttons, menus, or
Þelds, and even enter GrafÞti characters using the mouse. You can
also use the Simulator to test your application using an automated
test suite called Gremlins. Using the Simulator is discussed in detail
in Chapter 2, ÒUsing the Palm OS Simulator,Ó of the ÒPalm OS
Cookbook.Ó

On both Macintosh and PC, you can use the CodeWarrior Debugger
to download the application to a device connected with the Desktop
computer and test it there. The CodeWarrior debugging environ-
ment is also documented in the CodeWarrior Documentation folder.
30 Developing Palm OS 2.0 Applications, Part I

Developing Palm OS Applications
Overview of Application Development
Building the Application and Running it on the
Device

When youÕve completed building and testing the application with
the Simulator, you can build a second project inside CodeWarrior
that lets you run your application on the device.

This process is described in Chapter 3, ÒDebugging in Standalone
Mode on the DeviceÓ of the Palm OS Cookbook an in Phase 20 of the
tutorial.

Phase 20 of the Palm OS Tutorial provides a sample project and
step-by-step instructions for setting up a project to build an execut-
able and for downloading and running the application on the de-
vice.

Note: When using the Palm OS 1.0 SDK, developers had to
create a Makefile to create an executable they could download
and run on the device. This is no longer necessary; instead,
developers use a project thatÕs built with different settings.

Using Other Components of the SDK

The Palm OS has provided the following additional items in the de-
velopment kit to help you come up to speed quickly:

¥ The Palm OS tutorial provides step-by-step examples of
developing an application from start to finish in its more
than twenty phases. Examples, both resources and code that
is incrementally changed, are included.

¥ The actual source code for the four PIM applications on the
PalmPilot is included as examples on your SDK CD. The code
can be a valuable aid when you develop your own program.
The software development kit provides a royalty-free license
that permits you to use any or all of the source code from the
examples in your application.

¥ The Palm OS net library provides basic networking capabilities,
compatible with the Berkeley Sockets API. The net library is
discussed in Developing Palm OS Applications, Part III.
Developing Palm OS 2.0 Applications, Part I 31

Developing Palm OS Applications
Internal Structure of an Application
Internal Structure of an Application
Every application running under Palm OS must have certain mini-
mum system (not UI) resources deÞned to be recognized by the
Palm OS system software. These required resources are created for
your application by the development environment. You may Þnd
that you need additional, application-speciÞc resources.

Resources consist of a type and an ID, where the type is a 4-byte
ASCII string like ÔcodeÕ and the ID is a decimal integer preceded by
a pound sign.

The ÔcodeÕ #1 Resource

The system creates a ÔcodeÕ #1 resource for every application. This
resource is the entry point for the application and is where applica-
tion initialization is performed. When the Palm OS device launches
an application, it starts executing at the Þrst byte of the ÔcodeÕ #1 re-
source. All of the application code that you provide is included in
this resource as well.

Typically, some startup code provided with the Palm OS
development environment is linked in with your application code.
This startup code works as follows:

¥ The startup code performs application setup and
initialization.

¥ The startup code calls your main routine.
¥ When your main routine exits, control is returned to the startup

code, which performs any necessary cleanup of your
application and returns control to the Palm OS system software.

The ÔprefÕ #0 Resource

The system creates a ÔprefÕ #0 resource for every application. This
resource contains startup information necessary for launching your
application. The resource includes

¥ Required stack size

¥ Dynamic heap space required
32 Developing Palm OS 2.0 Applications, Part I

Developing Palm OS Applications
Internal Structure of an Application
¥ Task priority

Note that although the ÔprefÕ #0 resource must be present, itÕs main-
ly for future use because user-interface applications currently donÕt
get their own stack or priority.

The ÔcodeÕ #0 and ÔdateÕ #0 Resources

The ÔcodeÕ #0 and ÔdataÕ #0 resources contain the required size of
your global data and an image of the initialized area of that global
data. When your application is launched, the system allocates a
memory chunk in the dynamic heap thatÕs big enough to hold all
your globals.The ÔdataÕ #0 resource is then used to initialize those
globals.
Developing Palm OS 2.0 Applications, Part I 33

Developing Palm OS Applications
Naming Conventions
Naming Conventions
The following conventions are used throughout the Palm OS API:

¥ Functions start with a capital letter.
¥ All functions belonging to a particular manager start with a

two- or three-letter prefix, such as ÒCtlÓ for control functions or
ÒFtrÓ for functions that are part of the feature manager.

¥ Events and other constants start with a lowercase letter.
¥ Structure elements start with a lowercase letter.
¥ Global variables start with a capital letter.
¥ Typedefs start with a capital letter and end with ÒtypeÓ (for

example, DateFormatType, found in DateTime.h).
¥ Macintosh ResEdit resource types usually start with a

lowercase letter followed by three capital letters, for example
tSTR or tTBL. (Customized Macintosh resources provided with
your developer package are all uppercase, for example, MENU.
Some resources, such as Talt, donÕt follow the conventions.)

¥ Members of an enumerated type start with a lowercase prefix
followed by a name starting with a capital letter, as follows:

enum formObjects {
frmFieldObj,
frmControlObj,
frmListObj,
frmTableObj,
frmBitmapObj,
frmLineObj,
frmFrameObj,
frmRectangleObj,
frmLabelObj,
frmTitleObj,
frmPopupObj,
frmGraffitiStateObj,
frmGadgetObj};

typedef enum formObjects FormObjectKind;
34 Developing Palm OS 2.0 Applications, Part I

Developing Palm OS Applications
Basic Hardware
Basic Hardware
This section helps you understand the device for which youÕre de-
veloping your application.

It discusses RAM and ROM, Palm OS Modes of Operation, Palm OS
Connectivity, Real-Time Clock and Timer, Palm OS Device Screen
and Sound Generation, Palm OS Device Screen and Sound Genera-
tion, and Palm OS Device Reset Switch.

RAM and ROM

The 1.0 and 2.0 versions of Palm OS run on the Motorola 68328
ÒDragonBallÓ processor. The Þrst memory card shipped with the
device has 128K of pseudostatic RAM and 512K of ROM for the sys-
tem software and application code. A portion of the RAM (32K) is
reserved for system use and is not available for storing user data.
Both the ROM and RAM are on a memory module that users can re-
place. The Palm OS device does not have a disk drive or PCMCIA
support.

Note: The PalmPilot Professional has additional RAM for use by
the network library. This memory is not for application use.

Palm OS Modes of Operation

To minimize power consumption, Palm OS dynamically switches
between three different modes of operation: sleep mode, doze
mode, and running mode.

¥ In sleep mode, the device looks like itÕs turned off: the
display is blank, the digitizer is inactive, and the main clock
is stopped. The only circuits still active are the real-time
clock and interrupt generation circuitry.

The device enters this mode when there is no user activity for
a number of minutes or when the user presses the off button.
The device comes out of sleep mode only when there is an in-
terrupt, for example, when the user presses a button.
Developing Palm OS 2.0 Applications, Part I 35

Developing Palm OS Applications
Basic Hardware
¥ In doze mode, the main clock is running, the device appears to
be turned on, and the processorÕs clock is running but itÕs not
executing instructions (that is, itÕs halted). When the processor
receives an interrupt, it comes out of halt and starts processing
the interrupt.

The device enters this mode whenever itÕs on but has no user
input to process.

¥ In running mode, the processor is actually executing
instructions.

The device enters this mode when it detects user input (like a
tap on the screen) while in doze mode or when it detects an
interrupt while in doze or sleep mode. The device stays in
running mode only as long as it takes to process the user
input (most likely less than a second), then it immediately re-
enters doze mode.

To maximize battery life, the processor on the Palm OS device is
kept out of running mode as much as possible. Any interrupt gener-
ated on the device must therefore be capable of ÒwakingÓ up the
processor. The processor can receive interrupts from the serial port,
the hard buttons on the case, the button on the cradle, the program-
mable timer, the memory module slot, the real-time clock (for
alarms), the low-battery detector, and any built-in peripherals such
as a pager or modem.
36 Developing Palm OS 2.0 Applications, Part I

Developing Palm OS Applications
Basic Hardware
Palm OS Connectivity

The Palm OS device uses its serial port for implementing desktop
PC connectivity or other external communication. The serial com-
munication is fully interrupt-driven for receiving data. Currently,
interrupt-driven transmission of data is not implemented in soft-
ware, but the hardware does support it. Five external signals are
used for this communication:

¥ SG (signal ground)

¥ TxD (transmit data)

¥ RxD (receive data)

¥ CTS (clear to send)

¥ RTS (request to send)

The Palm OS device has an external connector that provides:

¥ Five serial communication signals

¥ General-purpose output

¥ General-purpose input

¥ Cradle button input

Real-Time Clock and Timer

The Palm OS device has a real-time clock and programmable timer
as part of the 68328 processor. The real-time clock maintains the cur-
rent time even when the system is in sleep mode (turned off). ItÕs ca-
pable of generating an interrupt to wake the device when an alarm
is set by the user. The programmable timer is used to generate the
system tick count interrupts (100 times/second) while the processor
is in doze or running mode. The system tick interrupts are required
for periodic activity such as polling the digitizer for user input, key
debouncing, etc.

The Palm OS device has one memory module socket for installing
modules that may contain ROM or RAM storage.
Developing Palm OS 2.0 Applications, Part I 37

Developing Palm OS Applications
Basic Hardware
Palm OS Device Screen and Sound Generation

The Þrst version of the Palm OS device has an LCD screen of
160x160 pixels. The LCD controller built into the 68328 maps a por-
tion of system memory to the LCD. Currently, the software only
supports 1 bit/pixel monochrome graphics, although the controller
can support 2 bits/pixel gray scale.

The Palm OS device has a built-in digitizer overlaid onto the LCD
screen and extending about an inch below the screen. This digitizer
is capable of sampling accurately to within 0.35 mm (.0138 in) with
up to 50 accurate points/second. When the device is in doze mode,
an interrupt is generated when the pen is Þrst brought down on the
screen. After a pen down is detected, the system software polls the
pen location periodically (every 20 ms) until the pen is again raised.

The Palm OS device has primitive sound generation. A square wave
is generated directly from the 68328Õs PWM circuitry. There is fre-
quency and duration control but no volume control.

Palm OS Device Reset Switch

Any reset is normally performed by sticking a bent-open paper clip
or a large embroidery needle into the small hole in the back of the
Pilot. This hole, known as the Òreset switchÓ is in the middle of the
serial number sticker. Depending on additional keys held down, the
reset behavior varies, as follows:

Soft Reset

A soft reset clears all of the dynamic heap (Heap 0, Card 0). The
storage heaps remain untouched. The operating system restarts
from scratch with a new stack, new global variables, restarted driv-
ers, and a reset comm port. All applications on the device receive a
SysAppLaunchCmdReset message.

Soft Reset + Up Arrow

Holding the up-arrow down while pressing the reset switch with a
paper clip causes the same soft reset logic with the following two
exceptions:
38 Developing Palm OS 2.0 Applications, Part I

Developing Palm OS Applications
Basic Hardware
¥ The SysAppLaunchCmdReset message is not sent to applica-
tions. This is useful if there is an application on the device that
crashes upon receiving this message (not uncommon) and there-
fore prevents the system from booting.

¥ The OS wonÕt load any system patches during startup. This is
useful if you have to delete or replace a system patch database. If
the system patches are loaded and therefore open, the cannot be
replaced or deleted from the system.

Hard Reset

A hard reset is performed by pressing the reset switch with a paper
clip while holding down the power key. This has all the effects of the
soft reset. In addition, the storage heaps are erased. As a result, all
programs, data, patches, user information, etc. are lost. A conÞrma-
tion message is displayed asking the user to conÞrm the deletion of
all data.

The SysAppLaunchCmdReset message is sent to the applications at
this time. If the user selected the ÒDelete all dataÓ option, the digitiz-
er calibration screen comes up Þrst. The default databases for the
four main applications is copied out of the ROM.

If you hold down the up arrow key when the ÒDelete all dataÓ mes-
sage is displayed, and then press the other four application buttons
while still holding the up arrow key, the system is booted without
reading the default databases for the four main applications out of
ROM.
Developing Palm OS 2.0 Applications, Part I 39

Developing Palm OS Applications
Different Palm OS Devices
Different Palm OS Devices
In spring 1997, two new Palm OS devices became available. As a re-
sult, there are now 3 devices:

¥ Palm OS 1.0 device (Pilot 1000 and Pilot 5000)

¥ Palm OS 2.0 device (PalmPilot and PalmPilot Professional)

This section summarizes migrating to Palm OS 2.0 by discussing
Running 1.0 Applications on the 2.0 Device, Compiling 1.0 Applica-
tions With Palm OS 2.0, Using Palm OS 2.0 Features, and Retrieving
the System Version Number.

Caution: The sample PIM applications (Date Book, Address
Book, Memo Pad, To Do List) do not have OS version checking
code in them because they are normally built into a 2.0 ROM and
the check is unnecessary.
Compiling these samples and running them on a 1.0 device will
cause the device to crash, but will not cause the loss of any data.

Running 1.0 Applications on the 2.0 Device
As a rule, all Palm OS applications developed with the Palm OS 1.0
SDK should run error-free on a 2.0 device. There are two possible
pitfalls:

¥ ßdChangedEvent ChangeÑThe operating system now cor-
rectly sends a fldChangedEvent whenever a Þeld object is
changed. Previously, the event was at times not sent, espe-
cially when a fldSetText operation was performed. If your
application doesnÕt catch the events that are now sent, it may
have problems.

¥ Non-standard toolsÑIf your application was not developed
with Metrowerks Code Warrior for Pilot, it may run into
problems. One know problem can occur if the application:

Ð was compiled with optimization turned on

Ð uses system preferences
40 Developing Palm OS 2.0 Applications, Part I

Developing Palm OS Applications
Different Palm OS Devices
Compiling 1.0 Applications With Palm OS 2.0
If you want to compile your 1.0 application under 2.0, you need to
be aware of a number of functions with a changed API. For any of
these functions, the old function still exists with a V10 (Òv one zeroÓ)
sufÞx.

You can choose one of two options:

¥ Change the function name to keep using the old API. Your 1.0
application will then run error free on a 2.0 device.

¥ Update your application to use the new API. The application
will then run error free and have access to some new
functionality.

Using Palm OS 2.0 Features
Because Palm OS applications can now run on different operating
system versions (on the different devices), itÕs important your appli-
cation checks that the functionality it uses is actually supported.
Most notably:

¥ All applications that use 2.0 features need to run on a Palm
OS device version 2.0 (PalmPilot or PalmPilot Professional).
They wonÕt run on a Palm OS 1.0 device.

¥ All applications that use the network library can only run on a
PalmPilot Professional system.

Running 2.0 Applications on a 1.0 Device
If youÕre writing an application under Palm OS that doesnÕt use any
of the new features in 2.0, that application can run on a 1.0 device
without any further modiÞcation. 2.0 applications are fully data-
compatible with 1.0 applications.
Developing Palm OS 2.0 Applications, Part I 41

Developing Palm OS Applications
Different Palm OS Devices
Retrieving the System Version Number

To retrieve the system version number, call:
FtrGet(sysFtrCreator, sysFtrNumROMVersion);

The system returns:

¥ 0x01003001 for the 1.0 device

¥ 0x02003000 for both PalmPilot 2.0 and PalmPilot Professional

A more detailed discussion of version checking is in Chapter 1 of
the Palm OS Cookbook.
42 Developing Palm OS 2.0 Applications, Part I

2
Application Control
Flow
Palm OS applications are generally single-threaded, event-driven
programs. They may use predeÞned UI elements (sometimes re-
ferred to as UI objects) or they may create their own UI elements. All
applications must use the memory and data management facilities
provided by the system and must be considerate of the system and
other applications by periodically allowing system event handlers
access to the event ßow.

The ßow of control in Palm OS is driven by two different mecha-
nisms, discussed in some detail in this chapter:

¥ How Events Control an Application discusses the event
manager, the main interface between the Palm OS system
software and an application. It discusses in some detail
what an application does in response to user input,
providing code fragments as examples where needed.

¥ How Launch Codes Control an Application discusses how
an application handles requests for immediate action at its
top level (PilotMain). For example, there are launch codes
for launching an application, for telling an application to
search its data for a text string, and for notifying an
application that data has been synchronized. Using launch
codes, an application can request information or actions
from another application.

Figure 2.1 illustrates control ßow in a typical application.
Developing Palm OS 2.0 Applications, Part I 43

Application Control Flow
Figure 2.1 Control Flow in a Typical Application

EvtGetEvent

SysHandleEvent

MenuHandleEvent

FormDispatchEvent

Is there an event?

yes

no

Is this a system function?
Process event,
generate other events
as necessary, return. (e.g., power-off, GrafÞti input)

Handle menu interface,

Remain in loop until
there is an event.

then go on.

ApplicationHandleEvent

yes

no

Is this a menu?

Load from resources, set event
handler for form loaded.

FrmHandleEvent

yes

no

Is this a frmLoadEvent?

Did application handler
complete event processing?

Provide default processing
for event.

yes

no

no

yes

Dispatch event to applications
handler for form.
44 Developing Palm OS 2.0 Applications, Part I

Application Control Flow
How Events Control an Application
How Events Control an Application
This section starts with a high-level overview of the stages of a Palm
OS application, then provides more information on the event loop.

Note that each event is discussed in some detail in Chapter 6, ÒPalm
OS Events.Ó The event ßow for each User Interface resource is dis-
cussed in Chapter 3, ÒPalm OS User Interface Resources.Ó The
event ßow for each User Interface object is discussed in Chapter 4,
ÒPalm OS User Interface Objects.Ó

Basic Application Stages

When an application receives the launch code
sysAppLauchCommandNormalLaunch (see How Launch Codes
Control an Application), it begins with a startup routine, then goes
into an event loop, and Þnally exits with a stop routine.

¥ The Startup Routine is the applicationÕs opportunity to
perform actions that need to happen once, and only once, at
startup. A typical startup routine opens databases, reads
saved state information (such as UI preferences), and
initializes the applicationÕs global data.

¥ The Event Loop fetches events from the queue and
dispatches them, taking advantage of default system
functionality as appropriate.

¥ The Stop Routine provides an opportunity for the
application to perform cleanup activities before exiting.
Typical activities include closing databases and saving state
information.

The following sections look at each of the stages in some detail.
Note that for each phase, Palm OS provides a default behavior that
can help you keep application code to a minimum. If your applica-
tion has special requirements, your application may instead handle
the bulk of the work itself.
Developing Palm OS 2.0 Applications, Part I 45

Application Control Flow
How Events Control an Application
The Startup Routine

During the startup routine, your application should perform these
actions:

1. Get system-wide preferences (for example for numeric or
date and time formats) and use them to initialize global vari-
ables that will be referenced throughout the application.

2. Find the application database by creator type. If none exists,
create it and initialize it.

3. Get application-speciÞc preferences and initialize related glo-
bal variables.

4. Initialize any other global variables.

Listing 2.1 shows an example StartApplication function from
the datebook application.

Listing 2.1 StartApplication from Datebook.c

static Word StartApplication (void)
{

Word error = 0;
Err err = 0;
UInt mode;
DateTimeType dateTime;
DatebookPreferenceType prefs;
SystemPreferencesType sysPrefs;
Word prefsSize;

// Determime if secret records should be displayed.
PrefGetPreferences (&sysPrefs);
HideSecretRecords = sysPrefs.hideSecretRecords;

if (HideSecretRecords)
mode = dmModeReadWrite;

else
mode = dmModeReadWrite | dmModeShowSecret;

// Get the time formats from the system preferences.
TimeFormat = sysPrefs.timeFormat;
46 Developing Palm OS 2.0 Applications, Part I

Application Control Flow
How Events Control an Application
// Get the date formats from the system preferences.
LongDateFormat = sysPrefs.longDateFormat;
ShortDateFormat = sysPrefs.dateFormat;

// Get the starting day of the week from the system preferences.
StartDayOfWeek = sysPrefs.weekStartDay;

// Get today's date.
TimSecondsToDateTime (TimGetSeconds (), &dateTime);
Date.year = dateTime.year - firstYear;
Date.month = dateTime.month;
Date.day = dateTime.day;

// Find the application's data file. If it doesn't exist
// create it.
ApptDB = DmOpenDatabaseByTypeCreator(datebookDBType,

sysFileCDatebook, mode);
if (! ApptDB)

{
error = DmCreateDatabase (0, datebookDBName, sysFileCDatebook,

datebookDBType, false);
if (error) return error;

ApptDB = DmOpenDatabaseByTypeCreator(datebookDBType,
sysFileCDatebook, mode);

if (! ApptDB) return (1);

error = ApptAppInfoInit (ApptDB);
if (error) return error;
}

// Read the preferences / saved-state information. There is
// only one version of the DateBook preferences so don't worry
// about multiple versions.
prefsSize = sizeof (DatebookPreferenceType);
Developing Palm OS 2.0 Applications, Part I 47

Application Control Flow
How Events Control an Application
if (PrefGetAppPreferences (sysFileCDatebook, datebookPrefID,
&prefs, &prefsSize,

true) != noPreferenceFound)
{
DayStartHour = prefs.dayStartHour;
DayEndHour = prefs.dayEndHour;
AlarmPreset = prefs.alarmPreset;
NoteFont = prefs.noteFont;
SaveBackup = prefs.saveBackup;
ShowTimeBars = prefs.showTimeBars;
CompressDayView = prefs.compressDayView;
ShowTimedAppts = prefs.showTimedAppts;
ShowUntimedAppts = prefs.showUntimedAppts;
ShowDailyRepeatingAppts = prefs.showDailyRepeatingAppts;
}

TopVisibleAppt = 0;
CurrentRecord = noRecordSelected;

// Laod the far call jump table.
FarCalls.apptGetAppointments = ApptGetAppointments;
FarCalls.apptGetRecord = ApptGetRecord;
FarCalls.apptFindFirst = ApptFindFirst;
FarCalls.apptNextRepeat = ApptNextRepeat;
FarCalls.apptNewRecord = ApptNewRecord;
FarCalls.moveEvent = MoveEvent;

return (error);
}

48 Developing Palm OS 2.0 Applications, Part I

Application Control Flow
How Events Control an Application
The Event Loop

When startup is complete, the application enters an event loop.
While in the loop, the application continuously checks for events on
the event queue. If there are events on the queue, the application has
to process them as determined in the event loop. As a rule, the
events are passed on to the system, which knows how to handle
them. For example, the system knows how to respond to pen taps
on forms or menus.

The application typically remains in the event loop until the system
tells it to shut itself down by sending an appStopEvent (not a launch
code) through the event queue. The application must detect this
event and terminate.

Listing 2.2 Top-Level Event Loop Example

static void EventLoop (void)
{

Word error;
EventType event;
do

{
EvtGetEvent (&event, evtWaitForever);

PreprocessEvent (&event);

if (! SysHandleEvent (&event))

if (! MenuHandleEvent (NULL, &event, &error))

if (! ApplicationHandleEvent (&event))
FrmDispatchEvent (&event);

#if EMULATION_LEVEL != EMULATION_NONE
ECApptDBValidate (ApptDB);

#endif
}

while (event.eType != appStopEvent);
}

Developing Palm OS 2.0 Applications, Part I 49

Application Control Flow
How Events Control an Application
In the event loop, the application iterates through these steps (see
Figure 2.1 and Listing 2.2)

1. Fetch an event from the event queue.

2. Call PreprocessEvent to allow the datebook event han-
dler to see the command keys before any other event handler
geta them. Some of the databook views display UI that dis-
pappears automatically; This UI needs to be dismissed be-
fore the system event handler or the menu event handler dis-
play any UI objects.

Note that not all applications need a PreprocessEvent
functions. It may be appropriate to call SysHandleEvent
right away.

3. Call SysHandleEvent to give the system an opportunity to
handle the event.

The system handles events like power on/ power off, GrafÞti
input, tapping silk-screened icons, or pressing buttons. Dur-
ing the call to SysHandleEvent, the user may also be in-
formed about low-battery warnings or may Þnd and search
another application.

Note that in the process of handling an event,
SysHandleEvent may generate new events and put them
on the queue. For example, the system handles GrafÞti input
by translating the pen events to key events. Those, in turn,
are put on the event queue and are eventually handled by the
application.

SysHandleEvent returns TRUE if the event was completely
handled, that is, no further processing of the event is re-
quired. The application can then pick up the next event from
the queue.

4. If SysHandleEvent did not completely handle the event, the
application calls MenuHandleEvent. MenuHandleEvent
handles two types of events:
Ð If the user has tapped in the area that invokes a menu,
MenuHandleEvent brings up the menu.

Ð If the user has tapped inside a menu to invoke a menu
command, MenuHandleEvent removes the menu from
the screen and puts the events that result from the
command onto the event queue.
50 Developing Palm OS 2.0 Applications, Part I

Application Control Flow
How Events Control an Application
MenuHandleEvent returns TRUE if the event was completely
handled.

5. If MenuHandleEvent did not completely handle the event,
the application calls ApplicationHandleEvent, a function
your application has to provide itself.
ApplicationHandleEvent handles only the
frmLoadEvent for that event; it loads and activates applica-
tion form resources and sets the event handler for the active
form.

6. If ApplicationHandleEvent did not completely handle
the event, the application calls FrmDispatchEvent.
FrmDispatchEvent first sends the event to the applicationÕs
event handler for the active form. This is the event handler
routine that was established in ApplicationHandleEvent.
Thus the applicationÕs code is given the Þrst opportunity to
process events that pertain to the current form. The applica-
tionÕs event handler may completely handle the event and re-
turn TRUE to calls from FrmDispatchEvent.In that case,
calls FrmDispatchEvent returns to the applicationÕs event
loop. Otherwise, calls FrmDispatchEvent calls
FrmDispatchEvent to provide the systemÕs default process-
ing for the event.

For example, in the process of handling an event, an applica-
tion frequently has to Þrst close the current form and then
open another one, as follows:
Ð The application calls FrmGotoForm to bring up another

form. FrmGotoForm queues a frmCloseEvent for the
currently active form, then queues frmLoadEvent and
frmOpenEvent for the new form.

Ð When the application gets the frmCloseEvent, it
closes and erases the currently active form.

Ð When the application gets the frmLoadEvent, it loads
and then activates the new form. Normally, the form
remains active until itÕs closed. (Note that this wouldnÕt
work if you preload all forms, but preloading is really
discouraged. Applications donÕt need to be concerned
with the overhead of loading forms; loading is so fast
that applications can do it when they need it.) The
applicationÕs event handler for the new form is also
established.
Developing Palm OS 2.0 Applications, Part I 51

Application Control Flow
How Events Control an Application
Ð When the application gets the frmOpenEvent, it
performs any required initialization of the form, then
draws the form on the display.

After FrmGotoForm has been called, any further events that
come through the main event loop and to
FrmDispatchEvent are dispatched to the event handler for
the form thatÕs currently active. For each dialog box or form,
the event handler knows how it should respond to events, for
example, it may open, close, highlight, or perform other ac-
tions in response to the event. FrmHandleEvent invokes this
default UI functionality.

After the system has done all it can to handle the event for
the speciÞed form, the application Þnally calls the active
formÕs own event handling function. For example, in the
datebook application, it may call DayViewHandleEvent or
WeekViewHandleEvent.

Notice how the event ßow allows your application to rely on system
functionality as much as it wants. If your application wants to know
whether a button is pressed, it has only to wait for ctlSelectEvent.
All the details of the event queue are handled by the system.

Some events are actually requests for the application to do some-
thing, for example, frmOpenEvent. Typically, all the application
does is draw its own interface, using the functions provided by the
system, and then waits for events it can handle to arrive from the
queue.

Only the active form should process events.
52 Developing Palm OS 2.0 Applications, Part I

Application Control Flow
How Events Control an Application
The Stop Routine

In the stop routine, an application should Þrst ßush all active
records, then close the applicationÕs database, and Þnally save those
aspects of the current state needed for startup. Listing 2.3 is an ex-
ample of a StopApplication routine from Datebook.c.

Listing 2.3 Example of StopApplication Routine

static void StopApplication (void)
{

DatebookPreferenceType prefs;

// Write the preferences / saved-state information.
prefs.noteFont = NoteFont;
prefs.dayStartHour = DayStartHour;
prefs.dayEndHour = DayEndHour;
prefs.alarmPreset = AlarmPreset;
prefs.saveBackup = SaveBackup;
prefs.showTimeBars = ShowTimeBars;
prefs.compressDayView = CompressDayView;
prefs.showTimedAppts = ShowTimedAppts;
prefs.showUntimedAppts = ShowUntimedAppts;
prefs.showDailyRepeatingAppts = ShowDailyRepeatingAppts;

// Write the state information.
PrefSetAppPreferences (sysFileCDatebook, datebookPrefID,

datebookVersionNum, &prefs, sizeof (DatebookPreferenceType),
true);

// Send a frmSave event to all the open forms.
FrmSaveAllForms ();

// Close all the open forms.
FrmCloseAllForms ();

// Close the application's data file.
DmCloseDatabase (ApptDB);

}

Developing Palm OS 2.0 Applications, Part I 53

Application Control Flow
How Launch Codes Control an Application
How Launch Codes Control an Application
Launch codes allow direct communication between the system and
an application and between two applications. This direct communi-
cation takes precedence over any events on an applicationÕs queue.

¥ The system uses launch codes to ask an application to do
something, interrupting other activities if necessary.
Examples include launch codes for launching an
application, initializing databases, or resetting after the user
performs a hard reset.

Global Þnd is a frequently used launch code that illustrates
the usefulness of launch codes. It allows users to search all
databases for a certain record, such as a name. In this case, it
would be very wasteful to do a full launchÑincluding the
user interfaceÑof each application only to access the applica-
tionÕs databases in search of that item. Using a launch code
avoids this overhead.

¥ An application can use a launch code to request that
another application perform an action or modify its data.
For example, a data collection application could instruct an
email application to queue up a particular message to be
sent.

Launch codes can be sent from the systemÕs top level or from anoth-
er applicationÕs thread. Isn most cases, an applicationÕs global vari-
ables are not available. Launch codes are delivered to an application
at its highest level (through the PilotMain function). Each launch
code may be accompanied by a Parameter Block which may in turn
contain one or more Launch Flags. The parameter block is speciÞ to
the launch code, while the launch ßags can be sent with any launch
code.

 Note: Static local variables are stored with the global variables
on the systemÕs dynamic heap. They are not accessible while
executing launch codes other than normal launch.
54 Developing Palm OS 2.0 Applications, Part I

Application Control Flow
How Launch Codes Control an Application
Parameter Block
Many launch codes are accompanied by a parameter block. A pa-
rameter block is a pointer to a structure that contains several param-
eters. These parameters contain information necessary to handle the
associated launch code.

Launch Flags

Launch ßags provide some additional information on what exactly
an application should do when it receives a launch code.

¥ If an application sends a launch code to another application,
it should always set the launch ßags to zero.

¥ The system sometimes uses ßags with a launch code to indi-
cate how the application should behave. For example, a ßag
could be used to specify whether the UI should be displayed
or not.

Note that even if an application has decided to handle a certain
launch code, it can still decide not to handle the associated launch
ßags.

See More About Launch Flags for additional information.
Developing Palm OS 2.0 Applications, Part I 55

Application Control Flow
Launch Code Example
Launch Code Example
An application needs to checks for launch codes in its main func-
tion. Listing 2.4 shows parts of PilotMain from the datebook appli-
cation as an example. To see the complete example, go to Palm OS
SDK: Examples:Datebook:Datebook.c.

Listing 2.4 Code Fragment Checking for Launch Codes

static DWord DBPilotMain (Word cmd, Ptr cmdPBP, Word launchFlags)
{

Word error;
Boolean launched;

// This app makes use of PalmOS 2.0 features.It will crash if
// run on an earlier version of PalmOS. Detect and warn if this
// happens, then exit.
error = RomVersionCompatible (version20, launchFlags);
if (error)

return error;

// Launch code sent by the launcher or the datebook button.
if (cmd == sysAppLaunchCmdNormalLaunch)

{
error = StartApplication ();
if (error) return (error);

FrmGotoForm (DayView);
EventLoop ();
StopApplication ();
}

// Launch code sent by text search.
else if (cmd == sysAppLaunchCmdFind)

{
Search ((FindParamsPtr)cmdPBP);
}

56 Developing Palm OS 2.0 Applications, Part I

Application Control Flow
Launch Code Example
// This launch code might be sent to the app when it's already
// running if the use hits the "Go To" button in the Find
// Results dialog box.
else if (cmd == sysAppLaunchCmdGoTo)

{
launched = launchFlags & sysAppLaunchFlagNewGlobals;
if (launched)

{
error = StartApplication ();
if (error) return (error);

GoToItem ((GoToParamsPtr) cmdPBP, launched);

EventLoop ();
StopApplication ();
}

else
GoToItem ((GoToParamsPtr) cmdPBP, launched);

}

// Launch code sent by sync application to notify the datebook
// application that its database was been synced.
// ...
// Launch code sent by Alarm Manager to notify the datebook
// application that an alarm has triggered.
// ...
// Launch code sent by Alarm Manager to notify the datebook
// application that is should display its alarm dialog.
// ...
// Launch code sent when the system time is changed.
// ...
// Launch code sent after the system is reset. We use this time
// to create our default database if this is a hard reset
// ...
// Launch code sent by the DesktopLink server when it create
// a new database. We will initializes the new database.
return (0);

}

Developing Palm OS 2.0 Applications, Part I 57

Application Control Flow
Summary of all Launch Codes
Summary of all Launch Codes
The following table lists all Palm OS standard launch codes in alphabetical order. More
detailed information is provided immediately after the table (you can also click on the
links to access it).

Table 2.1 Palm OS Launch Codes

Code Request

sysAppLaunchCmdAlarmTriggered Schedule next alarm or perform quick ac-
tions such as sounding alarm tones.

sysAppLaunchCmdCountryChange Respond to country change.

sysAppLaunchCmdDisplayAlarm Display speciÞed alarm dialog or perform
time-consuming alarm-related actions.

sysAppLaunchCmdFind Find a text string.

sysAppLaunchCmdGoto Go to a particular record, display it, and
optionally select the speciÞed text.

sysAppLaunchCmdInitDatabase Initialize database.

sysAppLaunchCmdLookup Look up data. In contrast to
sysAppLaunchCmdFind, a level of indi-
rection is implied. For example, look up a
phone number associated with a name.

sysAppLaunchCmdNormalLaunch Launch normally.

sysAppLaunchCmdPanelCalledFromApp Tell preferences panel that it was invoked
from an application, not the Preferences
application.

sysAppLaunchCmdReturnFromPanel Tell an application that itÕs restarting after
preferences panel had been called.

sysAppLaunchCmdSaveData Save data. Often sent before Þnd opera-
tions.
58 Developing Palm OS 2.0 Applications, Part I

Application Control Flow
Summary of all Launch Codes
sysAppLaunchCmdSyncNotify Notify applications that a HotSync has
been completed.

sysAppLaunchCmdSystemLock Sent to the Security application to request
that the system be locked down.

sysAppLaunchCmdSystemReset Respond to system reset. No UI is al-
lowed during this launch code.

sysAppLaunchCmdSystemTimeChange Respond to system time change.

Table 2.1 Palm OS Launch Codes

Code Request
Developing Palm OS 2.0 Applications, Part I 59

Application Control Flow
More About Launch Codes
More About Launch Codes
This section provides supplemental information about launch
codes. For some launch codes, it lists the parameter block, which in
some cases provides additional information about the launch code.

The section discusses all launch codes in alphabetical order. For a
listing, see Table 2.1.

sysAppLaunchCmdAlarmTriggered

Perform quick action such as scheduling next alarm or sounding
alarm.

Impact on Application

This launch code is sent as close to the actual alarm time as possible.
An application may perform any quick, non-blocking action at this
time. An opportunity to perform more time-consuming actions will
come when sysAppLaunchCmdDisplayAlarm is sent.

sysAppLaunchCmdCountryChange

Respond to country change.

Impact on Application

Applications should change the display of numbers to use the prop-
er number separators. To do this, call LocGetNumberSeparators,
StrLocalizeNumber, and StrDelocalizeNumber.
60 Developing Palm OS 2.0 Applications, Part I

Application Control Flow
More About Launch Codes
sysAppLaunchCmdDisplayAlarm

Perform full, possibly blocking, handling of alarm.

Impact on Application

This is the applicationÕs opportunity to handle an alarm in a lengthy
or blocking fashion. NotiÞcation dialogs are usually displayed
when this launch code is received. This work should be done here,
not when sysAppLaunchCmdAlarmTriggered is received. Multiple
alarms may be pending at the same time for multiple applications,
and one alarm display shouldnÕt block the system and prevent other
applications from receiving their alarms in a timely fashion.

sysAppLaunchCmdFind

This launch command is used to implement the global Þnd. It is sent
by the system whenever the user enters a text string in a Find dia-
log. At that time, the system queries each application whether it
handles this launch code and returns any records matching the Þnd
request.

The system, sends this launch code with the FindParamsType pa-
rameter block to each application. The system displays the results of
the query in the Find dialog.

Impact on Application

Most applications that use text records should support this launch
code. When they receive it, they should search all records for match-
es to the Þnd string and return all matches.

An application can also integrate the Þnd operation in its own user
interface and send the launch code to a particular application.

Applications that support this launch code should support sysAp-
pLaunchCmdSaveData and sysAppLaunchCmdGoto as well. See
Phase 14 of the tutorial for an example.
Developing Palm OS 2.0 Applications, Part I 61

Application Control Flow
More About Launch Codes
sysAppLaunchCmdFind Parameter Block

Prototype typedef struct {

// These fields are used by the applications.
Word dbAccesMode;
Word recordNum;
Boolean more;
Char strAsTyped [maxFindStrLen+1];
Char strToFind [maxFindStrLen+1];

// These fields are private to the Find routine
//and should NOT be accessed by applications.

Word numMatches;
Word lineNumber;
Boolean continuation;
Boolean searchedCaller;
LocalID callerAppDbID;
Word callerAppCardNo;
LocalID appDbID;
Word appCardNo;
Boolean newSearch;
DmSearchStateType searchState;
FindMatchType match [maxFinds];

} FindParamsType;

Fields dbAccessMode Read mode. May be Òshow secret.Ó

recordNum Index of last record that contained a match.

more TRUE if more matches to display.

strAsTyped [maxFindStrLen+1]
Search string as entered.

strToFind [maxFindStrLen+1]
Search string in lower case.

numMatches System use only.

lineNumber System use only.
62 Developing Palm OS 2.0 Applications, Part I

Application Control Flow
More About Launch Codes
continuation System use only.

searchedCaller System use only.

callerAppDbID System use only.

callerAppCardNo System use only.

appDbID System use only.

appCardNo System use only.

newSearch System use only.

searchState System use only.

match [maxFinds] System use only.

sysAppLaunchCmdGoto

Sent in conjunction with sysAppLaunchCmdFind to allow users to
actually inspect the record that the global Þnd returned.

Impact on Application

Applications should do most of the normal launch actions, then dis-
play the requested item. The applications should continue running
unless explicitly closed.

sysAppLaunchCmdGoto Parameter Block

Prototype typedef struct {
Word searchStrLen;
Word dbCardNo;
LocalID dbID;
Word recordNum;
Word matchPos;
Word matchFieldNum;
DWord matchCustom;
} GoToParamsType;
Developing Palm OS 2.0 Applications, Part I 63

Application Control Flow
More About Launch Codes
Fields searchStrLen Length of search string.

dbCardNo Card number of the database.

dbID Local ID of the database.

recordNum Index of record containing a match.

matchPos Position in record of the match.

matchFieldNum Field number string was found in.

matchCustom Application-speciÞc information.

sysAppLaunchCmdInitDatabase

This launch code is sent by the Desktop Link server in response to a
request to create a database. It is sent to the application whose cre-
ator ID matches that of the requested database.

The most frequent occurrence of this is when a ÔdataÕ database is
being installed or restored from the desktop. In this case, HotSync
creates a new database on the device and passes it to the application
via a sysAppLaunchCmdInitDatabase command, so that the ap-
plication can perform any required initialization. HotSync will then
transfer the records from the desktop database to the device data-
base.

When a PalmPilot application crashes while a database is installed
using HotSync, the reason may be that the application is not han-
dling the sysAppLaunchCmdInitDatabase command properly.
Be especially careful not to access global variables.

Impact on Application

The system will create a database and pass it to the application for
initialization. The application must perform any initialization re-
quired, then pass the database back to the system, unclosed.
64 Developing Palm OS 2.0 Applications, Part I

Application Control Flow
More About Launch Codes
sysAppLaunchCmdInitDatabase Parameter Block

Prototype typedef struct {
DmOpenRef dbP;
ULong creator;
ULong type;
UInt version;
} SysAppLaunchCmdInitDatabaseType;

Fields dbP Database reference.
creator Database creator.
type Database type.
version Database version.

sysAppLaunchCmdLookup

The system or an application sends this launch command to retrieve
information from another application. In contrast to Find, there is a
level of indirection; for example, this launch code could be used to
retrieve the phone number based on input of a name.

This functionality is currently supported by the standard PalmPilot
Address Book.

Impact on Application

Applications that decide to handle this launch code must search
their database for the string the user entered and perform the match
operation speciÞed in the launch codeÕs parameter block.

If an application wants to allow its users to perform lookup in other
applications, it has to send it properly, including all information
necessary to perform the match. An example for this is in Ad-
dress.c and AppLaunchCmd.h which are included in your SDK.

Parameter Block

The parameter block is deÞned by the application that supports this
launch code. See AppLaunchCmd.h for an example.
Developing Palm OS 2.0 Applications, Part I 65

Application Control Flow
More About Launch Codes
sysAppLaunchCmdPanelCalledFromApp

sysAppLaunchCmdPanelCalledFromApp and
sysAppLaunchCmdReturnFromPanel allow an application to let
users change preferences without switching to the Preferences ap-
plication. For example, for the calculator, you may launch the For-
mats preferences panel, set up a number format preference, then di-
rectly return to the calculator that then uses the new format.

sysAppLaunchCmdPanelCalledFromApp lets a preferences panel
know whether it was switched to from the Preferences application
or whether an application invoked it to make a change. The panel
may be a preference panel owned by the application or a system
preferences panel.

Examples of these system panels that may handle this launch code
are:

¥ Network panel (called from network applications)
¥ Modem panel (called if modem selection is necessary)

Impact on Application

All preferences panels must handle this launch code. If a panel is
launched with this command, it should:

¥ Display a Done button.

¥ NOT display the panel-switching pop-up trigger used for
navigation within the preferences application.
66 Developing Palm OS 2.0 Applications, Part I

Application Control Flow
More About Launch Codes
 sysAppLaunchCmdReturnFromPanel

This launch code is used in conjunction with
sysAppLaunchCmdPanelCalledFromApp. It informs an application
that the user is done with a called preferences panel. The system
passes this launch code to the application when a previously-called
preferences panel exists.

sysAppLaunchCmdSaveData

Instructs the application to save all current data. For example, be-
fore the system performs a Find operation, an application should
save all data.

Impact on Application

Any application that supports the Find command and that can have
buffered data should support this launch code. Generally, an appli-
cation only has to respond if itÕs the currently running application.
In that case, all buffered data should be saved when the launch code
is received.

sysAppLaunchCmdSaveData Parameter Block

Prototype typedef struct {
Boolean uiComing;
} SysAppLaunchCmdSaveDataType;

Fields uiComing TRUE if system dialog is displayed before launch code
arrives.
Developing Palm OS 2.0 Applications, Part I 67

Application Control Flow
More About Launch Codes
sysAppLaunchCmdSyncNotify

This launch code is sent to applications to inform them that a
HotSync has occurred.

sysAppLaunchCmdSystemLock

Launch code sent to the system-internal security application to lock
the device.

Impact on Application

As a rule, applications donÕt need to do respond to this launch code.
If an application replaces the system-internal security application, it
must handle this launch code.

sysAppLaunchCmdSystemReset

Launch code to respond to system soft or hard reset.

Impact on Application

Applications can respond to this launch code by performing initial-
ization, indexing, or other setup that they need to do when the sys-
tem is reset. For more information about resetting the device, see the
Palm OS Cookbook.

sysAppLaunchCmdSystemReset Parameter Block

Prototype typedef struct {
Boolean hardReset;
Boolean createDefaultDB;
} SysAppLaunchCmdSystemResetType;

Fields hardReset TRUE if system was hardReset.
FALSE if system was softReset.

createDefaultDB If TRUE, application has to create
default database.
68 Developing Palm OS 2.0 Applications, Part I

Application Control Flow
More About Launch Codes
sysAppLaunchCmdSystemTimeChange

Launch code to respond to a time change initiated by the user.

Impact on Application

Applications that are dependent on the current time or date need to
respond to this launch code. For example, an application that sets
alarms may want to cancel an alarm or set a different one if the sys-
tem time changes.
Developing Palm OS 2.0 Applications, Part I 69

Application Control Flow
More About Launch Flags
More About Launch Flags
When an application is launched with any launch command, it also
is passed a set of launch ßags.

An application may decide not to handle the ßags even if it handles
the launch code itself. For applications that decide to include this
launch code, the following table provides additional information:

Generally, the system sends launch ßags along with all launch
codes. Applications should just pass 0 (zero) when sending a launch
code to another application.

Flag Functionality

sysAppLaunchFlagNewThread Creates a new thread for the
application. Implies
sysAppLaunchFlagNewStack.

sysAppLaunchFlagNewStack Creates a separate stack for the
application.

sysAppLaunchFlagNewGlobals Creates a new globals world for
the application. Implies new
owner ID for memory chunks.

sysAppLaunchFlagUIApp NotiÞes launch routine that this
is a UI application being
launched.

sysAppLaunchFlagSubCal NotiÞes launch routine that the
application is calling its entry
point as a subroutine call. This
tells the launch code that it's
OK to keep the A5 (globals)
pointer valid through the call.
70 Developing Palm OS 2.0 Applications, Part I

Application Control Flow
Responding to Launch Codes
Responding to Launch Codes
Launch codes may be sent to any application without negative ef-
fects. However, a launch code only has an effect if the application
that receives it has been programmed to handle it. An application
may decide not to handle the ßags even if it handles the launch code
itself.

When developing your application, be sure to handle as many of the
standard launch codes as possible.

When an application receives a launch code, it must Þrst check
whether it can handle this particular code. For example, only appli-
cations that have text data should respond to a launch code request-
ing a string search. If an application canÕt handle a launch code, it
exits without failure. Otherwise, it performs the action immediately
and returns.

Determining Status When Receiving Launch
Code

If an application receives a launch code other than
sysCmdAppNormalLaunch, it can find out whether itÕs the current
application by checking the launch ßags, which are sent to the cur-
rently running application.

If the application is the currently running application, the
sysAppLaunchFlagSubCall ßag is set. This ßag is set by the sys-
tem and isnÕt (and shouldnÕt be) set by the sender of a launch code.

Note that if the launch code is sent to the currently running applica-
tion, the launch code handler may access the applicationÕs global
variables. Only the system can access these global variables.
Developing Palm OS 2.0 Applications, Part I 71

Application Control Flow
PredeÞned Launch Codes
PredeÞned Launch Codes
A number of launch codes are predeÞned by the system for han-
dling certain system tasks, for example,

¥ Notifying the application when certain system preferences
like date and time have changed

¥ Performing global find and goto operations
¥ Notifying the application that its data files have been

updated by a sync operation

The launch code parameter is a 16-bit word value. All launch codes
with values 0Ð32767 are reserved for use by the system and for fu-
ture enhancements. Launch codes 32768Ð65535 are available for pri-
vate use by applications.

Creating Your Own Launch Codes

In addition to the predeÞned launch codes deÞned in Table 2.1, de-
velopers can create their own launch codes to implement speciÞc
functionality. Both the sending and the receiving application must
know about and handle any developer-deÞned launch codes.

An example is PhoneLookup.c.
72 Developing Palm OS 2.0 Applications, Part I

3
Palm OS User
Interface Resources
Palm OS User Interface resources are the elements of an applica-
tionÕs GUI (graphical user interface).

This chapter helps you work with resources by providing informa-
tion about these topics:

¥ Using Constructor to Work With Resources gives an overview of
the Constructor tool and brießy explains how to use it.

¥ Project Resources provides information about project resources.
These resources are created by instantiating a template. Exam-
ples are menu and menu bar or string.

¥ Catalog Resources provides information about resources that
you can instantiate by dragging them from the catalog onto a
form. Examples are buttons and check boxes.

¥ are discussed in the ÒConstructor for Palm OSÓ manual.

Note: For more information see the following manuals:
The Palm OS Tutorial provides more detailed instruction on how to
create a GUI using the Constructor tool.
TheConstructor for Palm OS manual in the CodeWarrior Docu-
mentation folder provides detailed reference-style documentation
as well as information on how to use each individual resource.

The relationship between the resources and the structures provided
by Palm OS is discussed in Chapter 4, ÒPalm OS User Interface Ob-
jects.Ó
Developing Palm OS 2.0 Applications, Part I 73

Palm OS User Interface Resources
Using Constructor to Work With Resources
Using Constructor to Work With Resources
In Palm OS 2.0, developers can choose how they want to create their
resources:

¥ Using Constructor. This chapter describes how to use Construc-
tor to create and manipulate resources.

¥ Macintosh users can also use ResEdit (as under Palm OS 1.0)

Creating Resources

Constructor has a graphical interface that allows you to quickly cre-
ate and view a GUI for your application. HereÕs an overview of how
it works. For detailed information, see the ÒPalm OS Tutorial.Ó

1. Open Constructor.

Constructor opens a catalog window that contains all catalog re-
sources such as buttons, check boxes, or tables. If the catalog win-
dow isnÕt visible, you can type Cmd-Y to display it.

2. From the File Menu, choose New Project File or Open Project File.

Constructor opens the Constructor project window that lets you in-
stantiate project resources such as forms, menus, and strings and
specify project settings.

3. In the Constructor project window, select the Forms template and
type CmdÐK.

Constructor instantiates the form; an icon representing it appears
below the template.

4. Double-click on the form.

Constructor opens a Form Editor, with information about the re-
source (left panel) and a graphical representation (right panel).

5. Drag the additional desired UI elements from the catalog to the
Forms window

After youÕve dragged a resouce icon onto the form, the resource in-
formation becomes visible in the left panel (Layout Properties).

6. Instantiate special resource types, such as strings or bitmaps, in
the project window and associate them with the related resource.
74 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Resources
Using Constructor to Work With Resources
Changing Resources

You can make changes to any resource as follows:

¥ To change a project resource, double-click on that resource in the
project window and change the Þelds in the associated editor
that appears.

¥ To change a catalog resource, you have several choices:

Ð Move any UI element in the Layout Appearance panel of the
Forms window.

Ð Change the values in the left (Layout Properties) panel of the
Forms window.

Ð Double-click the UI element and change the values in the In-
spector that appears.
Developing Palm OS 2.0 Applications, Part I 75

Palm OS User Interface Resources
Project Resources
Project Resources
Catalog resources are available in the Catalog window and can be
dragged directly on a form. All other resources, including the form
itself, are instantiated from the projects window.

The following table lists all Palm OS project resources in alphabeti-
cal order by resource name. The Macintosh ResEdit resource name
is include for reference only; itÕs not needed by developers who use
Constructor exclusively, and not relevant for Windows developers.

Name Resource UI Name

Talt Alerts Alert

tFRM Form Resource Form

Menu Resource Menu

Menu bar Resource Menu bar

tSTR String Resource String

Icons

Bitmaps
76 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Resources
Alerts
Alerts

Example

Overview The alert resource deÞnes a modal dialog that displays a message,
an icon, and one or more buttons.

A small icon indicates the category of the dialog box; for example,
an exclamation mark for an error message. The icon appears on the
left side of the dialog. The text is justiÞed left but placed to the right
of the dialog icon.

Type Icon DeÞnition Button Example

Infor-
mation

i Lowest-level warning. Action
shouldnÕt or canÕt be complet-
ed but doesnÕt generate an
error or risk data loss.

OK An alarm setting must be
between 1 and 99.

ConÞr-
mation

? ConÞrm an action or suggest
options.

OK,
Cancel

Change settings before
switching applications?
(For example, when
pressing an application
key with an open dialog
box.)

Warn-
ing

! Ask if user wishes to continue
a potentially dangerous action.

OK,
Cancel

Are you sure you want
to delete this entry?

Error (stop
sign)

Attempted action generated
error and/or cannot be com-
pleted.

OK Disk full.
Developing Palm OS 2.0 Applications, Part I 77

Palm OS User Interface Resources
Alerts
The Alert resource has the following attributes.

 Attributes Alert Type Determines the sound played and the icon dis-
played when the alert is drawn. There are four pos-
sible icons:

¥ InformationAlert (Alert Number 0)
¥ ConfirmationAlert (Alert Number 1)
¥ WarningAlert (Alert Number 2)
¥ ErrorAlert (Alert Number 3)

Help ID The ID of a String resource thatÕs the help text for
the alert dialog box. If you provide a value, the sys-
tem displays an ÒiÓ in the top right corner of the
alert box.

Default
Button ID

The number of a button that the system assumes is
selected if the user switches to another application,
forcing the form to go away without making a selec-
tion.

Title Title of the alert form.

Message Message displayed by the alert dialog. May contain
^1, ^2, ^3 as substitution variables for use in con-
junction with FrmCustomAlert.

Button Text Text of the button (e.g. OK or Cancel), determined
by an entry in the resource of each button.
To add a button, select Item Text 0, and type Cmd-K.
78 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Resources
Form Resource
Form Resource

Overview A form is a container for one or more of the Catalog Resources.

Applications usually contain several different forms that the user
triggers by tapping buttons or other control UI objects. Most UI ob-
jects are displayed only if they are contained within a form.

Example The example below shows a modal form. A form can also be as large
as the screen.

Attributes Left Origin Window-relative position of left side of form.
Valid values: 0 Ð 159

Top Origin Window-relative position of top of form.
Valid values: 0 Ð 159

Width Width of the form in pixels.
Valid values: 0 Ð 160

Height Height of the form in pixels.
Valid values: 1Ð 160

Usable Not currently supported for forms.

Modal If checked, form is modal. Modal forms ignore pen
events outside their boundaries. Used for dialogs.

Save Behind If checked, the region obscured by the form is
saved when itÕs drawn and restored when itÕs
erased. Used for dialogs.
Developing Palm OS 2.0 Applications, Part I 79

Palm OS User Interface Resources
Form Resource
Comments The total display on the PalmPilot device is 160 pixels by 160 pixels.
If you want your whole form to be seen, make sure it Þts within this
display area. For pop-up dialogs, you can make the form smaller.
Align a popup dialog with the bottom of the screen.

A form is the GUI area for each view of your application. For exam-
ple the Address Book offers an Address List view, Address Edit
view, and so on. Each application has to have one form, and most
applications have more than one. To actually create the view, you
have to add other UI elements to the form; either by dragging them
onto the form from the catalog or by providing their ID as the value
of some of the formÕs Þelds.

Here are some general design guidelines:

Form ID Form ID assigned by Constructor.

Help ID ID number of a string thatÕs displayed when the
user taps the ÒiÓ icon. The system adds the icon to
the form when you provide a value for this prop-
erty. Currently, only modal dialogs have help re-
sources.

Menu Bar ID Contains the ID of a menu bar resource to be asso-
ciated with this forms.

Default But-
ton ID

Number of a button that the system assumes is se-
lected if the user switches to another application,
forcing the form to go away without making a se-
lection.

Form Title Title of that form. Use titles for dialogs, menu bars
for views. By convention, the name of the applica-
tion and the name of the screen, if possible, for ex-
ample Address List or Address Edit.
The title must be one line; it uses about 13 pixels of
the top of the form.

Palm OS
Version

Version of the device for which this form is cre-
ated.
80 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Resources
Form Resource
¥ Each form should have a title that displays the name or
view of the application, or both.

¥ Scroll bars in fields and tables appear and disappear
dynamically if youÕve selected that option for that UI
element. Place them to the right of command buttons.

¥ Modal dialogs always occupy the full width of the screen
and are justified to the bottom of the screen. They hide the
command buttons of the base application but donÕt obscure
the title bar of the base application if possible. There should
be a minimum of three pixels between the top of the modal
dialog title bar and the bottom of the application title bar. If
the dialog is too large to accommodate this, the entire
application title bar should be obscured.

¥ Screen command buttons should always be at the bottom of
the screen.

¥ Dialog command buttons appear four pixels above the
bottom of the dialog box frame. Two-pixel default ring is
three pixels above the bottom, and the baseline of the text
within the buttons should be aligned.

¥ Command buttons should be centered so that the spaces
between the buttons are twice the width of the spaces
between the edges and the border (see diagram below).

If possible, all buttons should be the same width. At a minimum,
they should be spaced equidistant, as illustrated below.

Event Flow When a form is opened, a frmOpenEvent is triggered and the formÕs
ID is stored. A winEnterEvent is triggered whenever a form is
opened, and a winExitEvent is triggered whenever a form is closed.

One button Two buttons Three buttons

A B C A B C D

Distance B = 2 x A = 2 x C Distance B = C = 2 x A = 2 x D

A B

Distance A = B
Developing Palm OS 2.0 Applications, Part I 81

Palm OS User Interface Resources
String Resource
String Resource

Name Strings

Overview Stores data strings used by the program. String resources may be en-
tered as text strings or as a series of hexadecimal characters.

Attributes String The text string to be stored, in decimal ASCII.

Comments The string resource uses either the string or data. If both are entered,
they are concatenated.

Menus and Menu Bars
This section Þrst provides a Menu Overview, then steps you
through Creating a Menu. This is followed by a discussion of the
two resources: Menu Bar and Menu Resources. Finally, you learn
about Menu User Interaction and Event Flow for Menu Resource.

Menu Overview

menu

menu item

separator

shortcut

menu bar name
82 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Resources
Menus and Menu Bars
A menu assembly consists of a menu bar, menu names indicating
the available menus, and the menus themselves with their com-
mands:

¥ Menu bar. The menu bar at the top of the screen contains
the names of the available menus. Each application has
different sets of menu names; within an application,
different views may have different menus.

¥ Menu name. Each menu is displayed below the menu
name. The following menu names are commonly found:

Ð RecordÑPlace Record to the left of Edit (if applicable).

Ð EditÑScreens that allow editing need an Edit menu. Note,
however, that most editing is edit-in-place.

Ð OptionsÑTypically, the last menu. The About command,
which provides version and creator information, should al-
ways be an Options command under Palm OS.

¥ Menu. The menus themselves consist of menu items and
optional shortcuts. Under Palm OS, menu items should
not duplicate functionality available via command
buttons. Menus justify left with the active heading of the
menu name when invoked. If the menu doesnÕt fit, itÕs
justified to the right border of the screen.

Note: For each menu, provide shortcuts for all commands or for
none at all. DonÕt assign the same shortcut twice within one
application.

Creating a Menu

In Palm OS 2.0, you can interactively create the menu bar and all
menus, then associate the menu bar with the form.

To create a menu assembly using Constructor, follow these steps:

1. In the project window, select Menu Bars, then type CmdÐK.

Constructor creates a menu bar instance.

2. Name the Menu Bar instance, then double-click on it.

Constructor opens the Menu Editor.
Developing Palm OS 2.0 Applications, Part I 83

Palm OS User Interface Resources
Menus and Menu Bars
3. Back in the project window, create one or more Menus, name
them, and drag them onto the Menu Editor.

4. For each menu, replace the ÒuntitledÓ default text with the menu
name, such as Edit or File.

5. Type CmdÐK to add menu items, CmdÐ (minus) to add separators
to the menu.

6. To assign a shortcut key, you can do one of the following:

¥ Tab from the menu item to the shortcut region in the menu edi-
tor, then enter the shortcut letter.

¥ Type Cmd-I and enter the shortcut in the property inspector that
appears.

The system will later add the shortcut symbol before the character.

7. When youÕre Þnished with the assembly, close the window.

8. Finally, enter the ID of the menu bar you created into the Menu
Bar ID property of a form.

Note: The Palm OS Tutorial provides more detailed step-by-step
instructions for creating a menu.

Menu Bar and Menu Resources

The only information provided for the menu and menu bar resource
is the resource name and resource ID.

Menu User Interaction
¥ Default Menu and Menu Item. A pen-up on the menu icon dis-

plays the menu bar. The Þrst time a menu is invoked after an ap-
plication is launched, no menus are displayed unless there is
only one menu available. Afterwards the menu and menu item
of the last command executed from the menu are displayed.
GrafÞti command equivalents are ignored.

For example, if the user selects Edit > Copy, the Edit menu is
popped down and the Copy command is highlighted the next
time the menu bar is displayed. This expedites execution of com-
monly used commands or of grouped commands (e.g., Copy/
84 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Resources
Menus and Menu Bars
Paste). The last menu heading is not saved if the user switches to
a different view or a different application.

¥ View-speciÞc Menus. Each view within an application can have
a unique menu, that is, different menu headings and items.

¥ Menu Display. As a rule, a Palm OS application should try to
have the menu visible on screen as rarely as possible:

Ð After a menu command is executed, the menu bar is dis-
missed.

Ð The menu bar is active when the menu headings in it are ac-
tive. When not active, the menu bar is not visible.

Ð There are no grayed-out menu headings or grayed-out menu
items. A command not accessible in a certain mode doesnÕt
appear at all.

¥ Size. The vertical active area of menu headings is 2 pixels be-
yond the ascender and 1 pixel below a potential descender of the
menu heading text. The horizontal active area covers half the
distance to the next menu heading, leaving no gaps between the
headings. If the menu headings arenÕt as wide as the menu bar,
part of the menu bar may be inactive.

¥ Active Area. The entire area of the menu, excluding the border,
is active. Divider lines and status items on the launcher menu
are inactive; that is, they do not highlight when tapped.
Developing Palm OS 2.0 Applications, Part I 85

Palm OS User Interface Resources
Catalog Resources
Event Flow for Menu Resource

Catalog Resources
You can add Constructor catalog resources to the user interface by
dragging the corresponding icon onto a Form. The following catalog
resources are available:

User Action System Response

Pen enters menu
window.

winExitEvent to exit previous window.
winEnterEvent to enter menu window.
penDownEvent is also triggered, although the pen has not actual-
ly touched the screen.

User selects a
menu item.

WinExitEvent to exit menu window.
WinEnterEvent to enable the form the menu spawned.
menuEvent (store ID number of the item in EventType).
penUpEvent Þnally occurs.

Name Resource Resource

tBTN Button Resource

tCBX Check Box Resource

tFLD Field Resource

tFBM Form Bitmap Resource (container for Bit-
map resource)

tGDT Gadget Resource (application de-
Þned)
86 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Resources
Catalog Resources
tGSI GrafÞti Shift Indicator Resource

tLBL Label Resource (container for a
String)

tLST List Resource

tPUT Popup Trigger Resource

tPBN Push Button Resource

tREP Repeating Button Resource

Scrollbar Resource (see below)

tSLT Selector Trigger Resource

tTBL Table Resource

Name Resource Resource
Developing Palm OS 2.0 Applications, Part I 87

Palm OS User Interface Resources
Button Resource
Button Resource

UI Structure ControlType

Overview A button is a clickable UI object, often used to trigger events in an
application. A button displays as a text label surrounded by a rect-
angular frame. The frame has rounded corners. The label may be
regular text or a glyph from one of the symbol fonts provided with
your development environment, for example, an arrow.

Examples

Attributes Object
IdentiÞer

Name of the object. Assigned by developer and used
by Constructor during header Þle generation and
update.

Button ID ID of the object (assigned by Constructor).

Left Origin Form-relative position of left side of button.
Valid values: 0 Ð 159

Top Origin Form-relative position of top of object.
Valid values: 0 - 159

Width Width of button in pixels. Size the buttons to allow
3Ð6 pixels of white space at each end of the label.
Valid values: 0 Ð 160

Height Height of the button in pixels. Should be 3 pixels
larger than the font size, for example, height = 12 for
9-point labels.
Valid values: 1 Ð 160
88 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Resources
Button Resource
Comments The label is centered in the button. If the label text is wider than the
button, the whole label is centered and both the right and left sides
are clipped.

Place command buttons at the bottom of table views and dialog
boxes. Leave three pixels between the dialog bottom and buttons.

Increment arrows are a special case; they are buttons that let users
increment the value displayed in a data Þeld.

To create an increment arrow, use an arrow character from the Sym-
bol font as a label. Several arrow styles and sizes are available.

Usable A nonusable object is not considered part of the ap-
plicationÕs interface and doesnÕt draw. Nonusable
objects can programmatically be set to usable.
If checked, the object is usable.

Anchor
Left

Controls how the object resizes itself when its text
label is changed. If checked, the left bound of the ob-
ject is Þxed; if unchecked, the right bound is Þxed.

Frame If checked, a rectangular frame with rounded cor-
ners is drawn around the button. Most buttons have
frames. Buttons whose labels are single symbol char-
acters, such as scroll buttons, donÕt have frames.

Non-bold
Frame

If checked, a one-pixel-wide rectangular frame with
rounded corners is drawn around the button. If un-
checked, a bold frame (two pixels wide) is drawn
around the button. Non-bold frames are the default.

Font Font used to draw the text label of the button.
Choose from the pop-up menu to select one of the
2.0 fonts.

Label Text displayed inside the button: one line of text, or a
single character from a symbol font to create an in-
crement arrow. ??Symbol 7 only??
Developing Palm OS 2.0 Applications, Part I 89

Palm OS User Interface Resources
Button Resource
Event Flow for Button Resource

Tip Making a Button with a Bitmap Label

ItÕs not possible to make a bitmap the label of a button; the label al-
ways has to be a text string. However, the same effect can be
achieved by

¥ Creating a bitmap the same size of a button

¥ Placing them at the same location.

Make sure the bitmap is a Form Bitmap, selected from the catalog.

When the user selects the button, the system inverts the bitmap
graphic as well.

User Action System Response

Pen goes down on a
button.

penDownEvent; store x and y coordinates in EventType.
ctlEnterEvent; store button ID number in EventType.

Pen is lifted from but-
ton.

ctlSelectEvent; store button ID number in EventType.
ctlSelectEvent can be triggered only if a
ctlEnterEvent with the same button ID has just occurred.
penUpEvent; store x and y coordinates in EventType.

Pen is lifted outside
button.

Nothing happens.
90 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Resources
Check Box Resource
Check Box Resource

UI Structure ControlType

Overview A check box is a small, square UI object with an optional text label to
the right.

Example The Þgure below shows a checked and an unchecked check box
with a label to the right (the default).

Attributes Object
IdentiÞer

Name of the object. Assigned by developer and
used by Constructor during header Þle generation
and update.

Check Box ID ID of the object (assigned by Constructor).

Left Origin Form-relative position of left side of object.
Valid values: 0 Ð 159

Top Origin Form-relative position of top of object.
Valid values: 0 Ð 159

Width Width of the picking area around the check box.
Valid values: 0 Ð 160

Height Height of the picking area around the check box.
Valid values: 1Ð 160

Usable If this box is checked, the object is usable.
A nonusable object is not considered part of the
application interface and doesnÕt draw. Nonusable
objects can programmatically be set to usable.
Developing Palm OS 2.0 Applications, Part I 91

Palm OS User Interface Resources
Check Box Resource
Comments Make sure that only one check box in a group is initially checked.

All check boxes are the same size. The Height and Width determine
the toggle area, which is the screen area the user needs to press to
check or uncheck the box.

If a label attribute is deÞned, itÕs part of the activation area.

Selected Initial selection state of the checkbox. If the box is
checked (the default), the checkbox is initially
checked.

Group ID Group ID of a check box that is part of an exclusive
group. Ungrouped (nonexclusive) check boxes
have 0 as a group ID.
Valid values: 0 Ð 65535

Font Font used to draw the text label of the button.
Choose from the pop-up menu to select one of the
2.0 fonts.

Label Text displayed to the right of the check box. This
text is part of the activation area. To create a (non-
active) label to the left of the check box, leave this
attribute blank and create a separate Label re-
source.
92 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Resources
Check Box Resource
Event Flow for Check Box Resource

User Action System Response

Pen goes down
on check box.

penDownEvent; store x and y coordinates in EventType.
ctlEnterEvent; store check boxÕs ID number in EventType.

¥ If the check box is unchecked, a check appears.
¥ If the check box is already checked and is grouped,

there is no change in appearance.
¥ If the check box is already checked and is ungrouped,

the check disappears.

Pen is lifted from
check box.

ctlSelectEvent; store check boxÕs ID number in EventType, switch
check box on (1) or off (0) internally. A ctlSelectEvent can be
triggered only if a ctlEnterEvent with the same check box ID
number has just occurred.
penUpEvent; store x and y coordinates in EventType.

Pen is lifted out-
side box.

Nothing happens.
Developing Palm OS 2.0 Applications, Part I 93

Palm OS User Interface Resources
Field Resource
Field Resource

UI Structure FieldType

Overview The Þeld UI object is for user data entry in an application. It displays
one or more lines of editable text. A Þeld can be underlined, justiÞed
left or right, and selectable or unselectable.

Text Þelds can be located anywhere but in menus and in the com-
mand button area.

The following is an underlined, left-justiÞed Þeld containing data:

Attributes Object
IdentiÞer

Name of the object. Assigned by developer and used
by Constructor during header Þle generation and up-
date.

Field ID ID of the object (assigned by Constructor).

Left Origin Form-relative position of left side of object.
Valid values: 0 Ð 159

Top Origin Form-relative position of top of object.
Valid values: 0 Ð 159

Width Width of the object in pixels.
Valid values: 0 Ð 160

Height Height of the object in pixels.
Valid values: 1Ð 160

Usable If this box is checked, the object is usable.
A nonusable object is not considered part of the ap-
plication interface and doesnÕt draw. Nonusable ob-
jects can programmatically be set to usable.
94 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Resources
Field Resource
Editable Noneditable Þelds donÕt accept user input but can be
changed programmatically. If this box is checked, the
Þeld is editable.

Underline If set, each line of text is underlined with a gray line.

Single Line If checked, the Þeld doesnÕt scroll horizontally and
doesnÕt accept Return or Tab characters. Only a single
line of text is displayed. If the user attempts to enter
text beyond this, the system beeps.

Multiline text Þelds expand. An empty Þeld may dis-
play one or more blank lines; for example, records in
a To Do list or a text page.

Dynamic
Size

If checked, the height of the Þeld is expanded or com-
pressed as characters are added or removed. Set this
attribute to false if the Single Line attribute is set.

Left Justi-
Þed

Text justiÞcation. Supported only for Þelds that have
the Single Line attribute checked.
Valid values: checked (left-justiÞed)Ñrecommended

unchecked (right-justiÞed)

Max
characters

Maximum number of characters the Þeld accepts.
This is a limit on the number of characters a user can
enter, but not on what can be displayed. All Þelds can
display up to 32,767 characters regardless of this set-
ting.
Valid values: 0 Ð 32767

Font Font used to draw the text label of the button. Choose
from the pop-up menu to select one of the 2.0 fonts.
Developing Palm OS 2.0 Applications, Part I 95

Palm OS User Interface Resources
Field Resource
Event Flow for Field Resource

Auto-Shift If checked, 2.0 auto-shift rules are applied. The sys-
tem automatically uses an upper-case letter:

¥ after an empty Þeld
¥ after a period or other sentence terminator

 (e.g. ? or !).
¥ after two spaces

Has Scroll-
bar

If checked, the system sends more frequent ßd-
HeightChangedEvents so the application can adjust
the height appropriately.

User Action System Response

Pen goes down on a
Þeld.

penDownEvent; store x and y coordinates in EventType.
ßdEnterEvent; store the ÞeldÕs ID number in EventType.

Pen is lifted. penUpEvent; store x and y coordinates in EventType. A Þeld
remains selected until another Þeld is selected or the form
that contains the Þeld is closed.

User enters charac-
ters into selected Þeld.

keyDownEvent; store ASCII value in EventType.
96 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Resources
Form Bitmap Resource
Form Bitmap Resource

Overview Places predeÞned bitmaps on a given form. Used for icons in Alert
dialogs to indicate a warning, error, information, and so on. You
have to associate a Bitmap with the Form Bitmap to actually make a
picture appear.

Attributes Object
IdentiÞer

Name of the object. Assigned by developer and
used by Constructor during header Þle genera-
tion and update.

Left Origin. Left bounds of bitmap.

Top Origin Top bounds of bitmap.

Bitmap Re-
source ID

ID of a PICT resource containing the graphic.
You can also assign an ID number, then click on
Create and draw the picture in the bitmap edi-
tor that appears.

Usable Checked if the bitmap should be drawn.
Developing Palm OS 2.0 Applications, Part I 97

Palm OS User Interface Resources
Gadget Resource
Gadget Resource

Name tGDT

UI Name Gadget

Overview A gadget object lets developers implement a custom UI gadget. The
gadget resource contains basic information about the custom gad-
get, which is useful to the gadget writer for drawing and processing
user input.

Attributes Object
IdentiÞer

Name of the object. Assigned by developer and
used by Constructor during header Þle generation
and update.

Gadget ID ID of the object (assigned by Constructor).

Left Origin Form-relative position of left side of object.
Valid values: 0 Ð 159

Top Origin Form-relative position of top of object.
Valid values: 0 Ð 159

Width Width of the gadget in pixels.
Valid values: 0 Ð 160

Height Height of the gadget in pixels.
Valid values: 1Ð 160

Usable If this box is checked, the object is usable.
A nonusable object is not considered part of the ap-
plication interface and doesnÕt draw. Nonusable
objects can programmatically be set to usable.
98 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Resources
GrafÞti Shift Indicator Resource
GrafÞti Shift Indicator Resource

Overview The GrafÞti Shift Indicator resource speciÞes the window-relative or
form-relative position of the GrafÞti shift state indicator. The differ-
ent shift states are punctuation, symbol, uppercase shift, and upper-
case lock. These indicators will appear at the position of the GrafÞti
Shift resource.

Note: By convention, GrafÞti Shift indicators are placed at the bot-
tom-right of every form that has an editable text Þeld.

Attributes Object
IdentiÞer

Name of the object. Assigned by developer and used
by Constructor during header Þle generation and
update.

Left Origin Form-relative position of left side of object.
Valid values: 0 Ð 159

Top Origin Form-relative position of top of object.
Valid values: 0 Ð 159

Object ID ID of the object (assigned by Constructor).
Developing Palm OS 2.0 Applications, Part I 99

Palm OS User Interface Resources
Label Resource
Label Resource

Overview The label resource displays noneditable text or labels on a form (dia-
log box or full-screen). ItÕs used, for example, to have text appear to
the left of a checkbox instead of the right.

Comments Pressing Return in a label wraps the text to the next line.

Attributes Object
IdentiÞer

Name of the object. Assigned by developer and used
by Constructor during header Þle generation and
update.

Label ID ID of the object (assigned by Constructor).

Left Origin Form-relative position of left side of object.
Valid values: 0 Ð 159

Top Origin Form-relative position of top of object.
Valid values: 0 Ð 159

Usable If this box is checked, the object is usable.
A nonusable object is not considered part of the ap-
plication interface and doesnÕt draw. Nonusable ob-
jects can programmatically be set to usable.

Font Font used to draw the text label of the button.
Choose from the pop-up menu to select one of the
2.0 fonts.

Text Text of the label.
100 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Resources
List Resource
List Resource

UI Structure ListType

Example

Overview A list provides a box with a list of choices to the user. The list is
scrollable if the choices donÕt all Þt in the box.

The list box appears as a vertical list of choices surrounded by a rect-
angular frame. The current selection of the list is inverted. Arrows
for scrolling the list appear in the right margin if necessary.

Lists can appear as popup lists when used with popup triggers. See
Popup Trigger Resource.

Attributes Object
IdentiÞer

Name of the object. Assigned by developer and used
by Constructor during header Þle generation and up-
date.

List ID ID of the object (assigned by Constructor).

Left Ori-
gin

Form-relative position of left side of object.
Valid values: 0 Ð 159
Developing Palm OS 2.0 Applications, Part I 101

Palm OS User Interface Resources
List Resource
Comments Errors may occur if the number of visible items is greater than the
actual number of items. An itemÕs text is not clipped against the list
boxÕs borders. Set a list to not usable if itÕs linked to a popup trigger.

Use a list to let users choose between items of data; use a menu to
activate a command.

If a list becomes too tall to Þt below the trigger, itÕs justiÞed up. If it
becomes to large for the screen, it scrolls.

Event Flow for List Resource

Top Ori-
gin

Form-relative position of top of object.
Valid values: 0 Ð 159

Width Width of the list.
Valid values: 0 Ð 160

Usable If this box is checked, the object is usable.
A nonusable object is not considered part of the appli-
cation interface and doesnÕt draw. Nonusable objects
can programmatically be set to usable.

Font Font used to draw the text label of the button. Choose
from the pop-up menu to select one of the 2.0 fonts.

Visible
items

Height of the list box, in items (choices). For example,
if the list has six items but only four Þt, specify four.

Items Items in the list.

User Action System Response

Pen goes down
on a list box.

penDownEvent; store x and y coordinates in EventType.
lstEnterEvent; store list ID and selected item in EventType.

Pen is lifted from
the list box.

lstSelectEvent is triggered; store buttonÕs ID number and number
of selected item in EventType.
penUpEvent; store x and y coordinates in EventType.
102 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Resources
Popup Trigger Resource
Popup Trigger Resource

UI structure ControlType

Overview The popup trigger shows the selection of a list. The user can press
the popup trigger to pop up the list and change the selection.

A popup trigger displays a text label and a triangle to the left of the
label that indicates the object is a popup trigger.

When the user selects a popup trigger, a list of items pops up.

Attributes Object
IdentiÞer

Name of the object. Assigned by developer and
used by Constructor during header Þle generation
and update.

Popup ID ID of the object (assigned by Constructor).

Left Origin Form-relative position of left side of button.
Valid values: 0 Ð 159

Top Origin Form-relative position of top of button.
Valid values: 0 Ð 159

Width Width of the buttonÕs picking area in pixels.
Valid values: 1 Ð 160

Height Height of the buttonÕs picking area in pixels.
Valid values: 1 Ð160

Usable If this box is checked, the object is usable.
A nonusable object is not considered part of the
application interface and doesnÕt draw. Nonusable
objects can programmatically be set to usable.
Developing Palm OS 2.0 Applications, Part I 103

Palm OS User Interface Resources
Popup Trigger Resource
Event Flow for Popup Trigger Resource

Left
anchor

Controls how the object resizes itself when its text
label is changed.
Valid values: checked (left bound Þxed)

unchecked (right bound Þxed)

Font Font used to draw the text label of the button.
Choose from the pop-up menu to select one of the
2.0 fonts.

Label Text displayed in the popup trigger (right of ar-
row).

List ID ID of the List object that pops up when the user
taps the pop-up trigger.

User Action System Response

Pen goes down on
popup trigger.

penDownEvent; store x and y coordinates in EventType.
ctlEnterEvent; store popup trigger ID number in EventType.

Pen is lifted from
popup trigger.

ctlSelectEvent; store popup trigger ID number in EventType. A
ctlSelectEvent can be triggered only if a ctlEnterEvent
with the same popup trigger ID number has just occurred.
winExitEvent; pass control to a popup list object.

Popup list pops
up.

winEnterEvent
penUpEvent; a penDownEvent to pop up the popup list.
104 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Resources
Push Button Resource
Push Button Resource

UI Structure ControlType

Overview Push buttons allow users to select an option from a group of items.
The choices should have few characters; if the choices are long;
check boxes are preferable.

Push buttons display a text label surrounded by a 1-pixel-wide rect-
angular frame. They appear in a horizontal or vertical row with no
pixels between the buttons. The buttons share a common border so
there appears to be a one pixel line between two controls. The cur-
rent selection is highlighted.

.

The List By dialog of the Address Book and the Details dialog of the
ToDo List contain examples of rows of push buttons.

Pen goes down on
item in popup list.

penDownEvent occurs.

Pen is lifted from
popup list.

lstSelectEvent; store the popup list ID and the selected item num-
ber in EventType.
winExitEvent causes popup list to disappear; control passes
back to the popup trigger.
winEnterEvent occurs.
popSelectEvent is triggered if an item was selected in the
popup list; store popup trigger ID, the popup list ID, and the item
number selected in EventType.
penUpEvent occurs.

User Action System Response
Developing Palm OS 2.0 Applications, Part I 105

Palm OS User Interface Resources
Push Button Resource

Attributes Object
IdentiÞer

Name of the object. Assigned by developer and used
by Constructor during header Þle generation/update.

Button ID ID of the object (assigned by Constructor).

Left
Origin

Form-relative position of left side of button.
Valid values: 0 Ð 159

Top
Origin

Form-relative position of top of button.
Valid values: 0 Ð 159

Width Width of the button in pixels. Should be size of label
plus two pixels at each end.
Valid values: 1 Ð 160

Height Height of the button in pixels. Should be font size plus
two pixels.
Valid values: 1 Ð 160

Usable If this box is checked, the object is usable.
A nonusable object is not considered part of the appli-
cation interface and doesnÕt draw. Nonusable objects
can programmatically be set to usable.

Group ID Group ID of a push button that is part of an exclusive
group. Only one push button in an exclusive group
may be depressed at a time. Ungrouped (nonexclu-
sive) push buttons have zero as a group ID. This fea-
ture must be enforced by the application.
Valid values: 0 Ð 65535

Font Font used to draw the text label of the button. Choose
from the pop-up menu to select one of the 2.0 fonts.

Label Text displayed inside the push button.
106 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Resources
Push Button Resource
Comment To create a row of push buttons, create a number of individual push
button resources with the same height and align them by specifying
the same top position for each button.

Event Flow for Push Button Resource

User Action System Response

Pen goes down on
push button.

penDownEvent; store x and y coordinates in EventType.
ctlEnterEvent; store push button ID number in EventType.
Push button is highlighted.
If push button is grouped and highlighted, no change.
If push button is ungrouped and highlighted, it becomes
unhighlighted.

Pen is lifted from
push button.

ctlSelectEvent; store button ID number and its current state; on =
1; off = 0.
ctlSelectEvent can be triggered only if a ctlEnterEvent
with the same push button ID number just occurred.
penUpEvent; store the x and y coordinates.
Developing Palm OS 2.0 Applications, Part I 107

Palm OS User Interface Resources
Repeating Button Resource
Repeating Button Resource

Overview The repeating button object is identical to the button object in its ap-
pearance. The repeating button is used for buttons that need to be
triggered continuously by holding the pen down on them.
A good example for a repeating button is the scroll arrow, which
moves text as long as itÕs held down.

Attributes Object
IdentiÞer

Name of the object. Assigned by developer and
used by Constructor during header Þle generation
and update.

Button ID ID of the object (assigned by Constructor).

Left Origin Form-relative position of left side of button.
Valid values: 0 Ð 159

Top Origin Form-relative position of top of button.
Valid values: 0 Ð 159

Width Width of the button in pixels.
Valid values: 1 Ð 160

Height Height of the button in pixels.
Valid values: 1 Ð 160

Usable If this box is checked, the object is usable.
A nonusable object is not considered part of the
application interface and doesnÕt draw. Nonusable
objects can programmatically be set to usable.

Anchor Left Controls how the object resizes itself when its text
label is changed. If checked, the left bound of the
object is Þxed; if unchecked, the right bound is
Þxed.

Frame If checked, a rectangular frame with rounded cor-
ners is drawn around the button.
108 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Resources
Repeating Button Resource
Comments The attributes match those of the Button Resource (tBTN); the be-
havior differs.

You can also use repeating buttons to create increment arrows. See
Button Resource for more information.

Event Flow for Repeating Button Resource

A repeating button is similar in appearance to a button, but it gener-
ates different events. A button generates a ctlEnterEvent when it is
pressed and a ctlSelect event when it is released. A repeating
button generates a ctlEnterEvent when it is pressed and a
ctlRepeatEvent as long as it remains pressed. HereÕs a more detailed
discussion of the events:

Non-bold
Frame

Determines the width of the rectangular frame
drawn around the object.
Valid values: checked (1-pixel-wide frame)

unchecked (2-pixel-wide frame)

Font Font used to draw the text label of the button.
Choose from the pop-up menu to select one of the
2.0 fonts.

Label Text displayed inside the button.

User Action System Response

Pen goes down on a
repeating button.

penDownEvent; store x and y coordinates in EventType.
ctlEnterEvent; store buttonÕs ID number in EventType.

Pen remains on
repeating button.

For every given amount of time the pen is down on the repeat
control object, a ctlRepeatEvent is generated.

Pen is dragged off
the repeating button.

No additional ctlRepeatEvent occurs.
Developing Palm OS 2.0 Applications, Part I 109

Palm OS User Interface Resources
Scrollbar Resource
Scrollbar Resource

Overview The scroll bar resource helps developers to provide scrolling behav-
ior for Þelds and tables.

Example

Pen is dragged back
onto the button.

ctlRepeatEvent begins to occur again.

Pen is lifted. penUpEvent; store x and y coordinates in EventType

User Action System Response

scroll car

Attributes Object
IdentiÞer

Name of the object. Assigned by developer and
used by Constructor during header Þle generation
and update.

Scrollbar ID ID of the object (assigned by Constructor).

Left Origin Form-relative position of left side of button.
Valid values: 0 Ð 159
110 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Resources
Scrollbar Resource
Top Origin Form-relative position of top of button.
Valid values: 0 Ð 159

Width Width of the scroll bar in pixels.
7 (the default) is strongly recommended.

Height Height of the scrollbar in pixels.
Valid values: 1 Ð 160

Usable If this box is checked, the object is usable.
A nonusable object is not considered part of the
application interface and doesnÕt draw. Nonusable
objects can programmatically be set to usable.

Value Current top value of the scroll barÕs car (movable
piece).

Min Value Position of the scroll car when the scrollbar is at the
top. Default should usually be 0.

Max Value Position of the scroll car when the scrollbar is at the
bottom. To compute this value, use the formula:
Number of lines Ð Page size + Overlap.

Page Size Number of lines to scroll at one time.
Developing Palm OS 2.0 Applications, Part I 111

Palm OS User Interface Resources
Selector Trigger Resource
Selector Trigger Resource

UI Structure ControlType

Overview Users can tap a selector trigger to pop up a dialog that lets them se-
lect an item. The selected item becomes the label of the selector trig-
ger. For example, a selector trigger for time pops up a time selector.
The selected time is entered into the selector trigger.

A selector trigger displays a text label surrounded by a gray rectan-
gular frame, as shown below:

Attributes Object
IdentiÞer

Name of the object. Assigned by developer and
used by Constructor during header Þle generation
and update.

Selector
Trigger ID

ID of the object (assigned by Constructor).

Left Origin Form-relative position of the left side of the object.
Valid values: 0 Ð 159

Top Origin Form-relative position of top of object.
Valid values: 0 Ð 159

Width Width of the object in pixels.
Valid values: 1Ð 160

Height Height of the object in pixels. Height extends two
pixels above and one pixel below the 9-point plain
font. Height is one pixel above command buttons to
accommodate the gray frame.
Valid values: 1Ð 160
112 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Resources
Selector Trigger Resource
Event Flow for Selector Trigger Resource

Usable If this box is checked, the object is usable.
A nonusable object is not considered part of the ap-
plication interface and doesnÕt draw. Nonusable ob-
jects can programmatically be set to usable.

Anchor
Left

Controls how the object resizes itself when its text
label is changed. If checked, the left bound of the
object is Þxed, if unchecked, the right bound is
Þxed.
Valid values: checked (left bound Þxed)

unchecked (right bound Þxed)

Font Font used to draw the text label of the button.
Choose from the pop-up menu to select one of the
2.0 fonts.

Label Text in the selector trigger.

User Action System Response

Pen goes down on
a selector trigger.

penDownEvent; store x and y coordinates in EventType.
ctlEnterEvent; store selector trigger ID number in EventType.

Pen is lifted from
the selector trigger.

ctlSelectEvent; store selector trigger ID number in EventType. A
ctlSelectEvent can only be triggered if a ctlEnterEvent
with the same selector trigger ID number has just occurred.
frmOpenEvent followed by a winExitEvent, control is passed to a
form object. When control is passed back to the selector trigger, a
winEnterEvent and a penUpEvent occur.
Developing Palm OS 2.0 Applications, Part I 113

Palm OS User Interface Resources
Table Resource
Table Resource

Overview The table object allows the developer to organize a collection of ob-
jects on the display. For example, a table might contain a column of
labels that correspond to a column of Þelds. Under some circum-
stances, a one-column table may be preferable to a list.

Comments Since tables are scrollable, they may be larger than the display.

Example

Attributes Object
IdentiÞer

Name of the object. Assigned by developer, used
by Constructor during header Þle generation/
update.

Table ID ID of the object (assigned by Constructor).

Left Origin Form-relative position of left side of the object.
Valid values: 0 Ð 159

Top Origin Form-relative position of top of object.
Valid values: 0 Ð 159

Width Width of the object in pixels.
Valid values: 1Ð 160

Height Height of the object in pixels.
Valid values: 1Ð160

Rows Number of rows in the table.

Columns Number of columns in the table.

Column width Width of the nth column.
114 Developing Palm OS 2.0 Applications, Part I

4
Palm OS User
Interface Objects
A Palm OS UI object is a C structure thatÕs linked with one or more
items on the screen. By changing Þeld values of the C structure, an
application can manipulate its user interface. Note that Palm UI ob-
jects are just structures, not the more elaborate objects found in
some systems. This is useful because a C structure is more compact
than other objects could be.

This chapter helps you develop your applicationÕs user interface by
providing information about each objectÕs structure, associated
events, associated UI resource Þles, and all API calls available for
manipulating the structure. It discusses the following objects:

¥ Control Objects
¥ Date and Time Objects
¥ Field Objects
¥ Form Objects
¥ Insertion Point Object
¥ List Object
¥ Menu Objects
¥ Scrollbar Object
¥ Table Objects
¥ Window Objects

A Note on the Rectangle Structure

The RectangleType structure is used for describing the area of a
rectangle throughout the resources and API. The RectangleType
deÞnes the top-left corner of a rectangle and its width and height
(not the lower-left corner).
Developing Palm OS 2.0 Applications, Part I 115

Palm OS User Interface Objects
Control Objects
Control Objects
Control objects allow for user interaction when you add them to the
forms in your application. There are six types of control objects:

¥ Buttons display a text label in a box. The default style for a
button is a text string centered within a rounded rectangle.
Buttons have rounded corners unless a rectangular frame is
specified. A button without a frame inverts a rounded
rectangular region when pressed.

When the user taps a button with the pen, the button high-
lights until the user releases the pen or drags it outside the
bounds of the button.

¥ A popup trigger displays a text label followed by a graphic
element (always on the right) that signifies the control initiates
a popup list. If the text label changes, the width of the control
expands or contracts to the width of the new label plus the
graphic element.

¥ A selector trigger displays a text label surrounded by a gray
rectangular frame. If the text label changes, the width of the
control expands or contracts to the width of the new label.

¥ A repeat control looks like a button. In contrast to buttons,
however, users can repeatedly select repeat controls if they
donÕt lift the pen when the control has been selected. The object
is selected repeatedly until the pen is lifted.

¥ Push buttons look like buttons, but the frame always has
square corners. Touching a push button with the pen inverts
the bounds. If the pen is released within the bounds, the button
remains inverted.

¥ Check boxes display a setting, either on (checked) or off
(unchecked). Touching a check box with the pen toggles the
setting. The check box appears as a square, which contains a
check mark if the check boxÕs setting is on. A check box can
have a text label attached to it; selecting the label also toggles
the check box.

Push buttons and check boxes can be arranged into exclusive
groups; one and only one control in a group can be on at a time.

This section provides the following information about control
objects:
116 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Objects
Control Objects
¥ Control Object Events
¥ Structure of a Control
¥ Associated Resources
¥ Control Functions

Control Object Events

Control objects generate four types of events: ctlEnterEvent,
ctlExitEvent, ctlRepeatEvent, and ctlSelectEvent. All
these events are generated by the control event handler
CtlHandleEvent. All events posted by the handler contain the ID
of the control and a pointer to the control data structure

The following table provides an overview of how
CtlHandleEvent deals with the different events.

When CtlHandleEvent
receives...

CtlHandleEvent performs these actions...

penDownEvent; pen po-
sition in the bounds of
the control object.

Adds a ctlEnterEvent to the event queue

 ctlEnterEvent Inverts the control and tracks the pen until the pen comes
up or until the pen is dragged outside the bounds of the
control.

¥ If the pen comes up in the bounds of the control, a
ctlSelectEvent is added to the event queue.

¥ If the pen is dragged outside the bounds of the control,
the control reverts to its original visual state and a
ctlExitEvent is added to the event queue.
Developing Palm OS 2.0 Applications, Part I 117

Palm OS User Interface Objects
Control Objects
Structure of a Control

Listing 4.1 ControlType and Auxiliary Structures
typedef struct {

Word id;
RectangleType bounds;
CharPtr text;
ControlAttrType attr;
ControlStyleType style;
FontID font;
Byte group;

} ControlType;

typedef ControlType* ControlPtr;

typedef struct {
Byte usable :1;
Byte enabled :1;
Byte visible :1;
Byte on :1;
Byte leftAnchor :1;

ctlEnterEvent for a
repeat control

Sends a ctlRepeatEvent. When the repeat control re-
ceives a ctlRepeatEvent, it tracks the pen for a period of
time and then sends another ctlRepeatEvent if the pen is
still within the bounds of the control.

ctlExitEvent Tracks the pen until the pen comes up or is dragged inside
the bounds of the control.

¥ If the pen is dragged into the control, a
ctlEnterEvent is added to the event queue.

¥ If the pen is released outside the control, no event is
posted.

When CtlHandleEvent
receives...

CtlHandleEvent performs these actions...
118 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Objects
Control Objects
Byte frame :3;
} ControlAttrType;

enum controlStyles {buttonCtl, pushButtonCtl,
checkboxCtl, popupTriggerCtl,

 selectorTriggerClt, repeatingButtonCtl};
typedef enum controlStyles ControlStyleType;

enum buttonFrames {noButtonFrame,
standardButtonFrame, boldButtonFrame,
rectangleButtonFrame};

typedef enum buttonFrames ButtonFrameType;
Developing Palm OS 2.0 Applications, Part I 119

Palm OS User Interface Objects
Control Objects
Fields of a ControlType Structure

The following table lists the Þelds of a ControlType structure and
discusses what they do.

Field Function

id Symbolic ID of the control, speciÞed by the developer. By conven-
tion, this ID should match the resource ID (not mandatory).

text Pointer to the controlÕs label. If text is NULL, the control has no
label. Only buttons, push buttons, and text boxes have text labels.

bounds Bounds of the control, in window-relative coordinates. The con-
trolÕs text label is clipped to the controlÕs bounds. The controlÕs
frame is drawn around (outside) the bounds of the control.

attr Control attributes. The attr Þeld is a bit Þeld that contains the
following members:

¥ A control that doesnÕt have the usable attribute set is not
considered to be part of the interface of the current
application, and it doesnÕt appear on screen.

¥ A control that doesnÕt have the enable attribute set appears
Ògrayed out,Ó and doesnÕt respond to the pen. Graying out UI
elements is strongly discouraged because itÕs a poor use of
screen real estate. Remove the control object instead.

¥ The visible attribute is set and cleared internally when the
control is drawn and erased.

¥ The leftAnchor attribute is used by controls that expand
and shrink their width when their label is changed. If the
attribute is set, the left bound of the control is fixed.

¥ The frame field specifies the type of frame drawn around the
button controls. Only button controls use this attribute; for all
other controls, the ControlStyle determines the frame.

style Style of the control: button, push button, check box, popup trig-
ger, popup selector, or repeating button. (See the
ControlStyleType enum listed under Structure of a Control.)
120 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Objects
Control Objects
Associated Resources

Different resources are associated with different controls, as follows:

¥ ButtonÑButton Resource (tBTN)
¥ Popup triggerÑ Popup Trigger Resource (tPUT)
¥ Selector triggerÑSelector Trigger Resource (tSLT)
¥ Repeat controlÑRepeating Button Resource (tREP)
¥ Push buttonÑPush Button Resource (tPBN)
¥ Check boxÑCheck Box Resource (tCBX)

Control Functions

The following API calls can be used to manipulate control objects.

¥ CtlDrawControl
¥ CtlEraseControl
¥ CtlGetLabel
¥ CtlGetValue
¥ CtlHandleEvent
¥ CtlHideControl
¥ CtlHitControl
¥ CtlEnabled
¥ CtlSetEnabled
¥ CtlSetLabel
¥ CtlSetUsable
¥ CtlSetValue
¥ CtlShowControl

font Font to use to draw the controlÕs label.

group Group ID of a push button or a check box that is part of an exclu-
sive group. The control routines donÕt automatically turn one con-
trol off when another is selected. ItÕs up to the application or a
higher-level object, like a dialog box, to manage this.

Field Function
Developing Palm OS 2.0 Applications, Part I 121

Palm OS User Interface Objects
Date and Time Objects
Date and Time Objects
The Palm OS UI provides two system resources for accepting date
and time input values. These resources are dialog boxes that contain
UI gadgetry for entering dates and times. The Palm OS UI also pro-
vides routines to manage the interaction with these resources.

There is no corresponding UI object.

Date and Time Functions

Currently deÞned date and time selection functions are SelectDay
and SelectTime.

Field Objects
A Þeld object displays one or more lines of editable text, supporting
these features:

¥ Proportional fonts (only one font per field)
¥ Drag-selection
¥ Scrolling for multiline fields
¥ Cut, copy, and paste
¥ Left and right text justification
¥ Tab stops
¥ Editable/noneditable attribute
¥ Expandable field height (the height of the field expands as

more text is entered)
¥ Underlined text (each line of the field is underlined)
¥ Maximum character limit (the field stops accepting characters

when the maximum is reached)
¥ Special keys (Graffiti strokes) to support cut, copy, and paste
¥ Insertion point positioning with pen (the insertion point is

positioned by touching the pen between characters)
¥ Scroll bars
122 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Objects
Field Objects
The Þeld object does not support overstrike input mode; horizontal
scrolling; word selection; character Þlters (for example, only numer-
ic characters accepted); numeric formatting; or special keys for page
up, page down, left word, right word, home, end, left margin, right
margin, and backspace.

Note: Field objects can handle line feedsÑ\0AÑbut not carriage
returnsÑ\0D. PilotRez translates any carriage returns it finds in
any Palm OS resources into line feeds, but doesnÕt touch static
data.

This section provides the following information about Þeld objects:

¥ Field Object Events
¥ Structure of a Field
¥ Associated Resources
¥ Field Functions

Field Object Events

Events in Þeld objects are handled by FldHandleEvent.
FldHandleEvent handles events of type penDownEvent,
fldEnterEvent, and keyDownEvent.

The following table provides an overview of how
FldHandleEvent deals with the different events

When FldHandleEvent
receives...

FldHandleEvent performs these actions...

penDownEvent; pen po-
sition in the bounds of
the Þeld object.

Adds a fldEnterEvent to the event queue.

fldEnterEvent Sets the insertion point position to the position of the pen
and tracks the pen until it is released. Drag-selection and
drag-scrolling are supported.
Developing Palm OS 2.0 Applications, Part I 123

Palm OS User Interface Objects
Field Objects
Structure of a Field

The FieldType structure and supporting structures are deÞned as
follows:

Listing 4.2 FieldType Structure
typedef struct {

Word id;
RectangleType rect;
FieldAttrType attr;
CharPtr text;
VoidHand textHandle;

A keyDownEvent with a special character:

keyDownEvent with
up arrow

Moves insertion point up a line.

keyDownEvent with
down arrow

Moves insertion point down a line; the insertion point
doesnÕt move beyond the last line that contains text.

keyDownEvent with
left arrow

Moves insertion point one character position to the left.
When the left margin is reached, move to the end of the
previous line.

keyDownEvent with
right arrow

Moves insertion point one character position to the right.
When the right margin is reached, move to the start of the
next line.

keyDownEvent with
cut key

Cuts the current selection to the text clipboard.

keyDownEvent with
copy key

Copies the current selection to the text clipboard.

keyDownEvent with
paste key

Inserts clipboard text into the Þeld at insertion point.

When FldHandleEvent
receives...

FldHandleEvent performs these actions...
124 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Objects
Field Objects
LineInfoPtr lines;
Word textLen;
Word textBlockSize;
Word maxChars;
Word selFirstPos;
Word selLastPos;
Word insPtXPos;
Word insPtYPos;
FontID fontID;

} FieldType;
typedef FieldType* FieldPtr;

typedef struct {
Word usable :1;
Word visible :1;
Word editable :1;
Word singleLine :1;
Word hasFocus :1;
Word dynamicSize :1;
Word insPtVisible :1;
Word dirty :1;
Word underlined :2;
Word justification :2;
Word autoShift :1;
Word hasScrollBar :1;

} FieldAttrType;

typedef struct {
Word start;
Word length;

} LineInfoType;

typedef LineInfoType* LineInfoPtr;
Developing Palm OS 2.0 Applications, Part I 125

Palm OS User Interface Objects
Field Objects
Fields of a Field Structure

The field structure has the following Þelds:

Field Function

id ID value speciÞed by the application developer. This ID value is
included as part of the event data of fldEnterEvent.

rect Position and size of the Þeld object.

attr Field object attributes. The attr Þeld is a bit Þeld that contains the
following members: usable, visible, editable, singleLine,
hasFocus, dynamicSize, insPtVisible, dirty, underlined,
justification, autoShift, hasScrollBar, and numeric.
(see Field Attributes below)

text Pointer to the NULL-terminated string that is displayed by the
field object.

textHandle Handle to the stored text.

lines Pointer to an array of LineInfoType structures. There is one
entry in this array for each visible line of the text. The LineInfo-
Type structure contains the character position, in the fieldÕs text
string, of the Þrst character displayed by a line and the number of
characters displayed.

textLen Current number of characters in the string displayed by the Þeld
object; the null-terminator is excluded.

textBlockSize Allocated size of the memory block that holds the Þeld objectÕs text
string.

maxChars Maximum number of characters the Þeld object accepts.

selFirstPos Starting character position of the current selection.

selLastPos Ending character position of the current selection. When
selFirstPos equals selLastPos, there is no selection.

insPtXPos Column position of the insertion point.
126 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Objects
Field Objects
Field Attributes

The attr Þeld of the Field UI object can have the following values:

¥ A field object that doesnÕt have the usable attribute set is not
considered part of the current interface of the application, and
it doesnÕt appear on screen.

¥ The visible attribute is set or cleared internally when the
field object is drawn or erased.

¥ A field object that doesnÕt have its editable attribute set
doesnÕt accept Graffiti input or edit commands and the
insertion point cannot be positioned with the pen.

¥ If the singleLine attribute is set, the height of the
singleLine field doesnÕt expand to accommodate more text.

¥ The hasFocus attribute is set internally when the field has the
current focus. The blinking insertion point appears in the field
that has the current focus.

¥ If the dynamicSize attribute is set, the height of the field
expands as characters are entered into the field.

¥ If the insPtVisible attribute is set, the insertion point is
scrolled into view. This attribute is set and cleared internally.

¥ If a field has its dirty attribute set, the user has modified the
field.

¥ If a field has its underlined attribute set each line of the field,
including blank lines, is underlined.

¥ The justification attribute specifies the text alignment (left
or right justification only; center justification is not supported).

Associated Resources

The Field Resource (tFLD) represents a Þeld on screen.

insPtYPos Display line where the insertion point is positioned. The Þrst dis-
play line is zero.

fontID Font ID for the Þeld. See Font.h for more information.

Field Function
Developing Palm OS 2.0 Applications, Part I 127

Palm OS User Interface Objects
Field Objects
Field Functions

The following API calls can be used to manipulate Þeld objects.

¥ FldCalcFieldHeight

¥ FldCompactText

¥ FldCopy

¥ FldCut

¥ FldDelete

¥ FldDirty

¥ FldDrawField

¥ FldEraseField

¥ FldFreeMemory

¥ FldGetAttributes

¥ FldGetBounds

¥ FldGetFont

¥ FldGetInsPtPosition

¥ FldGetMaxChars

¥ FldGetNumberOfBlankLines

¥ FldGetScrollValues

¥ FldGetScrollPosition

¥ FldGetSelection

¥ FldGetTextAllocatedSize

¥ FldGetTextHandle

¥ FldGetTextHeight

¥ FldGetTextLength

¥ FldGetTextPtr

¥ FldGetVisibleLines

¥ FldGrabFocus

¥ FldHandleEvent

¥ FldInsert
128 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Objects
Field Objects
¥ FldMakeFullyVisible

¥ FldPaste

¥ FldRecalculateField

¥ FldReleaseFocus

¥ FldScrollable

¥ FldScrollField

¥ FldSendChangeNotiÞcation

¥ FldSendHeightChangeNotiÞcation

¥ FldSetAttributes

¥ FldSetBounds

¥ FldSetDirty

¥ FldSetFont

¥ FldSetInsertionPoint

¥ FldSetInsPtPosition

¥ FldSetMaxChars

¥ FldSetScrollPosition

¥ FldSetSelection

¥ FldSetText

¥ FldSetTextAllocatedSize

¥ FldSetTextHandle

¥ FldSetTextPtr

¥ FldSetUsable

¥ FldUndo

¥ FldWordWrap
Developing Palm OS 2.0 Applications, Part I 129

Palm OS User Interface Objects
Form Objects
Form Objects
A form object is used as a container for all other UI objects. A form is
a window and everything contained within it.

This section provides the following information about form objects:

¥ Form Object Events
¥ Structure of a Form
¥ Associated Resources
¥ Form Functions

Form Object Events

Events in form objects are handled by the FrmHandleEvent rou-
tine.

The following table provides an overview of how
FrmHandleEvent deals with the different events.

When FrmHandleEvent
receives...

FrmHandleEvent performs these actions...

penDownEvent; pen posi-
tion in the bounds of the
form object.

Checks the list of objects contained by the form to deter-
mine if the pen is within the bounds of one. If it is, the
appropriate handler is called to handle the event, for ex-
ample, if the pen is in a control, CtlHandleEvent is
called. If the pen isnÕt within the bounds of an object, the
event is ignored by the form.

keyDownEvent Passes the event to the handler for the object that has the
focus. If no object has the focus, the event is ignored.

ctlEnterEvent Checks if the control is in an exclusive control group. If
it is, it deselects the currently selected control of the
group and passes the event and a pointer to the object
the event occurred in to CtlHandleEvent. The object
pointer is obtained from the event data.
130 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Objects
Form Objects
ctlRepeatEvent Passes the event and a pointer to the object the event oc-
curred in to the appropriate handler. The object pointer
is obtained from the event data.

ctlSelectEvent Checks if the control is a Popup Trigger Control. If it is,
the list associated with the popup trigger is displayed
until the user makes a selection or touches the pen out-
side the bounds of the list. If a selection is made, a
popSelectEvent is added to the event queue.

popSelectEvent Sets the label of the popup trigger to the current selec-
tion of the popup list.

lstEnterEvent or
tblEnterEvent

Passes the event and a pointer to the object the event oc-
curred in to the appropriate handler. The object pointer
is obtained from the event data.

fldEnterEvent or
fldHeightChangedEvent

Checks if a Þeld object or a table object has the focus and
passes the event to the appropriate handler. The table
object is also a container object, which may contain a
Þeld object. If TblHandleEvent receives a Þeld event,
it passes the event to the Þeld object contained within it.

frmCloseEvent Erases the form and releases any memory allocated for
it.

frmUpdateEvent Redraws the form.

menuEvent Checks if the menu command is one of the system edit
menu commands. The system provides a standard edit
menu which contains the commands Undo, Cut, Copy,
Paste, Select All, and Keyboard. FrmHandleEvent re-
sponds to these commands.

When FrmHandleEvent
receives...

FrmHandleEvent performs these actions...
Developing Palm OS 2.0 Applications, Part I 131

Palm OS User Interface Objects
Structure of a Form
 Structure of a Form
The FormType structure and supporting structures are deÞned as
follows:

Listing 4.3 FormType Structure and Supporting Structures
typedef struct {

WindowType window;
Word formId;
FormAttrType attr;
WinHandle bitsBehindForm;
FormEventHandlerPtr handler;
Word focus;
Word defaultButton;
Word helpRscId;
Word menuRscId;
Word numObjects;
FormObjListType* objects;

} FormType;
typedef FormType * FormPtr;

typedef struct {
Word usable :1;
Word enabled :1;
Word visible :1;
Word dirty :1;
Word saveBehind :1;
Word graffitiShift :1;
Word reserved :11;

} FormAttrType;

typedef struct {
FormObjectKind objectType;
FormObjectType object;

} FormObjListType;
132 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Objects
Structure of a Form
typedef union {
void * ptr;
FieldType* field;
ControlType* control;
ListType* list;
TableType* table;
FormBitmapType* bitmap;
FormLabelType * label;
FormTitleType* title;
FormPopupType* popup;
FormGraffitiStateType* grfState;
FormGadgetType* gadget;
ScrollBarType scrollBar;

} FormObjectType;

enum formObjects {
frmFieldObj,
frmControlObj,
frmListObj,
frmTableObj,
frmBitmapObj,
frmLineObj,
frmFrameObj,
frmRectangleObj,
frmLabelObj,
frmTitleObj,
frmPopupObj,
frmGraffitiStateObj,
frmGadgetObj,
frmScrollbarObj

};
typedef enum formObjects FormObjectKind;

typedef struct {
Developing Palm OS 2.0 Applications, Part I 133

Palm OS User Interface Objects
Structure of a Form
Word usable :1;
} FormObjAttrType;

typedef struct {
FormObjAttrType attr;
PointType pos;
Word rscID;

} FormBitmapType;

typedef struct {
FormObjAttrType attr;
PointType point1;
PointType point2;

} FormLineType;

typedef struct {
Word id;
FormObjAttrType attr;
RectangleType rect;
Word frameType;

} FormFrameType;

typedef struct {
FormObjAttrType attr;
RectangleType rect;

} FormRectangleType;

typedef struct {
Word id;
PointType pos;
FormObjAttrType attr;
FontID fontID;
char * text;

} FormLabelType;
134 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Objects
Structure of a Form
typedef struct {
RectangleType rect;
char * text;

} FormTitleType;

typedef struct {
unsigned short controlID;
unsigned short listID;

} FormPopupType;

typedef struct{
PointerType pos;

}FrmGraffitiStateType;

typedef struct{
Word id;
FormObjAttrType attr;
RectangleType rect;
VoidPtr date;

}FormGadgetType;

Fields of Form Objects

The form structure has the following Þelds:

Field Function

window Structure of the window object that corresponds to the form.

formId ID number of the form, speciÞed by the application developer. This
ID value is part of the event data of frmOpenEvent. The ID should
match the formÕs resource ID.
Developing Palm OS 2.0 Applications, Part I 135

Palm OS User Interface Objects
Structure of a Form
attr Form object attributes. The attr Þeld is a bit Þeld that contains the
members usable, enable, visible, dirty, saveBehind, and
reserved.

¥ A form that doesnÕt have the usable attribute set is not
considered part of the current interface of the application, and
it doesnÕt appear on screen.

¥ When the saveBehind attribute is set, the bits behind the
form are saved when the form is drawn.

¥ When the visible attribute is set or cleared internally when
the field object is drawn or erased.

¥ When the dirty attribute is set, the form has been modiÞed in
any way. ModiÞcations include the changing of a Þeld or check
box. Currently, the system doesnÕt change the formÕs dirty at-
tribute when elements of the form are changed.

¥ The reserved attribute is reserved for system use.

bitsBehind-
Form

Used to save all the bits behind the form so the screen can be prop-
erly refreshed when the form is closed. Use this attribute for modal
forms.

handler Routine called when the form needs to handle an event, typically
set by the application in the ApplicationHandleEvent function.

focus Index of a Þeld or table object within the form that contains the fo-
cus. Any keyDownEvent is passed to the object that has the focus.

defaultButton Index of the object deÞned as the default button. This value is used
by the routine FrmDoDialog.

helpRscId Resource ID number of the help resource. The help resource is a
String resource (type tSTR).

MenuRscId ID number of a menu bar to use if the form is a menu, or zero if the
form is not a menu.

numObjects Number of objects contained within the form.

objects Pointer to the array of objects contained within the form.

Field Function
136 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Objects
Structure of a Form
Associated Resource

The Form Resource (tFRM) is used to represent forms on screen.

Form Functions

The following API calls can be used to manipulate form objects.

¥ FrmAlert

¥ FrmCloseAllForms
¥ FrmCopyLabel
¥ FrmCopyTitle
¥ FrmCustomAlert
¥ FrmDeleteForm
¥ FrmDispatchEvent
¥ FrmDoDialog
¥ FrmDrawForm
¥ FrmEraseForm
¥ FrmGetActiveForm
¥ FrmGetActiveFormID
¥ FrmGetControlGroupSelection
¥ FrmGetControlValue
¥ FrmGetFirstForm
¥ FrmGetFocus
¥ FrmGetFormBounds
¥ FrmGetFormId
¥ FrmGetFormPtr
¥ FrmGetGadgetData
¥ FrmGetLabel
¥ FrmGetNumberOfObjects
¥ FrmGetObjectBounds
¥ FrmGetObjectId
¥ FrmGetObjectIndex
¥ FrmGetObjectPosition
¥ FrmGetObjectPtr
Developing Palm OS 2.0 Applications, Part I 137

Palm OS User Interface Objects
Structure of a Form
¥ FrmGetObjectType
¥ FrmGetTitle
¥ FrmGetUserModifiedState
¥ FrmGetWindowHandle
¥ FrmGotoForm
¥ FrmHandleEvent
¥ FrmHelp
¥ FrmHideObject
¥ FrmInitForm
¥ FrmPointInTitle
¥ FrmPopupForm
¥ FrmReturnToForm
¥ FrmSaveAllForms
¥ FrmSetActiveForm
¥ FrmSetCategoryLabel
¥ FrmSetControlGroupSelection
¥ FrmSaveAllForms
¥ FrmSetActiveForm
¥ FrmSetCategoryLabel
¥ FrmSetControlGroupSelection
¥ FrmSetControlValue
¥ FrmSetEventHandler
¥ FrmSetFocus
¥ FrmSetGadgetData
¥ FrmSetMenu
¥ FrmSetNotUserModified
¥ FrmSetObjectBounds
¥ FrmSetObjectPosition
¥ FrmSetTitle
¥ FrmShowObject
¥ FrmUpdateScrollers
¥ FrmUpdateForm
¥ FrmVisible
138 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Objects
Insertion Point Object
Insertion Point Object
The insertion point is a blinking indicator that shows where text is
inserted when users write GrafÞti characters or paste clipboard text.

In general, an application doesnÕt need to be concerned with the in-
sertion point; the Palm OS UI manages the insertion point.

Insertion Point Functions

For custom insertion point behavior, developers can use the follow-
ing API calls:

¥ InsPtEnable

¥ InsPtEnabled

¥ InsPtGetHeight

¥ InsPtGetLocation

¥ InsPtSetHeight

¥ InsPtSetLocation
Developing Palm OS 2.0 Applications, Part I 139

Palm OS User Interface Objects
List Object
List Object
The list object appears as a vertical list of choices in a box. The cur-
rent selection of the list is inverted. If there are more choices than
can be displayed, the system draws small arrows (scroll indicators)
in the right margin next to the Þrst and last visible choice.

When the pen comes down and up on a scroll indicator, the list is
scrolled. When the user scrolls down, the last visible item becomes
the Þrst visible item if there are enough items to Þll the list. If not,
the list is scrolled so that the last item of the list appears at the bot-
tom of the list. The reverse is true for scrolling up. Scrolling doesnÕt
change the current selection.

Bringing the pen down on a list item unhighlights the current selec-
tion and highlights the item under the pen. Dragging the pen
through the list highlights the item under the pen. Dragging the pen
above or below the list causes the list to scroll if it contains more
choices than are visible.

When the pen is released over an item, that item becomes the cur-
rent selection. When the pen is dragged outside the list, the item
that was highlighted before the penDownEvent is highlighted again
if itÕs visible. If itÕs not, no item is highlighted.

This section provides information about list objects by discussing
these topics:

¥ List Object Events
¥ Structure of a List
¥ Associated Resources
¥ List Functions
140 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Objects
List Object
List Object Events

The list object generates two types of event structures:
lstEnterEvent and lstSelectEvent. Both events are generated
by the list event-handler function LstHandleEvent.

The following table provides an overview of how
LstHandleEvent deals with the different events.

When LstHandleEvent
receives...

LstHandleEvent performs these actions...

penDownEvent Adds a lstEnterEvent to the event queue if the pen
position is within the bounds of the list.

lstEnterEvent Tracks the pen until itÕs released.

¥ If the pen is released on a list choice, a new selection is
made (the data structure is modiÞed) and a
lstSelectEvent is added to the event queue.

¥ If the pen is released outside the list, the selection is
unchanged and no event is posted.
Developing Palm OS 2.0 Applications, Part I 141

Palm OS User Interface Objects
List Object
Structure of a List

The ListType structure and supporting structures are deÞned as
follows:

Listing 4.4 List Structure
typedef struct {

Word id;
RectangleType bounds;
ListAttrType attr;
CharPtr* itemsText;
Word numItems;
Word currentItem;
Word topItem;
FontID font;
WinHandle popupWin;
ListDrawDataFuncPtr drawItemCallback;

} ListType;

typedef struct {
Word usable :1;
Word enabled :1;
Word visible :1;
Word poppedUp :1;
Word hasScrollBar :1.
Word search :1;
Word reserved :2;

} ListAttrType;
142 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Objects
List Object
List Object Fields

The list object has the following Þelds:

Field Function

id ID value, speciÞed by the application developer. This ID value is
part of the event data of lstEnterEvent and lstSelectEvent.

bounds Bounds of the list, relative to the window.

attr List attributes:

¥ A form that doesnÕt have the usable attribute set is not
considered part of the current interface of the application, and
it doesnÕt appear on screen.

¥ If the enable attribute is set, the user can interact with the list.
¥ The visible attribute is set or cleared internally when the

field object is drawn or erased.

¥ If the poppedUp attribute is set, choices are displayed in a
popup window. This attribute is set and cleared internally.

¥ If hasScrollbar is set, the Þeld has a scroll bar.

¥ If search is set, incremental search is enabled.

itemsText Pointer to an array of pointers to the text of the choices.

numItems Number of choices in the list.

currentItem Currently-selected list choice (0 = Þrst choice).

topItem First choice displayed in the list.

font ID of the font used to draw all list text strings.

popupWin Handle of the window created when a list is displayed if the
poppedUp attribute is set.

drawItems-
Callback

Function used to draw an item in the list. If NULL, the default
drawing routine is used instead.

void ListDrawDataFuncType (UInt itemNum,
RectanglePtr bounds, CharPtr *itemsText)
Developing Palm OS 2.0 Applications, Part I 143

Palm OS User Interface Objects
List Object
Associated Resources

The List Resource (tLST), andPopup Trigger Resource (tPUT) are
used together to represent an active list.

List Functions

The following API calls can be used to manipulate list objects.

¥ LstDrawList
¥ LstEraseList

¥ LstGetNumberOfItems
¥ LstGetSelection
¥ LstGetSelectionText
¥ LstGetVisibleItems
¥ LstHandleEvent
¥ LstMakeItemVisible
¥ LstPopupList
¥ LstScrollList
¥ LstSetDrawFunction
¥ LstSetHeight
¥ LstSetListChoices
¥ LstSetPosition
¥ LstSetSelection
¥ LstSetTopItem
144 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Objects
Menu Objects
Menu Objects
A menu bar is displayed whenever the user taps a menu icon. The
menu bar, a horizontal list of menu titles, appears at the top of the
screen in its own window, above all application windows. Pressing
a menu title highlights the title and Òpulls downÓ the menu below
the title.

User actions have the following effect on a menu:

A menu has the following features:

¥ Item separators, which are lines to group menu items.
¥ Keyboard shortcuts; the shortcut labels are right justified in

menu items.
¥ A menu remembers its last selection; the next time a menu is

displayed the prior selection appears highlighted.
¥ The bits behind the menu bar and the menus are saved and

restored by the menu routines.
¥ When the menu is visible, the insertion point is turned off.

When... Then...

User drags the pen
through the menu.

Command under the pen is highlighted.

Pen is released over a
menu item.

That item is selected and the menu bar
and menu disappear.

Pen is released out-
side both the menu
bar and the menu.

Both menu and menu bar disappear and
no selection is made.

Pen is released in a
menu title.

Menu bar and Menu remain displayed
until a selection is made from the menu.

Pen is tapped outside
menu and menu bar.

Both menu and menu bar are dismissed.

User selects a separa-
tor with the pen.

Menu is dismissed but no event is posted.
Developing Palm OS 2.0 Applications, Part I 145

Palm OS User Interface Objects
Menu Objects
This section provides information about menu objects by discussing
these topics:

¥ Menu Events
¥ Structure of a Menu
¥ Associated Resources
¥ Menu Functions

Menu Events

Menu events are handled by the routine MenuHandleEvent, which
handles events of type penDownEvent and keyDownEvent.

When a menu item is chosen, the menu event handler adds a
menuEvent that identifies the chosen item to the event queue.

Structure of a Menu

The menu structure and supporting structures are deÞned as fol-
lows:

Listing 4.5 Menu Structure and Supporting Structures
typedef struct {

WinHandle barWin;
WinHandle bitsBehind;
WinHandle savedActiveWin;
WinHandle bitsBehindStatus;
MenuBarAttrType attr;
SWord curMenu;
SWord curItem;
long commandTick;
SWord numMenus;
MenuPullDownPtr menus;

} MenuBarType;

typedef MenuBarType * MenuBarPtr;
146 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Objects
Menu Objects
typedef struct {
Word visible :1;
Word commandPending :1;
Word insPtEnabled :1;

} MenuBarAttrType;

typedef struct {
WinHandle menuWin;
RectangleType bounds;
WinHandle bitsBehind;
RectangleType titleBounds;
CharPtr title;
Word numItems;
MenuItemType *items;

} MenuPullDownType;

typedef MenuPullDownType * MenuPullDownPtr;

typedef struct {
Word id;
char command;
CharPtr itemStr;

} MenuItemType;
Developing Palm OS 2.0 Applications, Part I 147

Palm OS User Interface Objects
Menu Objects
Menu Object Fields

The menu object has the following Þelds:

Field Function

barWin Handle for the window that contains the menu bar.

bitsBehind Handle for the window that contains the region obscured by the
menu bar.

savedActiveWin Stores currently active window behind the menu.

bitsBehind-
Status

Stores the bits behind the status message so that when the mes-
sage display terminates, the bits can be restored.

attr Menu bar attributes. The attr Þeld is a bit Þeld that contains
the members visible, commandPending, and insPtEnabled.

¥ If visible is set, the menu bar is drawn.
¥ If commandPending, the next key is a command.
¥ If insPtEnable is set, the insertion point was on when the

menu was drawn.

curMenu Menu number for the currently visible menu. Menus are num-
bered sequentially, starting with 0. The value is preserved when
the menu bar is dismissed.
The next time the menu is displayed, the previously visible pull-
down menu can also be redisplayed. A value of -1 indicates that
there is no current pull-down menu.

curItem Item number of the currently highlighted menu item. The items
in each menu are numbered sequentially, starting with zero.

commandTick Stores the tick count at which the status message should be
erased.

numMenus Number of pull-down menus on the menu bar.

menus Array of MenuPullDownType structures. The MenuPullDown-
Type structure defines a pull-down menu.
148 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Objects
Menu Objects
Menu Pull-Down Fields

The menu pulldown object has the following Þelds:

Menu Item Fields

The menu item object has the following Þelds:

Field Function

menuWin Handle for the window that contains the menu.

bounds Position and size, in pixels, of the pull-down menu.

bitsBehind Handle of a window that contains the region obscured
by the menu.

title Pointer to the menu title (null-terminated).

titleBounds Bounds of the title in the menubar.

numItems Number of items in a menu. Separators count as items.

items Array of MenuItemType structures. A MenuItemType
structure deÞnes a menu item.

Field Function

id ID value speciÞed by the application developer. This
ID value is included as part of the event data of a
menuEvent.

command Shortcut key. If you provide shortcuts, make sure that
each shortcut is unique among all commands available
at that time.

itemStr Pointer to the text display for a menu item. The short-
cut key description is included in this string. The item
label and the shortcut key description are delimited
with a tab character.
Developing Palm OS 2.0 Applications, Part I 149

Palm OS User Interface Objects
Scrollbar Object
Associated Resources

The resources MBAR (menu bar) and MENU (menu) are used joint-
ly to represent a menu object on screen.

Menu Functions

The following API calls can be used to manipulate menu objects.

¥ MenuDispose

¥ MenuDrawMenu
¥ MenuEraseStatus
¥ MenuGetActiveMenu
¥ MenuHandleEvent
¥ MenuInit
¥ MenuSetActiveMenu

Scrollbar Object
Palm 0S 2.0 provides vertical scrollbar support. As a result, develop-
ers can now include scroll bars in forms or tables and the system
sends the appropriate events when the end-user interacts with the
scroll bar.

HereÕs what you have to do to include a scroll bar in your GUI:

1. Create a scroll bar (tSCL) UI resource.

Provide the ID, the bounds for the scroll bar rectangle. The height
has to match the object you want to attach it to (normally a text
Þeld). The width should be 7.

2. Provide a minimum, and maximum value as well as a page size.

¥ minimum is usually 0

¥ maximum is usually 0 and set programmatically

¥ the page size determines by how many lines the system moves
when the text scrolls.
150 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Objects
Scrollbar Object
3. Make the scroll bar part of the form (for tables, place the scroll bar
next to the table Þeld programmatically.)

When you compile your application, the system creates the appro-
priate scroll bar UI object (see Scroll Bar UI Object)

There are two ways in which the scroll bar and the Þeld (or table
Þeld) that itÕs attached to need to interact:

¥ When the user adds or removes text, the scroll bar needs to
know about the change in size.
To get this functionality, call TableHasScrollBar progra-
matically. The table or Þeld will then send events whenever
the size changes. Your application can catch the events and
process them appropriately.

¥ When the user moves the scroll bar, the text needs to more
accordingly. This can either happen dynamically or statically
(i.e. after the user has released the scroll bar)
As a rule, the scroll bar appears on screen as part of the form
and is updated appropriately by the system. Applications
therefore rarely have to call SclDrawScrollBar, SclGetScroll-
Bar, or SclSetScrollBar. The application usually does call
SclSetScrollBar at initialization time to set the initial position
of the scroll bar.

¥ The system sends the following scroll bar events:
Ð sclEnterEvent is sent when a penDownEvent occurs

within the bounds of the scroll bar.
Ð sclRepeatEvent is sent when the user drags the scroll

bar.
Ð sclExitEvent is sent when the user lifts the pen. This

event is sent regardless of previous sclRepeatEvents.

Applications that want to support immediate-mode scrolling (that
is, scrolling happens as the user drags the pen) need to watch for oc-
currences of sclRepeatEvent.

Application that donÕt support immediate-mode scrolling should
ignore occurrences of sclRepeatEvent and wait only for the
sclExitEvent.

Listing 4.6 Scroll Bar UI Object
typedef struct {

Word usable: 1;
Developing Palm OS 2.0 Applications, Part I 151

Palm OS User Interface Objects
Scrollbar Object
Word visible: 1;
Word hilighted: 1;
Word shown: 1;
Word activeRegion: 4;

} ScrollBarAttrType;

typedef struct {
RectangleType bounds;
Word id;
ScrollBarAttrType attr;
Short value;
Short minValue;
Short maxValue;
Short pageSize;
Short penPosInCar;
Short savePos;

} ScrollBarType;

typedef ScrollBarType * ScrollBarPtr;

Scrollbar Fields

The scrollbar object has the following Þelds:

Field Function

bounds Bounds of the scrollbar

id Developer-deÞned ID of the scrollbar.
152 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Objects
Scrollbar Object
attr Attributes of the scrollbar.

¥ When the usable attribute is set, the scrollbar is part of the UI.

¥ When the visible attribute is set, the scrollbar is visible on
screen.

¥ When the highlighted attribute is set, the scrollbar is high-
lighted.

¥ The shown attribute has to be true if the scrollbar is visible and
if maxValue > minValue.

¥ The activeRegion attribute indicates the active region of the
scrollbar.

value Current value of the scroll bar.

minValue Minimum value (default should be zero).

maxValue Maximum value. With the scroll car being the dark region in the
scrollbar that indicates the position in the document and overlap
the number of lines from the bottom of one page to be visible at the
top of the next page, this value is usually computed as follows:

number of lines Ð (page size + overlap)

For example, if you have 100 lines, the scroll car is at maximum at
line 90 or 91.

pageSize Number of lines to scroll when user scrolls one page.

penPosInChar Used internally.

savePos Used internally.

Field Function
Developing Palm OS 2.0 Applications, Part I 153

Palm OS User Interface Objects
Table Objects
Table Objects
The table object is used to organize several types of UI objects. The
number of rows and the number of columns must be speciÞed for
each table object. A UI object can be placed inside a cell of a table.
Tables often consist of rows or columns of the same object. For ex-
ample, a table might have one column of labels and another column
of Þelds. Tables can only be scrolled vertically. Tables canÕt include
bitmaps.

This section provides information about table objects by discussing
these topics:

¥ Table Event
¥ Structure of a Table
¥ Associated Resource
¥ Table Functions

Table Event

The table object generates the event tblSelectEvent. This event
contains:

¥ The tableÕs ID number
¥ The row of the selected table
¥ The column of the selected table

When tblSelectEvent is sent to a table, the table generates an
event to handle any possible events within the itemÕs UI object.

Structure of a Table

The table structure and supporting structures are deÞned as follows:
typedef struct {

Word id;
RectangleType bounds;
TableAttrType attr;
Word numColumns;
Word numRows;
154 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Objects
Table Objects
Word currentRow;
Word currentColumn;
Word topRow;
TableColumnAttrType * columnAttrs;
TableRowAttrType * rowAttrs;
TableItemPtr items;
FieldType currentField;

} TableType;
typedef TableType * TablePtr;

typedef struct {
Word visible:1;
Word editable:1;
Word editing:1;
Word selected:1;
Word hasScrollBAr:1.

} TableAttrType;

typedef struct {
TableItemStyleType itemType;
FontID fontID; //font for drawing text
Word intValue;
CharPtr ptr;

} TableItemType;
typedef TableItemType * TableItemPtr;

typedef struct {
Word width; // in

pixels
Boolean usable;
Word spacing;
TableDrawItemFuncPtr drawCallback;
TableLoadDataFuncPtr loadDataCallback;
TabelSaveDataFuncPtr SaveDataCallback;

} TableColumnAttrType;
Developing Palm OS 2.0 Applications, Part I 155

Palm OS User Interface Objects
Table Objects
typedef struct {
Word id;
Word height; // row height in pixels
DWord data;
Word usable;
Word selectable;
Word invalid;//true if redraw needed

} TableRowAttrType;

Fields of a Table Structure

The table structure has the following Þelds:

Field Function

id ID value speciÞed by the application developer.

bounds Position and size of the table object.

attr Table objectÕs attributes. The attr Þeld is a bit Þeld that contains
the following members:

¥ If visible is set, the table is drawn on screen.
¥ If editable is set, the user can modify the table.
¥ If editing is set, the table is in edit mode.
¥ If selected is set, the current item is selected.
¥ If hasScrollbar is set, the table has a scroll bar. Note that

this attribute can only be set programmatically.

numColumns Number of columns in the table object.

numRows Number of rows in the table object.

currentRow Row of the table set to current.

currentColumn Column of the table set to current.

topRow First row in the table object.
156 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Objects
Table Objects
Associated Resource

The Table Resource (tTBL) represents a table on screen.

Table Functions

The following API calls can be used to manipulate table objects.

¥ TblDrawTable
¥ TblEditing
¥ TblEraseTable
¥ TblFindRowData
¥ TblFindRowID
¥ TblGetBounds
¥ TblGetColumnSpacing
¥ TblGetColumnWidth
¥ TblGetCurrentField
¥ TblGetItemBounds
¥ TblGetItemInt
¥ TblGetLastUsableRow
¥ TblGetNumberOfRows
¥ TblGetRowData
¥ TblGetRowHeight
¥ TblGetRowID

columnAttrs Column attributes, such as its width, its usability, and how the
column draws itself.

rowAttrs RowÕs attributes, such as its ID, height, and whether or not it is
usable, selectable, or invalid.

items Item attributes, such as the item type, font ID, an integer value,
and a character pointer.

currentField Field object the user is currently editing.

Field Function
Developing Palm OS 2.0 Applications, Part I 157

Palm OS User Interface Objects
Table Objects
¥ TblGetSelection
¥ TblGrabFocus
¥ TblHandleEvent
¥ TblHasScrollBar
¥ TblInsertRow
¥ TblMarkRowInvalid
¥ TblMarkTableInvalid
¥ TblRedrawTable
¥ TblReleaseFocus
¥ TblRemoveRow
¥ TblRowInvalid
¥ TblRowSelectable
¥ TblRowUsable
¥ TblSelectItem
¥ TblSetBounds
¥ TblSetColumnEditIndicator

¥ TblSetColumnSpacing
¥ TblSetColumnUsable
¥ TblSetColumnWidth
¥ TblSetCustomDrawProcedure
¥ TblSetItemInt
¥ TblSetItemPtr
¥ TblSetItemStyle
¥ TblSetLoadDataProcedure
¥ TblSetRowData
¥ TblSetRowHeight
¥ TblSetRowID
¥ TblSetRowSelectable
¥ TblSetRowStaticHeight

¥ TblSetRowUsable
¥ TblSetSaveDataProcedure
¥ TblUnhighlightSelection
158 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Objects
Window Objects
Window Objects
A window deÞnes a drawing region. This region may be on the dis-
play or in a memory buffer (an off-screen window). Off-screen win-
dows are useful for saving and restoring regions of the display that
are obscured by other UI objects. All forms are windows, but not all
windows are forms.

The window object is the portion of the form object that determines
how the formÕs window looks and behaves. A window object con-
tains viewing coordinates of the window and clipping bounds.

This section provides information about windows by discussing
these topics:

¥ Window Events
¥ Structure of a Window
¥ Window Functions

No resources are associated with window objects.

Window Events

When a window becomes active, a winEnterEvent takes place.
When the window is deactivated, a winExitEvent occurs. The
winEnterEvent usually follows right after a winExitEvent; an
old window is deactivated just before a new window is activated.

Structure of a Window

The WinType structure is deÞned as follows:
typedef struct WinTypeStruct {

Word displayWidth;
Word displayHeight;
VoidPtr displayAddr;
WindowFlagsType windowFlags;
RectangleType windowBounds;
AbsRectType clippingBounds;
PointType viewOrigin;
Developing Palm OS 2.0 Applications, Part I 159

Palm OS User Interface Objects
Window Objects
FrameBitsType frameType;
GraphicStatePtr gstate;
struct WinTypeStruct* nextWindow;

} WindowType;

typedef WindowType * WinPtr;

typedef WinPtr WinHandle;

Fields of a Window Structure

Field Function

displayWidth Width, in pixels, of the display memory buffer (video RAM) for
on-screen windows and the width of a memory buffer for off-
screen windows.

displayHeight Height, in pixels, of the device display.

displayAddr Pointer to the windowÕs display memory buffer.

windowFlags Window attributes: format, offscreen, modal, focusable,
enabled, visible, dialog, and compressed (see next table).

windowBounds Bounds of the window.

clipping-
Bounds

Bounds for clipping any drawing within the window.

viewOrigin Window origin point on the display.

frameType FrameÕs corner diameter, width of shadow, and width of frame.

gstate State of the graphic mode, pattern mode, font, and underline
mode.

nextWindow Pointer to the next window in a linked list of windows.
160 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Objects
Window Objects
Window attributes are deÞned as follows:

Attribute Set to 0 Set to 1

format screen mode generic mode

offscreen on screen off screen

modal modeless window modal window

focusable non-focusable focusable

enabled disabled enabled

visible invisible visible

dialog nondialog dialog

compressed uncompressed compressed
Developing Palm OS 2.0 Applications, Part I 161

Palm OS User Interface Objects
Window Objects
Window Functions

The following API calls can be used to manipulate window objects.

¥ WinAddWindow

¥ WinClipRectangle
¥ WinCopyRectangle
¥ WinCreateOffscreenWindow
¥ WinCreateWindow
¥ WinDeleteWindow
¥ WinDisableWindow
¥ WinDisplayToWindowPt
¥ WinDrawBitmap
¥ WinDrawChars
¥ WinDrawGrayLine
¥ WinDrawGrayRectangleFrame
¥ WinDrawInvertedChars
¥ WinDrawLine
¥ WinDrawRectangle
¥ WinDrawRectangleFrame
¥ WinDrawWindowFrame
¥ WinDrawWindowFrame
¥ WinEnableWindow
¥ WinEraseChars
¥ WinEraseLine
¥ WinEraseRectangleFrame
¥ WinEraseWindow
¥ WinFillLine
¥ WinFillRectangle
¥ WinGetActiveWindow
¥ WinGetClip
¥ WinGetDisplayExtent
¥ WinGetDisplayWindow
¥ WinGetDrawWindow
162 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Objects
Window Objects
¥ WinGetFirstWindow
¥ WinGetFramesRectangle
¥ WinGetPattern
¥ WinGetWindowBounds
¥ WinGetWindowExtent
¥ WinGetWindowFrameRect
¥ WinGetWindowPointer
¥ WinInitializeWindow
¥ WinInvertChars
¥ WinInvertLine
¥ WinInvertRectangle
¥ WinInvertRectangleFrame
¥ WinModal
¥ WinRemoveWindow
¥ WinResetClip
¥ WinRestoreBits
¥ WinSaveBits
¥ WinScrollRectangle
¥ WinSetActiveWindow
¥ WinSetClip
¥ WinSetDrawWindow
¥ WinSetPattern
¥ WinSetUnderlineMode
¥ WinSetWindowBounds
¥ WinWindowToDisplayPt
Developing Palm OS 2.0 Applications, Part I 163

Palm OS User Interface Objects
Window Objects
164 Developing Palm OS 2.0 Applications, Part I

5
Using Palm OS UI
Managers
In contrast to desktop computer operating systems, Palm OS con-
sists of only one library. This library, however, contains several man-
agers, which are groups of functions that work together to imple-
ment certain functionality. As a rule, all functions that belong to one
manager use the same three-letter preÞx and work together to im-
plement a certain aspect of functionality.

In this chapter, you learn about all Palm OS managers that arenÕt di-
rectly responsible for memory management or system management.
As you investigate managers more closely youÕll Þnd that some of
them are mostly services provided by the system, while others con-
tain a large number of API calls.

The managers are presented in alphabetical order for easy access.

¥ The Alert Manager lets applications implement modal
dialog boxes that display an alert dialog or prompt the
user for a response to a question.

¥ The Graffiti Manager provides an interface to the Graffiti
recognizer. The recognizer converts pen strokes into key
events, which are then fed to an application through the
event manager.

Most applications never need to call the GrafÞti manager di-
rectly because the event manager calls it automatically when-
ever it detects pen strokes in the GrafÞti area of the digitizer.

¥ The Key Manager provides an interface to the hardware
buttons on the Palm OS device. It converts hardware
button presses into key events and implements auto-
repeat of the buttons.
Developing Palm OS 2.0 Applications, Part I 165

Using Palm OS UI Managers
Most applications never need to call the key manager directly
except to change the key repeat rate or poll the current state
of the keys.

¥ The Pen Manager provides an interface to the digitizer
hardware and converts input from the digitizer into pen
coordinates.

Most applications never need to call the pen manager direct-
ly because any pen activity is automatically returned to the
application in the form of events.
166 Developing Palm OS 2.0 Applications, Part I

Using Palm OS UI Managers
The Alert Manager
The Alert Manager
The alert manager provides a simple way for an application to im-
plement modal dialog boxes that display an alert message or
prompt the user for a response to a question.

Given a resource ID that deÞnes an alert, the alert manager creates
and displays a modal dialog box. When the user taps one of the but-
tons in the dialog, the alert manager disposes of the dialog box and
returns to the caller the item number of the button the user tapped.

There are four types of system-deÞned alerts:

¥ Question
¥ Warning
¥ Notification
¥ Error

The alert type determines which icon is drawn in the alert window
and which sound plays when the alert is displayed.

Alert Resource Information

When the alert manager is invoked, itÕs passed an alert resource (see
Alerts) that contains the following information:

¥ The rectangle that specifies the size and position of the alert
window.

¥ The alert type (question, warning, notification, or error).
¥ The null-terminated text string; that is, the message the

alert displays.
¥ The text labels for one or more buttons.

Alert Manager Functions

The following alert manager functions are available for application
use:

¥ FrmAlert

¥ FrmCustomAlert
Developing Palm OS 2.0 Applications, Part I 167

Using Palm OS UI Managers
The GrafÞti Manager
The GrafÞti Manager
The GrafÞti manager provides an API to the Palm OS GrafÞti recog-
nizer. The recognizer converts pen strokes into key events, which
are then fed to an application through the event manager.

Most applications never need to call the GrafÞti manager directly
because itÕs automatically called by the event manager whenever it
detects pen strokes in the GrafÞti area of the digitizer.

Special-purpose applications, such as a GrafÞti tutorial, may want
to call the GrafÞti manager directly to recognize strokes in other
areas of the screen or to customize the GrafÞti behavior.

Using GrfProcessStroke

GrfProcessStroke is a high-level Graffiti manager call used by
the event manager for converting pen strokes into key events. The
call

¥ Removes pen points from the pen queue

¥ Recognizes the stroke

¥ Puts one or more key events into the key queue

GrfProcessStroke automatically handles Graffiti ShortCuts and
calls the user interface as appropriate to display shift indicators in
the current window.

An application can call GrfProcessStroke when it receives a
penUpEvent from the event manager if it wants to recognize
strokes entered into its application area (in addition to the GrafÞti
area).

Using Other High-Level GrafÞti Manager Calls

Other high-level calls provided by the GrafÞti manager include rou-
tines for

¥ Getting and setting the current GrafÞti shift state (caps lock
on/off, temporary shift state, etc.)
168 Developing Palm OS 2.0 Applications, Part I

Using Palm OS UI Managers
The GrafÞti Manager
¥ Notifying GrafÞti when the user selects a different Þeld.
GrafÞti needs to be notiÞed when a Þeld change occurs so
that it can cancel out of any partially entered shortcut and
clear its temporary shift state if itÕs showing a potentially ac-
cented character.

Special-Purpose GrafÞti Manager Calls

The remainder of GrafÞti manager API routines are for special-
purpose use. They are basically all the entry points into the GrafÞti
recognizer engine and are usually called only by
GrfProcessStroke. These special-purpose uses include calls to
add pen points to the GrafÞti recognizerÕs stroke buffer, to convert
the stroke buffer into a GrafÞti glyph ID, and to map a glyph into a
string of one or more key strokes.

Accessing GrafÞti ShortCuts

Other routines provide access to the GrafÞti ShortCuts database.
This is a separate database owned and maintained by the GrafÞti
manager that contains all of the shortcuts. This database is opened
by the GrafÞti manager when it initializes and stays open even after
applications quit.

The only way to modify this database is through the GrafÞti manag-
er API. It provides calls for getting a list of all shortcuts, and for add-
ing, editing, and removing shortcuts. The ShortCuts screen of the
Preferences application provides a user-interface for modifying this
database.

2.0 Note on Auto Shifting

The Palm OS 2.0 operating system automatically uses an upper-case
letter under the following conditions:

¥ Period and space or Return.

¥ Other sentence terminator (such as ? or !) and space

This functionality requires no changes by the developer, but should
be welcome to the end user.
Developing Palm OS 2.0 Applications, Part I 169

Using Palm OS UI Managers
The GrafÞti Manager
2.0 Note on GrafÞti Help

Applications can pop up GrafÞti help by calling SysGraffitiRef-
erenceDialog or by putting a special characterÑgraffitiRefer-
enceChr from Chars.hÑon the queue.

GrafÞti help is also available through the system Edit menu. As a re-
sult, any application that includes the system Edit menu allows
users to access GrafÞti Help that way. See: system:HSUtil.h, Sys-
tem:HTALSPI.h, System:SysConÞg.Prv.h.

GrafÞti Manager Functions

The following functions are available for application use.

¥ GrfProcessStroke

¥ GrfGetState

¥ GrfSetState

¥ GrfFlushPoints

¥ GrfAddPoint

¥ GrfInitState

¥ GrfCleanState

¥ GrfMatch

¥ GrfGetMacro

¥ GrfGetAndExpandMacro

¥ GrfFilterPoints

¥ GrfGetNumPoints

¥ GrfGetPoint

¥ GrfFindBranch

¥ GrfMatchGlyph

¥ GrfGetGlyphMapping

¥ GrfGetMacroName

¥ GrfDeleteMacro

¥ GrfAddMacro
170 Developing Palm OS 2.0 Applications, Part I

Using Palm OS UI Managers
The Key Manager
The Key Manager
The key manager manages the hardware buttons on the Palm OS
device. It converts hardware button presses into key events and im-
plements auto-repeat of the buttons. Most applications never need
to call the key manager directly except to change the key repeat rate
or to poll the current state of the keys.

The event manager is the main interface to the keys; it returns a
keyDownEvent to an application whenever a button is pressed.
Normally, applications are notiÞed of key presses through the event
manager. Whenever a hardware button is pressed, the application
receives an event through the event manager with the appropriate
key code stored in the event record. The state of the hardware but-
tons can also be queried by applications at any time through the
KeyCurrentState function call.

The KeyRates call changes the auto-repeat rate of the hardware
buttons. This might be useful to game applications that want to use
the hardware buttons for control. The current key repeat rates are
stored in the key manager globals and should be restored before the
application exits.

The following functions are available for application use.

¥ KeyRates

¥ KeyCurrentState
Developing Palm OS 2.0 Applications, Part I 171

Using Palm OS UI Managers
The Pen Manager
The Pen Manager
The pen manager manages the digitizer hardware and converts
input from the digitizer into pen coordinates. Most applications
never need to call the pen manager directly because any pen activity
is automatically returned to the application in the form of events.

Pen coordinates are stored in the pen queue as raw, uncalibrated
coordinates. When the system event manager routine for removing
pen coordinates from the pen queue is called, it converts the pen
coordinate into screen coordinates before returning.

The Preferences application provides a user interface for calibrating
the digitizer. It uses the pen manager API to set up the calibration
which is then saved into the Preferences database. The pen manager
assumes that the digitizer is linear in both the x and y directions; the
calibration is therefore a simple matter of adding an offset and scal-
ing the x and y coordinates appropriately.

The following functions are available for application use.

¥ PenResetCalibration

¥ PenCalibrate
172 Developing Palm OS 2.0 Applications, Part I

6
Palm OS Events
Palm OS events are structures that the system passes to the applica-
tion when the user interacts with the graphical user interface. How
Events Control an Application discusses in detail how this works.
This chapter only provides reference-style information about each
event. It discusses the following events in alphabetical order:

Event UI Object

appStopEvent N.A.

ctlEnterEvent, ctlExitEvent, ctlRepeatEvent, ctlSelectEvent Control

daySelectEvent N.A.

ßdChangedEvent, ßdEnterEvent, ßdHeightChangedEvent Field

frmCloseEvent.frmLoadEvent, frmOpenEvent, frmSaveEvent,
frmUpdateEvent, frmTitleEnterEvent, frmTitleSelectEvent

Form

keyDownEvent N.A.

lstEnterEvent, lstExitEvent, lstSelectEvent List

menuEvent Menu

nilEvent N.A.

penDownEvent, penMoveEvent, penUpEvent N.A. (pen)

popSelectEvent Popup (Control)

sclEnterEvent, sclRepeatEvent, sclExitEvent Scroll bar

tblEnterEvent, tblExitEvent, tblSelectEvent Table

winEnterEvent, winExitEvent Window
Developing Palm OS 2.0 Applications, Part I 173

Palm OS Events
appStopEvent
appStopEvent
When the system wants to launch a different application than the
one currently running, the event manager sends this event to re-
quest the current application to terminate. In response, an applica-
tion has to exit its event loop, close any open Þles and forms, and
exit.

If an application doesnÕt respond to this event by exiting, the system
canÕt start the other application.

ctlEnterEvent
The control routine CtlHandleEvent sends this event when it re-
ceives a penDownEvent within the bounds of a control.

The following data is passed with the event:

controlID Developer-deÞned ID of the control.

pControl Pointer to a control structure (ControlType).
174 Developing Palm OS 2.0 Applications, Part I

Palm OS Events
ctlExitEvent
ctlExitEvent
The control routine CtlHandleEvent sends this event. When
CtlHandleEvent receives a ctlEnterEvent, it tracks the pen
until the pen is lifted from the display. If the pen is lifted within the
bounds of a control, a ctlSelectEvent is added to the event
queue; if not, a cltExitEvent is added to the event queue.

The following data is passed with the event:

ctlRepeatEvent
The control routine CtlHandleEvent sends this event. When
CtlHandleEvent receives a ctlEnterEvent in a Repeat control
(tREP), it sends a ctlRepeatEvent. When CtlHandleEvent re-
ceives a ctlRepeatEvent in a repeat control, it sends another
ctlRepeatEvent if the pen remains down within the bounds of
the control for 1/2 second beyond the last ctlRepeatEvent.

The following data is passed with the event:

controlID Developer-deÞned ID of the control.

pControl Pointer to a control structure (ControlType).

controlID Developer-deÞned ID of the control.

pControl Pointer to a control structure (ControlType).

time System-ticks count when the event is added to
the queue.
Developing Palm OS 2.0 Applications, Part I 175

Palm OS Events
ctlSelectEvent
ctlSelectEvent
The control routine CtlHandleEvent sends this event. When
CtlHandleEvent receives a ctlEnterEvent, it tracks the pen
until the pen is lifted. If the pen is lifted within the bounds of the
same control it went down in, a cltSelectEvent is added to the
event queue; if not, a ctlExitEvent is added to the event queue.

The following data is passed with the event:

daySelectEvent
The system-internal DayHandleEvent routine, which handles
events in the day selector object, handles this event. When the day
selector object displays a calendar month, the user can select a day
by tapping on it.

This event is sent when the pen touches and is lifted from a day
number.

The following data is passed with the event:

controlID Developer-deÞned ID of the control.

pControl Pointer to a control structure (ControlType).

on TRUE when the control is depressed; otherwise,
FALSE.

pSelector Pointer to a day selector structure
(DaySelectorType).

selection Not used.

useThisDate Set to TRUE to automatically use the selected
date.
176 Developing Palm OS 2.0 Applications, Part I

Palm OS Events
ßdChangedEvent
fldChangedEvent
The Þeld routine FldHandleEvent sends this event when the text
of a Þeld has been scrolled as a result of drag-selecting. When
FldHandleEvent receives a fldEnterEvent, it positions the in-
sertion point and tracks the pen until itÕs lifted. Text is selected
(highlighted) appropriately as the pen is dragged.

The following data is passed with the event:

ßdEnterEvent
The Þeld routine FldHandleEvent sends this event when the Þeld
receives a penDownEvent within the bounds of a Þeld. The follow-
ing data is passed with the event:

fieldID Developer-deÞned ID of the Þeld.

pField Pointer to a Þeld structure (FieldType).

fieldID Developer-deÞned ID of the Þeld.

pField Pointer to a Þeld structure (FieldType).
Developing Palm OS 2.0 Applications, Part I 177

Palm OS Events
ßdHeightChangedEvent
fldHeightChangedEvent
The Þeld routine FldHandleEvent sends this event. The Þeld API
supports a feature that allows a Þeld to dynamically resize its visible
height as text is added or removed from it. Functions in the Þeld API
send a fldHeightChangedEvent to change the height of a Þeld.
Applications donÕt usually send or handle this event.

The following data is passed with the event:

frmCloseEvent
The form routines FrmGotoForm and FrmCloseAllForms send
this event. FrmGotoForm sends a frmCloseEvent to the currently
active form; FrmCloseAllForms sends a frmCloseEvent to all
forms an application has loaded into memory. If an application
doesnÕt intercept this event, the routine FrmHandleEvent erases
the speciÞed form and releases any memory allocated for it.

The following data is passed with the event:

fieldID Developer-deÞned ID of the Þeld.

pField Pointer to a Þeld structure (FieldType).

newHeight New visible height of the Þeld, in number of
lines.

currentPos Current position of the insertion point.

formID Developer-deÞned ID of the form.
178 Developing Palm OS 2.0 Applications, Part I

Palm OS Events
frmLoadEvent
frmLoadEvent
The form routines FrmGotoForm and FrmPopupForm send this
event. ItÕs a request that the application load a form into memory.

The application is responsible for handling this event.

The following data is passed with the event:

frmOpenEvent
The form routines FrmGotoForm and FrmPopupForm send this
event. It is a request that the application initialize and draw a form.

The application is responsible for handling this event.

The following data is passed with the event:

frmSaveEvent
The form routine FrmSaveAllForms sends this event. It is a request
that the application save any data stored in a form.

The application is responsible for handling this event.

No data is passed with this event.

formID Developer-deÞned ID of the form.

formID Developer-deÞned ID of the form.
Developing Palm OS 2.0 Applications, Part I 179

Palm OS Events
frmUpdateEvent
frmUpdateEvent
The form routine FrmUpdateForm, or in some cases the routine
FrmEraseForm, sends this event when it needs to redraw the re-
gion obscured by the form being erased.

Generally, the region obscured by a form is saved and restored by
the form routines without application intervention. However, in
cases where the system is running low on memory, the formÕs rou-
tine may not save obscured regions itself. In that case, the applica-
tion adds a frmUpdateEvent to the event queue. The form receives
the event and redraws the region using the updateCode value.

An application can deÞne its own updateCode and then use this
event to also trigger behavior in another form, usually when chang-
es made to one form need to be reßected in another form.

The following data is passed with the event:

frmTitleEnterEvent
The control routine FrmHandleEvent sends this event when it re-
ceives a penDownEvent within the bound of the title of the form.
Note that only the written title, not the whole title bar is active.

The following data is passed with the event:

formID Developer-deÞned ID of the form.

updateCode The reason for the update request.
FrmEraseForm sets this code to zero. Applica-
tion developers can deÞne their own
updateCode. The updateCode is passed as a
parameter to FrmUpdateForm.

formID Developer-deÞned ID of the form.
180 Developing Palm OS 2.0 Applications, Part I

Palm OS Events
frmUpdateEvent
frmTitleSelectEvent
The control routine FrmHandleEvent sends this event. FrmHan-
dleEvent receives a frmTitleEnterEvent, it tracks the pen until
the pen is lifted. If the pen is lifted within the bounds of the active
same title bar region, a frmTitleSelectEvent is added to the
event queue.

The following data is passed with the event:

formID Developer-deÞned ID of the form.
Developing Palm OS 2.0 Applications, Part I 181

Palm OS Events
keyDownEvent
keyDownEvent
This event is sent by the system when the user enters a GrafÞti char-
acter, presses one of the buttons below the display, or taps one of the
icons in the icon area; for example, the Find icon.

The following data is passed with the event:

chr ASCII code of character, or zero if the key is a
virtual key code; for example, the Find key.

keyCode Virtual key code; for example, the Find key.

modifiers One of the following:

shiftKeyMask True if GrafÞti is in case-shift
mode.

capsLockMask True if GrafÞti is in cap-shift
mode.

numLockMask True if GrafÞti is in numeric-shift
mode.

commandKeyMask True if the GrafÞti glyph was the
menu command glyph.

optionKeyMask Not implemented. Reserved.

controlKeyMask Not implemented. Reserved.

autoRepeatKeyMask True if generated due to auto-
repeat.

doubleTapKeyMask Not implemented. Reserved.

poweredOnKeyMask True if the key press caused the
system to be powered on.
182 Developing Palm OS 2.0 Applications, Part I

Palm OS Events
lstEnterEvent
lstEnterEvent
The list routine LstHandleEvent sends this event when it receives
a penDownEvent within the bounds of a list object.

The following data is passed with the event:

lstExitEvent
The list routine LstHandleEvent sends this event. When
LstHandleEvent receives a lstEnterEvent, it tracks the pen
until the pen is lifted. If the pen is lifted within the bounds of a list, a
lstSelectEvent is added to the event queue; if not, a
lstExitEvent is added to the event queue.

The following data is passed with the event:

listID Developer-deÞned ID of the list.

pList Pointer to a list structure (ListType).

selection Item number (zero-based) of the new selection.

listID Developer-deÞned ID of the list.

pList Pointer to a list structure (ListType).
Developing Palm OS 2.0 Applications, Part I 183

Palm OS Events
lstSelectEvent
lstSelectEvent
The list routine LstHandleEvent sends this event. When
LstHandleEvent receives a lstEnterEvent, it tracks the pen
until the pen is lifted. If the pen is lifted within the bounds of a list, a
lstSelectEvent is added to the event queue; if not, a
lstExitEvent is added to the event queue.

The following data is passed with the event:

menuEvent
The menu routine MenuHandleEvent sends this event:

¥ When the user selects an item from a pull-down menu
¥ When the user selects a menu command using the

Graffiti Command shortcut followed by an available
command; for example, Command-C for copy

The following data is passed with the event:

listID Developer-deÞned ID of the list.

pList Pointer to a list structure (ListType).

selection Item number (zero-based) of the list selection.

itemID Item ID of the selected menu command.
184 Developing Palm OS 2.0 Applications, Part I

Palm OS Events
nilEvent
nilEvent
A nilEvent is useful for animation, polling, and similar situations.

The event manager sends this event when there are no events in the
event queue. This happens only if the routine EvtGetEvent, dis-
cussed in Developing Palm OS Applications, Part I, is passed a time-
out value (a value other than evtWaitForever, -1). If
EvtGetEvent is unable to return an event in the speciÞed time, it
returns a nilEvent.

penDownEvent
The event manager sends this event when the pen Þrst touches the
digitizer.

The following data is passed with the event:

penDown Always TRUE.

screenX Window-relative position of the pen in pixels (num-
ber of pixels from the left bound of the window).

screenY Window-relative position of the pen in pixels (num-
ber of pixels from the top left of the window).
Developing Palm OS 2.0 Applications, Part I 185

Palm OS Events
penMoveEvent
penMoveEvent
The event manager sends this event when the pen is moved on the
digitizer. Note that several kinds of UI objects, such as controls and
lists, track the movement directly, and no penMoveEvent is gener-
ated.

The following data is passed with the event:

penUpEvent
The event manager sends this event when the pen is lifted from the
digitizer. Note that several kinds of UI objects, such as controls and
lists, track the movement directly, and no penUpEvent is generated.

The following data is passed with the event:

penDown Always TRUE.

screenX Window-relative position of the pen in pixels (num-
ber of pixels from the left bound of the window).

screenY Window-relative position of the pen in pixels (num-
ber of pixels from the top left of the window).

penDown Always false.

screenX Window-relative position of the pen in pixels (num-
ber of pixels from the left bound of the window).

screenY Window-relative position of the pen in pixels (num-
ber of pixels from the top left of the window).

start Display-relative start point of the stroke.

end Display-relative end point of the stroke.
186 Developing Palm OS 2.0 Applications, Part I

Palm OS Events
popSelectEvent
popSelectEvent
The form routine FrmHandleEvent sends this event when the user
selects an item in a popup list.

The following data is passed with the event:

sclEnterEvent
The routine SclHandleEvent sends this event when it receives a
penDownEvent within the bounds of a scroll bar.

Applications usually donÕt have to handle this event.

The following data is passed with the event:

controlID Developer-deÞned ID of the resource.

pControl Pointer to the control structure (Control-
Type) of the popup trigger object.

listID Developer-deÞned ID of the popup list object.

listP Pointer to the list structure (ListType) of the
popup list object.

selection Item number (zero-based) of the new list
selection.

priorSelection Item number (zero-based) of the prior list
selection.

scrollBarID Developer-deÞned ID of the scroll bar re-
source.

pScrollBar Pointer to the scroll bar structure.
Developing Palm OS 2.0 Applications, Part I 187

Palm OS Events
popSelectEvent
sclRepeatEvent
The routine SclHandleEvent sends this event when the pen is
continually held within the bounds of a scroll bar.

Applications that implement dynamic scrolling should watch for
this event. In dynamic scrolling, the display is updated as the user
drags the scroll bar (not after the user releases the scroll bar).

The following data is passed with the event:

scrollBarID Developer-deÞned ID of the scroll bar re-
source.

pScrollBar Pointer to the scroll bar structure.

value Initial position of the scroll bar.

newValue New position of the scroll bar. Given value
and newValue, you can actually tell how
much you have scrolled.

time System-ticks count when the event is added to
the queue to determine when the next event
should occur.
188 Developing Palm OS 2.0 Applications, Part I

Palm OS Events
popSelectEvent
sclExitEvent
The routine SclHandleEvent sends this event when the user lifts
the pen from the scroll bar.

Applications that want to implement non-dynamic scrolling should
wait for this event, then scroll the text using the values provided in
value and newvalue.

Note that this event is sent regardless of previous sclRepeat-
Events.If, however, the application has implemented dynamic
scrolling, it doesnÕt have to catch this event.

The following data is passed with the event:

scrollBarID Developer-deÞned ID of the scroll bar re-
source.

pScrollBar Pointer to the scroll bar structure.

value Initial position of the scroll bar

newvalue New position of the scroll bar. Given value
and newValue, you can actually tell how
much you have scrolled.
Developing Palm OS 2.0 Applications, Part I 189

Palm OS Events
tblEnterEvent
tblEnterEvent
The table routine TblHandleEvent sends this event when it re-
ceives a penDownEvent within the bounds of an active item in a
table object.

The following data is passed with the event:

tblExitEvent
The table routine TblHandleEvent sends this event. When
TblHandleEvent receives a tblEnterEvent, it tracks the pen
until itÕs lifted from the display. If the pen is lifted within the bounds
of the same item it went down in, a tblSelectEvent is added to
the event queue; if not, a tblExitEvent is added to the event
queue.

The following data is passed with the event:

tableID Developer-deÞned ID of the table.

pTable Pointer to a table structure (TableType).

row Row of the item.

column Column of the item.

TableID Developer-deÞned ID of the table.

pTable Pointer to a table structure (TableType).

row Row of the item.

column Column of the item.
190 Developing Palm OS 2.0 Applications, Part I

Palm OS Events
tblSelectEvent
tblSelectEvent
The table routine TblHandleEvent sends this event. When
TblHandleEvent receives a tblEnterEvent, it tracks the pen
until the pen is lifted from the display. If the pen is lifted within the
bounds of the same item it went down in, a tblSelectEvent is
added to the event queue; if not, a tblExitEvent is added to the
event queue.

The following data is passed with the event:

winEnterEvent
The event manager sends this event when a window becomes the
active window. This can happen in two ways: a call to
WinSetActiveWindow is issued (FrmSetActiveForm calls this
routine), or the user taps within the bounds of a window that is vis-
ible but not active. All forms are windows, but not all windows are
forms; for example, the menu bar is a window but not a form.

The following data is passed with the event:

TableID Developer-deÞned ID of the table.

pTable Pointer to a table structure (TableType).

row Row of the item.

column Column of the item.

enter-
Window

Pointer to the window we are entering. If the window is
a form, this is a pointer to a FormType structure; if not,
itÕs a pointer to a WindowType structure.

exit-
Window

Pointer to the window we are exiting, if there is current-
ly an active window, or zero if there is no active win-
dow. If the window is a form, this is a pointer to a
FormType structure; if not, itÕs a pointer to a Window-
Type structure.
Developing Palm OS 2.0 Applications, Part I 191

Palm OS Events
winExitEvent
winExitEvent
This event is sent by the event manager when a window is deacti-
vated. A window is deactivated when another window becomes the
active window (see winEnterEvent).

The following data is passed with the event:

enterWindow Pointer to the window we are entering. If the
window is a form, then this is a pointer to a
FormType structure; if not, itÕs a pointer to a
WindowType structure.

exitWindow Pointer to the window we are exiting. If the win-
dow is a form, then this is a pointer to a
FormType structure; if not, itÕs a pointer to a
WindowType structure.
192 Developing Palm OS 2.0 Applications, Part I

7
Palm OS User
Interface Functions

Category Functions

CategoryCreateList

Purpose Read a databaseÕs categories and store them in a list.

Prototype void CategoryCreateList (DmOpenRef db,
ListPtr listP,
Word currentCategory,
Boolean showAll,
Boolean showUneditables,
Byte numUneditableCategories,
DWord editingStrID,
Boolean resizeList)

Parameters db Opened database containing category info.

listP List in which to place the categories.

currentCategory
Category to select.

showAll TRUE to have an All category.

showUneditables
TRUE to show uneditable categories.

numUneditableCategories
Number of categories considered
uneditable. These are stored Þrst.
Developing Palm OS 2.0 Applications, Part I 193

Palm OS User Interface Functions
Category Functions
editingStrID A resource type to string to edit categories.

resizeList TRUE to resize the list to the number of
categories. Set TRUE for popups,
FALSE otherwise.

Result CategoryListItemsHandle is set to the listÕs choices.

See Also CategoryCreateListV10

CategoryCreateListV10

Purpose Read a databaseÕs categories and set categories.

Prototype void CategoryCreateListV10 (DmOpenRef db,
ListPtr lst,
Word currentCategory,
Boolean showAll)

Parameters db Database containing categories to extract.

lst List object to load categories into.

currentCategory Will be set as the current selection in the
resulting list.

showAll TRUE if an All category should be included
 in the list.

Result Returns nothing.

See Also CategoryCreateList
194 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Functions
Category Functions
CategoryEdit

Purpose Event handler for the ÒEdit CategoriesÓ dialog.

Prototype Boolean CategoryEdit (DmOpenRef db,
WordPtr categoryP,
DWord titleStrID)

Parameters db Database containing the categories to be edited.

categoryP Set to the category selected when the dialog is done.

titleStrIDResource ID of a string resource to display in the
title bar of the ÒEdit CategoriesÓ dialog. If this is 0,
the default string ÒEdit CategoriesÓ is used.

Result Returns TRUE if any of the following conditions are TRUE:

¥ The current category is renamed.
¥ The current category is deleted.
¥ The current category is merged with another category.

Caveat This function has been revised for Palm OS 2.0.

See Also CategoryEditV10
Developing Palm OS 2.0 Applications, Part I 195

Palm OS User Interface Functions
Category Functions
CategoryEditV10

Purpose Event handler for the Edit Categories dialog.

Prototype Boolean CategoryEditV10 (DmOpenRef db,
WordPtr category)

Parameters db Database containing the categories to be edited.

category Current category.

Result Returns TRUE if any of the following conditions are true:

the current category is renamed

the current category is deleted

the current category is merged with another category

See Also CategoryEdit

CategoryFind

Purpose Return the index of the category that matches the name passed.

Prototype Word CategoryFind (DmOpenRef db, CharPtr name)

Parameters db Database to search for the passed category.

name Category name.

Result Returns the category index.
196 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Functions
Category Functions
CategoryFreeList

Purpose This routine unlocks or frees memory locked or allocated by
CategoryCreateList.

Prototype void CategoryFreeList (DmOpenRef db,
ListPtr listP,
Boolean showAll,
DWord editingStrID)

Parameters db Database containing the categories.

listP Pointer to the category list.

showAll TRUE if the list was created with an
 All category.

editingStrID A resource type to string to edit categories.

Comment Calling this function doesnÕt remove the categories from the passed
database.

Result Returns nothing.

See Also CategoryFreeListV10
Developing Palm OS 2.0 Applications, Part I 197

Palm OS User Interface Functions
Category Functions
CategoryFreeListV10

Purpose Unlock or free memory locked or allocated by
CategoryCreateListV10 which was attached to the passed List
object.

Prototype void CategoryFreeListV10(DmOpenRef db, ListPtr lst)

Parameters db Database containing the categories.

1st Pointer to the category list containing the memory
to be freed.

Result Returns nothing.

See Also CategoryFreeList

CategoryGetName

Purpose Return the name of the speciÞed category.

Prototype void CategoryGetName (DmOpenRef db,
Word index,
CharPtr name)

Parameters db Database that contains the categories.

index Category index.

name Buffer to hold category name. Buffer should be
dmCategoryLength in size.

Result Stores the category name in the name buffer passed.
198 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Functions
Category Functions
CategoryGetNext

Purpose Return the index of the next category, given a category index this
routine. Note that categories are not stored sequentially.

Prototype Word CategoryGetNext (DmOpenRef db, Word index)

Parameters db Database that contains the categories.

index Category index.

Result Category index of next category.

comment DonÕt use this function to search for a category. Instead, use it to
allow your users to cycle through categories, for example, using the
hard-button scroll bars on the device.

2.0 Note In Palm OS 1.0, the system chose Unfiled as one category.

In Palm OS 2.0, the system skips both Unfiled and empty records.

CategoryInitialize

Purpose Initialize the category names, IDs and ßags.

Prototype void CategoryInitialize (
AppInfoPtr appInfoP,
Word localizedAppInfoStrID)

Parameters appInfoP Application info pointer.

localizedAppInfoStrIDResource ID of the localized
category names

Result Returns nothing.
Developing Palm OS 2.0 Applications, Part I 199

Palm OS User Interface Functions
Category Functions
CategoryTruncateName

Purpose Truncate a category name so that itÕs short enough to display.

Prototype void CategoryTruncateName (CharPtr name,
Word maxWidth)

Parameters name Category name to truncate.

maxWidth Maximum size, in pixels, of truncated category
(including ellipsis).

Result Returns nothing. Stores the changed category in CharPtr.

CategorySetName

Purpose Set the category name and rename bits. A NULL pointer removes the
category name.

Prototype void CategorySetName (DmOpenRef db,
Word index,
CharPtr nameP)

Parameters db Database containing the categories to change.

index Index of category to set.

nameP A category name (null-terminated) or NULL pointer
to remove the category.

Result Returns nothing.
200 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Functions
Category Functions
CategorySetTriggerLabel

Purpose Set the label displayed by the category trigger. The category name is
truncated if itÕs to long.

Prototype void CategorySetTriggerLabel (ControlPtr ctl,
CharPtr name)

Parameters ctl Pointer to control object to relabel.

name Pointer to the name of the new category.

Result Returns nothing.
Developing Palm OS 2.0 Applications, Part I 201

Palm OS User Interface Functions
Category Functions
CategorySelect

Purpose Process the selection and editing of categories.

Prototype Boolean CategorySelect (DmOpenRef db,
FormPtr frm,
Word ctlID,
Word lstID,
Boolean title,
WordPtr categoryP,
charPtr categoryName,
Byte numUneditableCategories,
DWord editingStrID)

Parameters db Database that contains the categories.

frm Form that contains the category popup list.

ctlID ID of the popup trigger.

lstID ID of the popup list.

title TRUE if the popup trigger is on the title line.

categoryP Current category (index into db structure).

categoryName Name of the current category.

numUneditableCategories
Number of categories that the user should not
 be able to edit. Uneditable categories must be
 kept together in the lowest category number.
 For the applications included on the device,
 there is one uneditable category: ÒUnÞledÓ

editingStrID ID of string resource to use for editing catego-
ries. If 0, the default, ÒEdit categoriesÓ is used.
202 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Functions
Category Functions
Result Returns TRUE if any of the following conditions are TRUE:

¥ The current category is renamed.
¥ The current category is deleted.
¥ The current category is merged with another category.

See Also CategorySelectV10

CategorySelectV10

Purpose Process the selection and editing of categories.

Prototype Boolean CategorySelectV10 (DmOpenRef db,
FormPtr frm,
Word ctlID,
Word lstID,
Boolean title,
WordPtr categoryP,

 CharPtr categoryName)

Parameters db Database that contains the categories.

frm Form that contains the category popup list.

ctlID ID of the popup trigger.

lstID ID of the popup list.

title TRUE if the popup trigger is on the title line.

categoryP Current category (index into db structure).

categoryName Name of the current category.

Result Returns TRUE if any of the following conditions are true:

¥ the current category is renamed
¥ the current category is deleted
¥ the current category is merged with another category
Developing Palm OS 2.0 Applications, Part I 203

Palm OS User Interface Functions
ClipBoard Functions
ClipBoard Functions

ClipboardAddItem

Purpose Add the item passed to the speciÞed clipboard. The format param-
eter determines which clipboard (text, ink, etc.) the item is added to.

Prototype void ClipboardAddItem (ClipboardFormatType format,
 VoidPtr ptr,
 Word length)

Parameters format Text, ink, bitmap, etc.

ptr Pointer to the item to place on the clipboard.

length Size of the item to place on the clipboard.

Result Returns nothing.

See Also FldCut, FldCopy

ClipboardGetItem

Purpose Return the handle of the contents of the clipboard of a speciÞed type
and the length of a clipboard item.

Prototype VoidHand ClipboardGetItem
(ClipboardFormatType format, WordPtr length)

Parameters format Text, ink, bitmap, etc.

length Pointer to the length of the clipboard item.

Result Handle of the clipboard item.
204 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Functions
Control Functions
Control Functions

CtlDrawControl

Purpose Draw a control object (and the text in it) on screen. The control is
drawn only if its usable attribute is TRUE.

Prototype void CtlDrawControl (ControlPtr ControlP)

Parameters ControlP Pointer to the control object to draw.

Result Returns nothing.

Comments Sets the visible attribute to TRUE.

See Also CtlSetUsable, CtlShowControl

CtlEraseControl

Purpose Erase a usable and visible control object and its frame from the
screen.

Prototype void CtlEraseControl (ControlPtr ControlP)

Parameters ControlP Pointer to control object to erase.

Comments Sets the visible attribute to FALSE.
Developing Palm OS 2.0 Applications, Part I 205

Palm OS User Interface Functions
Control Functions
CtlGetLabel

Purpose Return a character pointer to a controlÕs text label.

Prototype CharPtr CtlGetLabel (ControlPtr ControlP)

Parameters ControlP Pointer to control object.

Result Returns a pointer to a null-terminated string.

See Also CtlSetLabel

CtlGetValue

Purpose Return the current value (on or off) of the speciÞed control. This
function is valid only for push buttons and check boxes. The return
value is undeÞned for other control types.

Prototype short CtlGetValue (ControlPtr ControlP)

Parameters ControlP Pointer to a control object.

Result Returns the current value of the control; 0 = off, 1 = on.

See Also CtlSetValue
206 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Functions
Control Functions
CtlHandleEvent

Purpose Handle event in the speciÞed control object.

Prototype Boolean CtlHandleEvent (ControlPtr ControlP,
 EventPtr EventP)

Parameters ControlP Pointer to control object.

EventP Pointer to an EventType structure.

Result Returns TRUE if an event is handled by this function. Events that are
handled are:

¥ penDownEvent Ñ If the pen is within the bounds of the
control

¥ ctlEnterEvent, ctlRepeatEvent and
ctlExitEventÑ If the control ID in the event data
matches the controlÕs ID.

Comments The control objectÕs usable, enabled, and visible attributes
must be TRUE. This routine handles three type of events:
penDownEvent, ctlEnterEvent/ctlRepeatEvent and
ctlExitEvent.

When this routine receives a penDownEvent, it checks if the pen po-
sition is within the bounds of the control object. If it is, a
ctlEnterEvent is added to the event queue and the routine exits.

When this routine receives a ctlEnterEvent, the control object is
inverted.

When this routine receives a ctlEnterEvent or
ctlRepeatEvent, it checks that the control ID in the passed event
record matches the ID of the speciÞed control. If they match, this
routine tracks the pen until it comes up or until it leaves the objectÕs
bounds. When that happens, ctlSelectEvent is sent to the event
queue if the pen came up in the bounds of the control. If the pen
exits the bounds, a ctlExitEvent is sent to the event queue.
Developing Palm OS 2.0 Applications, Part I 207

Palm OS User Interface Functions
Control Functions
CtlHideControl

Purpose Set a controlÕs usable attribute to FALSE and erase the control from
the screen. This function calls CtlEraseControl.

Prototype void CtlHideControl (ControlPtr ControlP)

Parameters ControlP Pointer to the control object to hide.

Result Returns nothing.

Comments A control that is not usable doesnÕt draw and doesnÕt respond to the
pen.

Sets the visible and the usable attributes to FALSE.

See Also CtlShowControl

CtlHitControl

Purpose Simulate tapping a control. This function adds a ctlSelectEvent
to the event queue.

Prototype void CtlHitControl (ControlPtr ControlP)

Parameters ControlP Pointer to a control object.

Result Returns nothing.

Comments Useful for testing.
208 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Functions
Control Functions
CtlEnabled

Purpose Return TRUE if the control is enabled. Disabled controls do not re-
spond to the pen.

Prototype Boolean CtlEnabled (ControlPtr ControlP)

Parameters ControlP Pointer to control object.

Result Returns TRUE if enabled; FALSE if not.

See Also CtlSetEnabled

CtlSetEnabled

Purpose Set a control as enabled or disabled. Disabled controls do not re-
spond to the pen.

Prototype void CtlSetEnabled (ControlPtr ControlP,
Boolean enable)

Parameters ControlP Pointer to a control object.

enable TRUE to set enabled; FALSE to set not enabled.

Result Returns nothing.

See Also CtlEnabled
Developing Palm OS 2.0 Applications, Part I 209

Palm OS User Interface Functions
Control Functions
CtlSetLabel

Purpose Set the current label for the speciÞed control object. If the control ob-
ject currently has its usable and visible attributes set to TRUE, re-
draw it with the new label.

Prototype void CtlSetLabel (ControlPtr ControlP,
CharPtr newLabel)

Parameters ControlP Pointer to a control object.

newLabel Pointer to the new text label.
Must be a NULL-terminated string.

Result Returns nothing.

Comments This function resizes the width of the control to the size of the new
label.

The pointer passed to this function is stored in the controlÕs data
structure; the control doesnÕt make a copy of the string passed.

See Also CtlGetLabel
210 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Functions
Control Functions
CtlSetUsable

Purpose Set a control usable or not usable by changing the value of its us-
able attribute.

Prototype void CtlSetUsable (ControlPtr ControlP,
Boolean usable)

Parameters ControlP Pointer to a control object.

usable TRUE to set usable; FALSE to set not usable.

Result Returns nothing.

Comments Function doesnÕt usually update the control.

See Also CtlEraseControl,

CtlSetValue

Purpose Set the current value (on or off) of the speciÞed control. If the control
is visible, itÕs visually updated.

Prototype void CtlSetValue (ControlPtr ControlP,
short newValue)

Parameters ControlP Pointer to a control object.

newValue 0 = off, non-zero = on.

Result Returns nothing.

Comments Function works only with push buttons and check boxes. Other con-
trols ignore calls to this function.

See Also CtlGetValue
Developing Palm OS 2.0 Applications, Part I 211

Palm OS User Interface Functions
Field UI Functions
CtlShowControl

Purpose Set a controlÕs usable attribute to TRUE and draw the control on the
screen. This function calls CtlDrawControl.

Prototype void CtlShowControl (ControlPtr ControlP)

Parameters ControlP Pointer to a control object.

Result Returns nothing.

Comments If the control is already usable, this function is the functional equiv-
alent of CtlDrawControl.

Sets the visible and the usable attributes to TRUE.

See Also CtlHideControl

Field UI Functions

FldCalcFieldHeight

Purpose Determine the height of a Þeld for a string.

Prototype Word FldCalcFieldHeight (CharPtr chars,
Word maxWidth)

Parameters chars Pointer to a null-terminated string.

maxWidth Maximum line width in pixels.

Result Returns total number of lines needed to draw the string passed.
212 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Functions
Field UI Functions
FldCompactText

Purpose Compact the memory block that contains the text of the Þeld to re-
lease any unused space.

Prototype void FldCompactText (FieldPtr fld)

Parameters fld Pointer to a Þeld object (FieldType data structure).

Result Returns nothing.

Comments As characters are added to the text of a Þeld, the block that contains
the text is grown. The block is expanded in chunks so that it doesnÕt
have to expand each time a character is added. This expansion re-
sults in some unused space in the text block.

Applications should call this function should on Þeld objects that
edit data records in place before the Þeld is unlocked, or at any other
time when a compact Þeld is desirable; for example, when the form
is being closed.
Developing Palm OS 2.0 Applications, Part I 213

Palm OS User Interface Functions
Field UI Functions
FldCopy

Purpose Copy the current selection to the text clipboard.

Prototype void FldCopy (FieldPtr fld)

Parameters fld Pointer to a Þeld object (FieldType data structure).

Result Returns nothing.

Comments This function leaves the current selection highlighted.

This functions replaces anything previously in the text clipboard.

If there is no selection, this function does nothing.

See Also FldCut, FldPaste

FldCut

Purpose Copy the current selection to the text clipboard, delete the selection
from the Þeld, and redraw the Þeld.

Prototype void FldCut (FieldPtr fld)

Parameters fld Pointer to a Þeld object (FieldType data structure).

Result Returns nothing.

Comments Anything previously in the text clipboard is replaced by this func-
tion.

If there is no selection, this function does nothing.

See Also FldCopy, FldPaste
214 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Functions
Field UI Functions
FldDelete

Purpose Delete the speciÞed range of characters from the Þeld and redraw
the Þeld.

Prototype void FldDelete (FieldPtr fld,
Word start,
Word end)

Parameters fld Pointer to the Þeld object to delete from.

start Starting character position.

end Ending character position.

Result Returns nothing.

See Also FldInsert

FldDirty

Purpose Return TRUE if the Þeld has been modiÞed by the user since the text
value was set (FldSetText).

Prototype Boolean FldDirty (FieldPtr fld)

Parameters fld Pointer to a Þeld object (FieldType data structure).

Result Returns TRUE if the Þeld has been modiÞed by the user, FALSE if the
Þeld has not been modiÞed.

See Also FldSetDirty
Developing Palm OS 2.0 Applications, Part I 215

Palm OS User Interface Functions
Field UI Functions
FldDrawField

Purpose Draw the text of the Þeld. The ÞeldÕs usable attribute must be TRUE
or the Þeld wonÕt be drawn.

Prototype void FldDrawField (FieldPtr fld)

Parameters fld Pointer to a Þeld object (FieldType data structure).

Result Returns nothing.

Comments This function doesnÕt erase the area behind the Þeld before drawing.

If the Þeld has the focus, the blinking insertion point is displayed in
the Þeld.

See Also FldEraseField

FldEraseField

Purpose Erase the text of a Þeld and turn off the insertion point if itÕs in the
Þeld.

Prototype void FldEraseField (FieldPtr fld)

Parameters fld Pointer to a Þeld object (FieldType data structure).

Result Returns nothing.

Comments The function doesnÕt modify the contents of the Þeld.

If the Þeld has the focus, the blinking insertion point is turned off.

See Also FldDrawField
216 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Functions
Field UI Functions
FldFreeMemory

Purpose Release the memory allocated to the text of a Þeld and the associat-
ed word-wrapping information.

Prototype void FldFreeFieldMemory (FieldPtr fld)

Parameters fld Pointer to a Þeld object (FieldType data structure).

Result Returns nothing.

Comments This function releases

¥ The memory allocated to the text of a ÞeldÑthe memory
block that the text member of the FieldType data structure
points to.

¥ The memory allocated to hold the display lines informa-
tionÑthe memory block that the lines member of the
FieldType data structure points to.

This function doesnÕt affect the display of the Þeld.

FldGetAttributes

Purpose Return the attributes of a Þeld.

Prototype void FldGetAttributes (FieldPtr fld,
FieldAttrPtr attrP)

Parameters fld Pointer to a FieldType structure.

attrP Pointer to FieldAttrType, see Field.h.

Result Returns nothing.

See Also FldSetAttributes
Developing Palm OS 2.0 Applications, Part I 217

Palm OS User Interface Functions
Field UI Functions
FldGetBounds

Purpose Return the current bounds of a Þeld.

Prototype void FldGetBounds (FieldPtr fld,
RectanglePtr rect)

Parameters fld Pointer to a Þeld object (FieldType data structure).

rect Pointer to a RectangleType structure.

Result Returns nothing. Stores the ÞeldÕs bounds in the RectangleType
structure reference by bounds.

Comments Returns the rect Þeld of the FieldType structure.

See Also FldSetBounds

FldGetFont

Purpose Return the ID of the font used to draw the text of a Þeld.

Prototype FontID FldGetFont (FieldPtr fld)

Parameters fld Pointer to a Þeld object (FieldType data structure).

Result Returns the ID of the font.

See Also FldSetFont
218 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Functions
Field UI Functions
FldGetInsPtPosition

Purpose Return the string position of the insertion point.

Prototype Word FldGetInsPtPosition (FieldPtr fld)

Parameters fld Pointer to a Þeld object (FieldType data structure).

Result Returns the character position of the insertion point.

Comments The insertion point position number is to the left of the string posi-
tion number. In multiline Þelds, line feeds are counted as part of the
string and the position number after the line feed is the beginning of
the next line.

See Also FldSetInsPtPosition

FldGetMaxChars

Purpose Return the maximum number of characters the Þeld accepts.

Prototype Word FldGetMaxChars (FieldPtr fld)

Parameters fld Pointer to a Þeld object (FieldType data structure).

Result Returns the maximum number of characters the user is allowed to
enter.

See Also FldSetMaxChars
Developing Palm OS 2.0 Applications, Part I 219

Palm OS User Interface Functions
Field UI Functions
FldGetNumberOfBlankLines

Purpose Return the number of blank lines that are displayed at the bottom of
a Þeld. This routine is useful for updating a scroll bar after charac-
ters have been removed from the text in a Þeld.

Prototype Word FldGetNumberOfBlankLines (FieldPtr fld)

Parameters fld Pointer to a FieldType structure.

Result Returns the number of blank lines visible.

FldGetScrollPosition

Purpose Return the string position of the Þrst character in the Þrst line of a
Þeld.

Prototype Word FldGetScrollPosition (FieldPtr fld)

Parameters fld Pointer to a Þeld object (FieldType data structure).

Result Returns the character position of the Þrst visible character.

See Also FldSetScrollPosition
220 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Functions
Field UI Functions
FldGetScrollValues

Purpose Return the values necessary to update a scroll bar.

Prototype void FldGetScrollValues (FieldPtr fld,
WordPtr scrollPosP,
WordPtr textHeightP,

 WordPtr fieldHeightP)

Parameters fld Pointer to a FieldType structure.

scrollPosP Return scroll position here.

textHeightP Return text height here.

fieldHeightP Return Þeld height here.

Result Returns nothing. Stores the position, text height, and Þeld height in
the parameters passed in.
Developing Palm OS 2.0 Applications, Part I 221

Palm OS User Interface Functions
Field UI Functions
FldGetSelection

Purpose Return the current selection of a Þeld.

Prototype void FldGetSelection (FieldPtr fld,
WordPtr startPosition,
WordPtr endPosition)

Parameters fld Pointer to a Þeld object (FieldType data structure).

startPosition
Pointer to start-character position of selected range of
characters.

endPosition
Pointer to end-character position of selected range of
characters.

Result Returns the start and end position in startPosition and
endPosition.

Comments The Þrst character in a Þeld is at position zero.

If the user has selected the Þrst Þve characters of a Þeld,
startPosition will contain the value 0 and endPosition the
value 5.

See Also FldSetSelection
222 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Functions
Field UI Functions
FldGetTextAllocatedSize

Purpose Return the number of characters allocated to hold the ÞeldÕs text
string. DonÕt confuse this number with the length of the text string.

Prototype Word FldGetTextAllocatedSize (FieldPtr fld)

Parameters fld Pointer to a Þeld object.

Result Returns the number of characters allocated for the ÞeldÕs text.

See Also FldSetTextAllocatedSize

FldGetTextHandle

Purpose Return a handle to the block that contains the text string of a Þeld.

Prototype Handle FldGetTextHandle (FieldPtr fld)

Parameters fld Pointer to a Þeld object (FieldType data structure).

Result Returns the handle of the text string of a Þeld; 0 is a possible value.

Comments If 0 is returned, no handle has been allocated for the Þeld pointer.

See Also FldSetTextHandle, FldGetTextPtr
Developing Palm OS 2.0 Applications, Part I 223

Palm OS User Interface Functions
Field UI Functions
FldGetTextHeight

Purpose Return the number of lines of text that the speciÞed Þeld has.

Prototype Word FldGetTextHeight (FieldPtr fld)

Parameters fld Pointer to a Þeld object (FieldType data structure).

Result Returns the number of lines with text.

Comments Empty lines are not counted.

See Also FldCalcFieldHeight

FldGetTextLength

Purpose Return the length of the text string of a Þeld object.

Prototype Word FldGetTextLength (FieldPtr fld)

Parameters fld Pointer to a Þeld object (FieldType data structure).

Result Returns the length of a ÞeldÕs text string.
224 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Functions
Field UI Functions
FldGetTextPtr

Purpose Return a pointer to the text string of a Þeld, or NULL.

Prototype CharPtr FldGetTextPtr (FieldPtr fld)

Parameters fld Pointer to a Þeld object (FieldType data structure).

Result Returns a pointer to t text string of a Þeld; NULL is a possible value.

See Also FldSetTextPtr, FldGetTextHandle

FldGetVisibleLines

Purpose Return the number of lines that can be displayed within the visible
bounds of the Þeld.

Prototype Word FldGetVisibleLines (FieldPtr fld)

Parameters fld Pointer to a Þeld object (FieldType data structure).

Result Returns the number of lines.
Developing Palm OS 2.0 Applications, Part I 225

Palm OS User Interface Functions
Field UI Functions
FldGrabFocus

Purpose Turn the insertion point on (if the speciÞed Þeld is visible) and posi-
tion the blinking insertion point in the Þeld.

Prototype void FldGrabFocus (FieldPtr fld)

Parameters fld Pointer to a Þeld object (FieldType data structure).

Result Returns nothing.

Comments This function sets the Þeld attribute hasFocus to TRUE.

See Also FldReleaseFocus
226 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Functions
Field UI Functions
FldHandleEvent

Purpose Handles the following events: keyDownEvent, penDownEvent,
and fldEnterEvent. The ÞeldÕs editable and usable attributes
must be set to TRUE.

Prototype Boolean FldHandleEvent (FieldPtr fld,
EventPtr EventP)

Parameters fld Pointer to a Þeld object (FieldType data structure).

EventP Pointer to an event (EventType data structure).

Result Returns TRUE if the event was handled.

Comments When a keyDownEvent occurs, the keystroke appears in the Þeld if
itÕs a printable character or manipulates the insertion point if itÕs a
ÒmovementÓ character. The Þeld is automatically updated.

When a penDownEvent occurs, an ÒeditableÓ Þeld sends a
fldEnterEvent to the event queue.

 When a fldEnterEvent occurs, the Þeld grabs the focus and the
insertion point is placed in the speciÞed position.

If the event alters the contents of the Þeld, this function visually up-
dates the Þeld.

This function doesnÕt handle any events if the Þeld is not editable.
Developing Palm OS 2.0 Applications, Part I 227

Palm OS User Interface Functions
Field UI Functions
FldInsert

Purpose Replace the current selection with the string passed.

Prototype Boolean FldInsert (FieldPtr fld,
CharPtr insertChars,
Word insertLen)

Parameters fld Pointer to the Þeld object to insert to.

insertChars Text string to be inserted.

insertLen Length of the text string to be inserted.

Result Returns TRUE if string was successfully inserted; otherwise, FALSE.

Comments If there is no current selection, the string passed is inserted at the po-
sition of the insertion point.

See Also FldPaste, FldDelete, FldCut, FldCopy

FldMakeFullyVisible

Purpose Cause a dynamically resizable Þeld to expand its height to make its
text fully visible.

Prototype Boolean FldMakeFullyVisible (FieldPtr fld)

Parameters fld Pointer to a Þeld object.

Result Returns TRUE if the Þeld was not fully visible; FALSE otherwise.

Comments If the ÞeldÕs height changes, this function sends a
fldHeightChangedEvent via the event queue.

Caveats If the Þeld is in a table, the table resizes it; otherwise, itÕs not resized.
228 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Functions
Field UI Functions
FldPaste

Purpose Replace the current selection in the Þeld with the contents of the text
clipboard.

Prototype void FldPaste (FieldPtr fld)

Parameters fld Pointer to a Þeld object (FieldType data structure).

Result Returns nothing

Comments The function performs these actions:

¥ Positions the insertion point after the last character inserted.

¥ Scrolls the Þeld, if necessary, so the insertion point is visible.

¥ Inserts the clipboard text at the position of the insertion point
if there is no current selection,

¥ DoesnÕt delete the current selection if there is no text in the
clipboard.

See Also FldInsert, FldDelete, FldCut, FldCopy
Developing Palm OS 2.0 Applications, Part I 229

Palm OS User Interface Functions
Field UI Functions
FldRecalculateField

Purpose Update the structure that contains the word-wrapping information
for each visible line.

Prototype void FldRecalculateField (FieldPtr fld,
Boolean redraw)

Parameters fld Pointer to a Þeld object (FieldType data structure).

redraw If TRUE, redraws the Þeld.

Result Returns nothing.

Comments If necessary, this function reallocates the memory block that con-
tains the displayed lines information, the block pointed to by the
lines member in the FieldType data structure.

Call this function if the ÞeldÕs data structure is modiÞed in a way
that invalidates the visual appearance of the Þeld.

FldReleaseFocus

Purpose Turn the blinking insertion point off if the Þeld is visible and has the
current focus, reset the GrafÞti state, and reset the undo state.

Prototype void FldReleaseFocus (FieldPtr fld)

Parameters fld Pointer to a Þeld object (FieldType data structure).

Result Returns nothing.

Comments This function sets the Þeld attribute hasFocus to FALSE.

See Also FldGrabFocus
230 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Functions
Field UI Functions
FldScrollable

Purpose Return TRUE if the Þeld is scrollable in the speciÞed direction.

Prototype Boolean FldScrollable (FieldPtr fld,
DirectionType direction)

Parameters fld Pointer to a Þeld object (FieldType data structure).

direction Either the string ÒupÓ or the string ÒdownÓ.

Result Returns TRUE if the Þeld is scrollable; FALSE otherwise.

See Also FldScrollField

FldScrollField

Purpose Scroll a Þeld up or down by the number of lines speciÞed.

Prototype void FldScrollField (FieldPtr fld,
Word linesToScroll,
DirectionType direction)

Parameters fld Pointer to a Þeld object (FieldType data
 structure).

linesToScroll Number of lines to scroll.

direction Either the string ÒupÓ or the string ÒdownÓ.

Result Returns nothing.

Comments This function canÕt scroll horizontally, that is, right or left.

The Þeld object is redrawn if itÕs scrolled.

See Also FldScrollable
Developing Palm OS 2.0 Applications, Part I 231

Palm OS User Interface Functions
Field UI Functions
FldSendChangeNotiÞcation

Purpose Send a fldChangedEvent via the event queue.

Prototype void FldSendChangeNotification (FieldPtr fld)

Parameters fld Pointer to a Þeld object.

Result Returns nothing.

FldSendHeightChangeNotiÞcation

Purpose Send a fldHeightChangedEvent via the event queue.

Prototype void FldSendHeightChangeNotification
(FieldPtr fld,
Word pos,
Short numLines)

Parameters fld Pointer to a Þeld object.

pos Character position of the insertion point.

numLines New number of lines in the Þeld.

Result Returns nothing.
232 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Functions
Field UI Functions
FldSetAttributes

Purpose Set the attributes of a Þeld.

Prototype void FldSetAttributes (FieldPtr fld,
FieldAttrPtr attrP)

Parameters fld Pointer to a FieldType structure.

attrP Pointer to the attributes.

Result Returns nothing.

See Also FldGetAttributes

FldSetBounds

Purpose Change the position or size of a Þeld.

Prototype void FldSetBounds (FieldPtr fld, RectanglePtr rect)

Parameters fld Pointer to a Þeld object (FieldType data structure).

rect Pointer to a RectangleType structure that contains the
new bounds of the display.

Result Returns nothing.

Comments If the Þeld is visible, the Þeld is redrawn within its new bounds.

The memory block that contains the word-wrapping information
will be resized if the number of visible lines is changed. The inser-
tion point is assumed to be off when this routine is called.

Caveats DonÕt change the width of the object while itÕs visible.

See Also FldGetBounds
Developing Palm OS 2.0 Applications, Part I 233

Palm OS User Interface Functions
Field UI Functions
FldSetDirty

Purpose Set whether the Þeld has been modiÞed.

Prototype void FldSetDirty (FieldPtr fld, Boolean dirty)

Parameters fld Pointer to a Þeld object.

dirty TRUE if the text is modified.

Result Returns nothing.

See Also FldDirty

FldSetFont

Purpose Set the font of the Þeld, update the word-wrapping information,
and draw the Þeld if the Þeld is visible.

Prototype void FldSetFont (FieldPtr fld, FontID fontID)

Parameters fld Pointer to a Þeld object (FieldType data structure).

fontID ID of new font.

Result Returns nothing.

See Also FldGetFont
234 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Functions
Field UI Functions
FldSetInsertionPoint

Purpose Set the location of the insertion point based on a speciÞed string po-
sition. This routine differs from FldSetInsPtPosition in that it
doesnÕt make the character position visible.

Prototype void FldSetInsertionPoint (FieldPtr fld, Word pos)

Parameters fld Pointer to a FieldType structure.

pos Character position in the text of the Þeld

Result Nothing.

Caution FldSetInsertionPoint doesnÕt make the field the current focus
of input if it was not already.

FldSetInsPtPosition

Purpose Set the location of the insertion point for a given string position.

Prototype void FldSetInsPtPosition (FieldPtr fld, Word pos)

Parameters fld Pointer to a Þeld object (FieldType data structure).

pos Character position of insertion point.

Result Returns nothing.

Comments If the position is beyond the visible text, then the insertion point is
disabled.

See Also FldGetInsPtPosition
Developing Palm OS 2.0 Applications, Part I 235

Palm OS User Interface Functions
Field UI Functions
FldSetMaxChars

Purpose Set the maximum number of characters the Þeld accepts.

Prototype void FldSetMaxChars (FieldPtr fld, Word maxChars)

Parameters fld Pointer to a Þeld object (FieldType data structure).

maxChars Maximum number of characters the user may enter.

Result Returns nothing.

Comments Line feed characters are counted when the number of characters is
determined.

See Also FldGetMaxChars

FldSetScrollPosition

Purpose Set the string position of the Þrst character in the Þrst line of a Þeld.
Redraw the Þeld if necessary.

Prototype void FldSetScrollPosition (FieldPtr fld, Word pos)

Parameters fld Pointer to a Þeld object (FieldType data structure).

pos Character position of Þrst visible character.

Result Returns nothing.

See Also FldGetScrollPosition
236 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Functions
Field UI Functions
FldSetSelection

Purpose Set the current selection in a Þeld and highlight the selection if the
Þeld is visible.

Prototype void FldSetSelection (FieldPtr fld,
Word startPosition,
Word endPosition)

Parameters fld Pointer to a Þeld object (FieldType data structure)

startPosition
Starting character position of the character range to highlight.

endPosition
Ending character position of the character range to highlight.

Result Returns nothing.

Comments This function doesnÕt affect the display; the highlight is not redrawn
until the Þeld is redrawn.

To cancel a selection, set both startPosition and endPosition
to the same value.

If startPosition equals endPosition, then the current selection
is unhighlighted.
Developing Palm OS 2.0 Applications, Part I 237

Palm OS User Interface Functions
Field UI Functions
FldSetText

Purpose Set the text value of the Þeld, update the word-wrapping informa-
tion, and place the insertion point after the last visible character.

Prototype void FldSetText (FieldPtr fld,
VoidHand textHandle,
Word offset,
Word size)

Parameters fld Pointer to a Þeld object (FieldType data structure).

textHandle
Handle of a block containing a null-terminated text
string.

offset Offset from start of block to start of the text string.

size Allocated size of text string, not the string length.

Result Returns nothing.

Comments The pointer passed is stored in the ÞeldÕs structure; in other words,
this function doesnÕt make a copy of the string passed.

If a size of zero is passed, the size is computed as the block size,
minus the offset passed. If more text is set than there is room for in
memory, an error occurs.

Warning: This routine doesnÕt free the memory block that holds
the current text value.

See Also FldSetTextPtr, FldSetTextHandle
238 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Functions
Field UI Functions
FldSetTextAllocatedSize

Purpose Set the number of characters allocated to hold the ÞeldÕs text string.
DonÕt confuse this with the length of the text string.

Prototype void FldSetTextAllocatedSize (FieldPtr fld,
Word allocatedSize)

Parameters fld Pointer to a Þeld object.

allocatedSize Number of characters to allocate for the text.

Result Returns nothing.

See Also FldGetTextAllocatedSize

FldSetTextHandle

Purpose Set the handle of the block that contains the text string of a Þeld.

Prototype void FldSetTextHandle (FieldPtr fld,
Handle textHandle)

Parameters fld Pointer to a Þeld object (FieldType data structure).

textHandle
Handle of a ÞeldÕs text string; 0 is a possible value.

Result Returns nothing.

See Also FldSetTextPtr, FldSetText
Developing Palm OS 2.0 Applications, Part I 239

Palm OS User Interface Functions
Field UI Functions
FldSetTextPtr

Purpose Set the ÞeldÕs text to point to a text string.

Prototype void FldSetTextPtr (FieldPtr fld, CharPtr textP)

Parameters fld Pointer to a Þeld object (FieldType data structure).

textP Pointer to a null-terminated string.

Result Returns nothing.

Comments Since the Þeld cannot resize a pointer (only handles can be resized),
the Þeld must be not editable and must be single line. If the Þeld is
editable or has more than one line, an error occurs.

This function does not visually update the Þeld.

See Also FldSetTextPtr, FldSetTextHandle

FldSetUsable

Purpose Set a Þeld usable or nonusable.

Prototype void FldSetUsable (FieldPtr fld, Boolean usable)

Parameters fld Pointer to a FieldType structure.

usable TRUE to set usable; FALSE to set nonusable.

Result Returns nothing.

Comments A nonusable Þeld doesnÕt display or accept input.

See Also FldEraseField, FldDrawField
240 Developing Palm OS 2.0 Applications, Part I

Palm OS User Interface Functions
Field UI Functions
FldUndo

 Purpose Undo the last change made to the Þeld object. Changes include typ-
ing, backspaces, delete, paste, and cut.

Prototype void FldUndo (FieldPtr fld)

Parameters fld Pointer to the Þeld that has the focus.

Result Returns nothing.

See Also FldPaste, FldCut, FldCopy

FldWordWrap

Purpose Given a string and a width, return the number of characters that can
be displayed using the current font.

Prototype Word FldWordWrap (CharPtr chars, Word maxWidth)

Parameters chars Pointer to a null-terminated string.

maxWidth Maximum line width in pixels.

Result Returns the number of characters.
Developing Palm OS 2.0 Applications, Part I 241

Palm OS User Interface Functions
Field UI Functions
242 Developing Palm OS 2.0 Applications, Part I

Font Functions
FntAccentHeight

Not currently implemented.

FntAscent

Not currently implemented.

 FntAverageCharWidth

Purpose Return the average character width in the current font.

Prototype short FntAverageCharWidth (void)

Parameters None.

Result Returns the average character width (in pixels).

FntBaseLine

Purpose Return the distance from the top of character cell to the baseline for
the current font.

Prototype short FntBaseLine (void)

Parameters None.

Result Returns the baseline of the font (in pixels).
Developing Palm OS 2.0 Applications, Part I 243

Font Functions
FntCharHeight

Purpose Return the character height, in the current font including accents
and descenders.

Prototype short FntCharHeight (void)

Parameters None

Result Height of the characters in the current font, expressed in pixels.

FntCharsInWidth

Purpose Find the number of characters in a string that Þt within a passed
width. Spaces at the end of a string are ignored and removed. Char-
acters after a carriage return are ignored, the string is considered
truncated.

Prototype void FntCharsInWidth (CharPtr string,
Int *stringWidthP,
Int *stringLengthP,
Boolean *fitWithinWidth)

Parameters string Pointer to the char string.

stringWidthP Maximum width to allow.

stringLengthP Maximum characters to allow (assumes
current Font).

fitWithinWidth Set to TRUE if string is considered truncated.

Result When the call is completed, the information is updated as follows:

stringWidthP Set to the width of the chars allowed.

stringLengthP Set to the number of chars within the width.

fitWithinWidth TRUE if the string is considered truncated,
FALSE if it isnÕt.
244 Developing Palm OS 2.0 Applications, Part I

Font Functions
FntCharsWidth

Purpose Return the width of the speciÞed character string. The Missing
Character Symbol is substituted for any character which does not
exist in the current font.

Prototype short FntCharsWidth (CharPtr pChars, Word length)

Parameters pChars Pointer to a string of characters.

length Number of character in the string.

Result Returns the width of the string, in pixels.

FntCharWidth

Purpose Return the width of the speciÞed character. If the speciÞed character
does not exist within the current font, the Missing Character Symbol
is substituted.

Prototype short FntCharWidth (char ch)

Parameters ch Character whose width is needed.

Result Returns the width of the speciÞed character (in pixels).
Developing Palm OS 2.0 Applications, Part I 245

Font Functions
FntDescenderHeight

Purpose Return the height of a characterÕs descender in the current font. The
height of a descender is the distance between the base line an the
bottom of the character cell.

Prototype short FntDescenderHeight (void)

Parameters None.

Result Returns the height of a descender, expressed in pixels.

FntGetFont

Purpose Return the Font ID of the current font.

Prototype FontID FntGetFont (void)

Parameters None.

Result Returns the Font ID of the current font.

FntGetFontPtr

Purpose Return a pointer to the current font.

Prototype FontPtr FntGetFontPtr (void)

Parameters None.

Result Returns the FontPtr of the current font.
246 Developing Palm OS 2.0 Applications, Part I

Font Functions
FntGetScrollValues

Purpose Return the values needed to update a scroll bar based on a speciÞed
string and the position within the sting.

Prototype void FntGetScrollValues (CharPtr chars,
Word width,
Word scrollPos,
WordPtr linesP,
WordPtr topLineP)

Parameters chars Null-terminated string.

width Width to word wrap at, in pixels.

scrollPos Character position of the Þrst visible character.

linesP (returned) number of lines of text.

topLineP (returned) top visible line.

Result Returns nothing. Stores the number of lines of text in linesP and
the top visible line in topLineP.

FntLineHeight

Purpose Return the height of a line in the current font. The height of a line is
the height of the character cell plus the space between lines (the ex-
ternal leading).

Prototype short FntLineHeight (void)

Parameters None.

Result Returns the height of a line in the current font.
Developing Palm OS 2.0 Applications, Part I 247

Font Functions
FntLineWidth

Purpose Return the width of the speciÞed line of text, taking tab characters in
to account. The function assumes that the characters passed are left-
aligned and that the Þrst character in the string is the Þrst character
drawn on a line. In other words, this routine doesnÕt work for char-
acters that donÕt start at the beginning of a line.

Prototype short FntLineWidth (CharPtr pChars, Word length)

Parameters pChars Pointer to a string of characters.

length Number of character in the string.

Result Returns the line width (in pixels).

FntProportionalFont

Purpose Indicate whether the current font is proportionally spaced or Þxed
width.

Prototype Boolean FntProportionalFont (void)

Parameters None.

Result Returns TRUE if the current font is proportionally spaced, FALSE if
itÕs Þxed width.
248 Developing Palm OS 2.0 Applications, Part I

Font Functions
FntSetFont

Purpose Set the current font.

Prototype FontID FntSetFont (FontID fontID)

Parameters fontID ID of the font to make the active font.

Result Returns the ID of the current font before the change.

FntWordWrap

Purpose Given a string, determine the number of characters that can be dis-
played within the speciÞed width.

Prototype Word FntWordWrap (CharPtr chars, Word maxWidth)

Parameters chars Pointer to a null-terminated string.

maxWidth Maximum line width in pixels.

Result Returns the length of the line, in characters.
Developing Palm OS 2.0 Applications, Part I 249

Font Functions
FntWordWrapReverseNLines

Purpose Word wrap a text string backwards by the number of lines speciÞed.
The character position of the start of the Þrst line and the number of
lines that are actually word wrapped are returned.

Prototype void FntWordWrapReverseNLines (CharPtr chars,
Word maxWidth,
WordPtr linesToScrollP,
WordPtr scrollPosP)

Parameters chars Pointer to a null-terminated string.

maxWidth Maximum line width in pixels.

linesToScrollP Passed: lines to scroll
returned: lines scrolled.

scrollPosP Passed: Þrst character
returned: Þrst character after wrapping.

Result Returns nothing. Stores the Þrst character after wrapping and the
number of lines scrolled in scrollPosP and linesToScrollP.
250 Developing Palm OS 2.0 Applications, Part I

Form Functions
Form Functions

FrmAlert

Purpose Create a modal dialog from an alert resource and display it until the
user selects a button in the dialog.

Prototype Word FrmAlert (Word alertId)

Parameters alertId ID of the alert resource.

Result Returns the item number of the button the user selected. A buttonÕs
item number is determined by its order in the alert dialog; the Þrst
button has the item number 0 (zero).

See Also FrmDoDialog, FrmCustomAlert

FrmCloseAllForms

Purpose Send a frmCloseEvent to all open forms.

Prototype void FrmCloseAllForms (void)

Parameters None.

Comments Applications can call this function to ensure that all forms are closed
cleanly before exiting PilotMain(); that is, before termination.

See Also FrmSaveAllForms
Developing Palm OS 2.0 Applications, Part I 251

Form Functions
FrmCopyLabel

Purpose Copy the passed string into the data structure of the speciÞed label
object in the active form.

Prototype void FrmCopyLabel (FormPtr frm,
Word labelID,
CharPtr newLabel)

Parameters frm Pointer to memory block that contains the form.

labelID ID of form label object.

newLabel Pointer to a null-terminated string.

Result Returns nothing.

Comments The size of the new label must not exceed the size of the label de-
Þned in the resource. When deÞning the label in the resource, speci-
fy an initial size at least as big as any of the strings that will be as-
signed dynamically. Redraw the label if the formÕs usable attribute
and the labelÕs visible attribute are set.

See Also FrmGetLabel
252 Developing Palm OS 2.0 Applications, Part I

Form Functions
FrmCopyTitle

Purpose Copy the title passed over the formÕs current title. If the form is visi-
ble, the new title is drawn.

Prototype void FrmCopyTitle (FormPtr frm, CharPtr newTitle)

Parameters frm Memory block that contains the form.

newTitle Pointer to the new title string.

Result Returns nothing.

Comments The size of the new title must not exceed the title size deÞned in the
resource. When deÞning the title in the resource, specify an initial
size at least as big as any of string to be assigned dynamically.

See Also FrmGetTitle
Developing Palm OS 2.0 Applications, Part I 253

Form Functions
FrmCustomAlert

Purpose Create a modal dialog from an alert resource and display the dialog
until the user taps a button in the alert dialog.

Prototype Word FrmCustomAlert (Word alertId, CharPtr s1,
CharPtr s2, CharPtr s3)

Parameters alertId Resource ID of the alert.

s1, s2, s3 Strings to replace ^1, ^2, and ^3 (see Comment).

Result Returns the button number the user tapped (Þrst button is zero).

Comments A buttonÕs item number is determined by its order in the alert tem-
plate; the Þrst button has the item number zero.

Up to three strings can be passed to this routine. They are used to re-
place the variables ^1, ^2 and ^3 that are contained in the message
string of the alert resource.

See Also FrmAlert, FrmDoDialog
254 Developing Palm OS 2.0 Applications, Part I

Form Functions
FrmDeleteForm

Purpose Release the memory occupied by a form. Any memory allocated to
objects in the form is also released.

Prototype void FrmDeleteForm (FormPtr frm)

Parameters frm Pointer to memory block that contains the form.

Result Returns nothing.

Comments This function doesnÕt modify the display.

See Also FrmInitForm, FrmReturnToForm

FrmDispatchEvent

Purpose Dispatch an event to the applicationÕs handler for the form.

Prototype Boolean FrmDispatchEvent (EventPtr eventP)

Parameters eventP Pointer to an event.

Result Returns nothing.

Comments The event is dispatched to the current form unless the form ID is
speciÞed in the event data, as, for example, with frmOpenEvent.

See Also FrmSetEventHandler, FrmHandleEvent
Developing Palm OS 2.0 Applications, Part I 255

Form Functions
FrmDoDialog

Purpose Display a modal dialog until the user taps a button in the dialog.

Prototype Word FrmDoDialog (FormPtr frm)

Parameters frm Pointer to memory block that contains the form.

Result Returns the number of the button the user tapped (Þrst button is ze-
ro).

Comments A buttonÕs item number is determined by its order in the alert tem-
plate; the Þrst button has an item number of 0 (zero).

See Also FrmInitForm, FrmCustomAlert

FrmDrawForm

Purpose Draw all objects in a form and the frame around the form.

Prototype void FrmDrawForm (FormPtr frm)

Parameters frm Pointer to the memory block that contains the form.

Result Returns nothing.

Comments Saves the bits behind the form using the bitsBehindForm Þeld.

See Also FrmEraseForm, FrmInitForm
256 Developing Palm OS 2.0 Applications, Part I

Form Functions
FrmEraseForm

Purpose Erase a form from the display.

 Prototype void FrmEraseForm (FormPtr frm)

Parameters frm Pointer to the memory block that contains the form.

Result Returns nothing.

Comments If the region obscured by the form was saved by FrmDrawForm, this
function restores that region.

See Also FrmDrawForm

FrmGetActiveForm

Purpose Return the currently active form.

Prototype FormPtr FrmGetActiveForm (void)

Parameters None.

Result Returns the pointer to the memory block that contains the form.

See Also FrmGetActiveFormID, FrmSetActiveForm
Developing Palm OS 2.0 Applications, Part I 257

Form Functions
FrmGetActiveFormID

Purpose Return the ID of the currently active form.

Prototype Word FrmGetActiveFormID (void)

Parameters None.

Result Returns the currently active formÕs ID number.

See Also FrmGetActiveForm

FrmGetControlGroupSelection

Purpose Return the item number of the control selected in a group of con-
trols.

Prototype Byte FrmGetControlGroupSelection (FormPtr frm,
Byte groupNum)

Parameters frm Pointer to memory block that contains the form.

groupNum Control group number.

Result Returns the item number of the selected control; returns -1 if none is
selected.

Comments The item number is the index into the form objectÕs data structure.

See Also FrmGetObjectId, FrmGetObjectPtr,
FrmSetControlGroupSelection
258 Developing Palm OS 2.0 Applications, Part I

Form Functions
FrmGetControlValue

Purpose Return the on/off state of a control.

Prototype short FrmGetControlValue (FormPtr frm,
Word objIndex)

Parameters frm Pointer to memory block that contains the form.

objIndex Item number of the object.

Result Returns the state of the control: 1 = on; 0 = off.

Comments The caller must specify a valid index. This function is used only for
push button and check box control objects.

See Also FrmGetObjectIndex, FrmSetControlValue

FrmGetFirstForm

Purpose Return the Þrst form in the window list.

Prototype FormPtr FrmGetFirstForm (void)

Parameters None.

Result Returns a pointer to a form, or NULL if there are no forms.

Comments The window list is a LIFO stack. The last window created is the Þrst
window in the window list.
Developing Palm OS 2.0 Applications, Part I 259

Form Functions
FrmGetFocus

Purpose Return the item (index) number of the object (UI element) that has
the focus.

Prototype Word FrmGetFocus (FormPtr frm)

Parameters frm Pointer to memory block that contains the form.

Result Returns the index of the object (UI element) that has the focus, or -1
if none does.

See Also FrmGetObjectId, FrmGetObjectPtr, FrmSetFocus

FrmGetFormBounds

Purpose Return the visual bounds of the form; the region returned includes
the formÕs frame.

Prototype void FrmGetFormBounds (FormPtr frm, RectanglePtr r)

Parameters frm Pointer to memory block that contains the form.

r Pointer to a RectangleType structure that will contain the
bounds.

Result Returns the bounds of the form in r.
260 Developing Palm OS 2.0 Applications, Part I

Form Functions
FrmGetFormId

Purpose Return the resource ID of a form.

Prototype Word FrmGetFormId (FormPtr frm)

Parameters frm Pointer to memory block that contains the form.

Result Returns form resource ID.

See Also FrmGetFormPtr

FrmGetFormPtr

Purpose Return a pointer to the form that has the speciÞed ID.

Prototype FormPtr FrmGetFormPtr (Word formId)

Parameters formId Form ID number.

Result Returns a pointer to the memory block that contains the form, or
NULL if the form is not in memory.

See Also FrmGetFormId
Developing Palm OS 2.0 Applications, Part I 261

Form Functions
FrmGetGadgetData

Purpose Return the value stored in the data Þeld of the gadget object.

Prototype VoidPtr FrmGetGadgetData (FormPtr frm,
Word objIndex)

Parameters frm Pointer to memory block that contains the form.

objIndex Item number of the gadget object.

Result Returns a pointer to the custom gadgetÕs data.

Comments Gadget objects provide a way for an application to attach custom
gadgetry to a form. In general, the data Þeld of a gadget object con-
tains a pointer to the custom objectÕs data structure.

See Also FrmSetGadgetData

FrmGetLabel

Purpose Return pointer to the text of the speciÞed label object in the speciÞed
form.

Prototype CharPtr FrmGetLabel (FormPtr frm, Word labelID)

Parameters frm Pointer to memory block that contains the form.

labelID ID of the label object.

Result Returns a pointer to the label string.

Comments Does not make a copy of the string; returns a pointer to the string.
The object must be a label.

See Also FrmCopyLabel
262 Developing Palm OS 2.0 Applications, Part I

Form Functions
FrmGetNumberOfObjects

Purpose Return the number of objects in a form.

Prototype Word FrmGetNumberOfObjects (FormPtr frm)

Parameters frm Pointer to memory block that contains the form.

Result Returns the number of objects in the speciÞed form.

See Also FrmGetObjectPtr, FrmGetObjectId

FrmGetObjectBounds

Purpose Retrieve the bounds of an object given its form and index.

Prototype void FrmGetObjectBounds (FormPtr frm,
Word ObjIndex,
RectanglePtr r)

Parameters frm Pointer to memory block that contains the form.

ObjIndex Index of an object in the form.

r Pointer to the rectangle containing the object bounds.

Result Returns nothing. The objectÕs bounds are returned in r.

See Also FrmGetObjectPosition, FrmGetObjectIndex,
FrmSetObjectPosition
Developing Palm OS 2.0 Applications, Part I 263

Form Functions
FrmGetObjectId

Purpose Return the ID of the speciÞed object.

Prototype Word FrmGetObjectId (FormPtr frm, Word objIndex)

Parameters frm Pointer to memory block that contains the form.

objIndex Index of an object in the form.

Result Returns the ID number of a object.

Comments The application developer speciÞes a unique object ID.

See Also FrmGetObjectPtr, FrmGetObjectIndex

FrmGetObjectIndex

Purpose Return the item number of an object. The item number is the posi-
tion of the object in the formÕs objects list.

Prototype Word FrmGetObjectIndex (FormPtr frm, Word objID)

Parameters frm Pointer to memory block that contains the form.

objID ID of an object in the form.

Result Returns the item number of an object (the Þrst item number is 0).

See Also FrmGetObjectPtr, FrmGetObjectId
264 Developing Palm OS 2.0 Applications, Part I

Form Functions
FrmGetObjectPosition

Purpose Return the coordinate of the speciÞed object relative to the form.

Prototype void FrmGetObjectPosition (FormPtr frm,
Word objIndex,
SWordPtr x,
SWordPtr y)

Parameters frm Pointer to memory block that contains the form.

objIndex Item number of the object.

x, y Pointer to window-relative x and y position.

Result Returns nothing.

See Also FrmGetObjectBounds, FrmSetObjectPosition

FrmGetObjectPtr

Purpose Return a pointer to the data structure of an object in a form.

Prototype void * FrmGetObjectPtr (FormPtr frm, Word objIndex)

Parameters frm Pointer to memory block that contains the form.

objIndex Item number of the object.

Result Returns a pointer to an object in the form.

See Also FrmGetObjectIndex, FrmGetObjectId
Developing Palm OS 2.0 Applications, Part I 265

Form Functions
FrmGetObjectType

Purpose Return the type of an object.

Prototype FormObjectKind FrmGetObjectType (FormPtr frm,
Word objIndex)

Parameters frm Pointer to memory block that contains the form.

objIndex Item number of the object.

Result Returns FormObjectKind of the item speciÞed.

FrmGetTitle

Purpose Return a pointer to the title string of a form.

Prototype CharPtr FrmGetTitle (FormPtr frm)

Parameters frm Pointer to memory block that contains the form.

Result Returns a pointer to title string.

Comments This is a pointer to the internal structure itself, not to a copy.

See Also FrmCopyTitle, FrmSetTitle
266 Developing Palm OS 2.0 Applications, Part I

Form Functions
FrmGetUserModiÞedState

Purpose Return TRUE if an object in the form has been modiÞed by the user
since it was initialized or since the last call to
FrmSetNotUserModified.

Prototype Boolean FrmGetUserModifiedState (FormPtr frm)

Parameters frm Pointer to the memory block that contains the form.

Result Returns TRUE if an object was modiÞed; FALSE otherwise.

Comments Returns TRUE if the dirty attribute of the form has been set.

See Also FrmSetNotUserModiÞed

FrmGetWindowHandle

Purpose Return the window handle of a form.

Prototype WinHandle FrmGetWindowHandle (FormPtr frm)

Parameters frm Pointer to memory block that contains the form.

Result Returns the handle of the memory block that the form is in. Since
the form structure begins with the WindowType structure, this is
also a WinHandle.
Developing Palm OS 2.0 Applications, Part I 267

Form Functions
FrmGotoForm

Purpose Send a frmCloseEvent to the current form; send a frmLoadEvent
and a frmOpenEvent to the speciÞed form.

Prototype void FrmGotoForm (Word formId)

Parameters formId ID of the form to display.

Result Returns nothing.

Comments The form event handler (FrmHandleEvent) erases and disposes of
a form when it receives a frmCloseEvent.

See Also FrmPopupForm

FrmHandleEvent

Purpose Handle the event that has occurred in the form.

Prototype Boolean FrmHandleEvent (FormPtr frm,
EventPtr event)

Parameters frm Pointer to the memory block that contains the form.

event Pointer to the event data structure.

Result Returns TRUE if the event was handled.

See Also FrmDispatchEvent
268 Developing Palm OS 2.0 Applications, Part I

Form Functions
FrmHelp

Purpose Display the speciÞed help message until the user taps the Done but-
ton in the help dialog.

Prototype void FrmHelp (Word helpMsgId)

Parameters helpMsgId Resource ID of help message string.

Result Returns nothing.

Comments The ID passed is the resource ID of a string resource that contains
the help message. The help message is displayed in a modal dialog
that has vertical scrolls if necessary.

FrmHideObject

Purpose Erase the speciÞed object and set its attribute data so that it does not
redraw or respond to the pen.

Prototype void FrmHideObject (FormPtr frm, Word objIndex)

Parameters frm Pointer to memory block that contains the form.

objIndex Item number of the object.

Result Returns nothing.

See Also FrmGetObjectIndex, FrmShowObject
Developing Palm OS 2.0 Applications, Part I 269

Form Functions
FrmInitForm

Purpose Load and initialize a form resource.

Prototype FormPtr FrmInitForm (Word rscID)

Parameters rscID Resource ID of the form.

Result Returns a pointer to the form memory block.

Displays an error message if the form has already been initialized.

Comments This function does not affect the display nor make the form active.

See Also FrmDoDialog, FrmDeleteForm

FrmPointInTitle

Purpose Returns TRUE if the coordinate passed is within the bounds of
formÕs title.

Prototype Boolean FrmPointInTitle (FormPtr frm,
Short x,
Short y)

Parameters frm Memory block that contains the form.

x, y Window-relative x and y coordinate.

Result Returns TRUE if the speciÞed coordinate is in the formÕs title.
270 Developing Palm OS 2.0 Applications, Part I

Form Functions
FrmPopupForm

Purpose Send a frmOpenEvent to the speciÞed form. This routine differs
from FrmGotoForm in that the current form is not closed.

Prototype void FrmPopupForm (Word formId)

Parameters formID Resource ID of form to open.

Result Returns nothing.

See Also FrmGotoForm

FrmReturnToForm

Purpose Erase and delete the currently active form and make the speciÞed
form the active form.

Prototype void FrmReturnToForm (Word formId)

Parameters formID Resource ID of the form to return to.

Result Returns nothing.

Comments It is assumed that the form being returned to is already loaded into
memory and initialized. Passing a form ID of 0 returns to the Þrst
form in the window list, which is the last form to be loaded.

See Also FrmGotoForm, FrmPopupForm
Developing Palm OS 2.0 Applications, Part I 271

Form Functions
FrmSaveAllForms

Purpose Send a frmSaveEvent to all open forms.

Prototype void FrmSaveAllForms (void)

Parameters None.

Result Returns nothing.

See Also FrmCloseAllForms

FrmSetActiveForm

Purpose Set the active form. All input (key and pen) is directed to the active
form.

Prototype void FrmSetActiveForm (FormPtr frm)

Parameters frm Pointer to memory block that contains the form.

Result Returns nothing.

Comments A penDownEvent outside the form but within the display area is ig-
nored.

See Also FrmGetActiveForm
272 Developing Palm OS 2.0 Applications, Part I

Form Functions
FrmSetCategoryLabel

Purpose Set the category label displayed on the title line of a form. If the
formÕs visible attribute is set, redraw the label.

Prototype void FrmSetCategoryLabel (FormPtr frm,
Word objIndex,
CharPtr newLabel)

Parameters frm Pointer to memory block that contains the form.

objIndex Item number of the object.

newLabel Pointer to the name of the new category.

Result Returns nothing.

Comments The pointer to the new label is saved in the object.
Developing Palm OS 2.0 Applications, Part I 273

Form Functions
FrmSetControlGroupSelection

Purpose Set the selected control in a group of controls.

Prototype void FrmSetControlGroupSelection (FormPtr frm,
 Byte groupNum,
 Word controlID)

Parameters frm Pointer to memory block that contains the form.

groupNum Control group number.

controlID ID of control to set.

Result Returns nothing.

Comments Function unsets all the other controls in the group. The display is
updated.

See Also FrmGetControlGroupSelection
274 Developing Palm OS 2.0 Applications, Part I

Form Functions
FrmSetControlValue

Purpose Turn a control on or off.

Prototype void FrmSetControlValue (FormPtr frm,
Word objIndex,
short newValue)

Parameters frm Pointer to memory block that contains the form.

objIndex Item number of the object.

newValue New control value (non-zero equals on).

Result Returns nothing.

Comments The display is not changed.

See Also FrmGetControlValue
Developing Palm OS 2.0 Applications, Part I 275

Form Functions
FrmSetEventHandler

Purpose Set the event handler callback routine for the speciÞed form.

Prototype void FrmSetEventHandler (FormPtr frm,
FormEventHandlerPtr handler)

Parameters frm Pointer to memory block that contains the form.

handler Address of a function.

Result Returns nothing.

Comments FrmHandleEvent calls this handler whenever it receives an event.

This routine should be called right after a form resource is loaded.
The callback routine is the mechanism for dispatching events to an
application. The tutorial explains how to use callback routines.

See Also FrmDispatchEvent

FrmSetFocus

Purpose Set the focus of a form to the speciÞed object.

Prototype void FrmSetFocus (FormPtr frm, Word objIndex)

Parameters frm Pointer to memory block that contains the form.

objIndex Item number of the object (UI element) that gets the
focus.

Result Returns nothing.

See Also FrmGetFocus, FrmGetObjectIndex
276 Developing Palm OS 2.0 Applications, Part I

Form Functions
FrmSetGadgetData

Purpose Store the value passed in the data Þeld of the gadget object.

Prototype void FrmSetGadgetData (FormPtr frm,
Word objIndex,
VoidPtr data)

Parameters frm Pointer to memory block that contains the form.

objIndex Item number of the object.

data Application-deÞned value.

Result Returns nothing.

Comments Gadget objects provide a way for an application to attach custom
gadgetry to a form. In general, the data Þeld of a gadget object con-
tains a pointer to the custom objectÕs data structure.

See Also FrmGetGadgetData, FrmGetObjectIndex

FrmSetNotUserModiÞed

Purpose Clear the ßag that keeps track of whether or not the form has been
modiÞed by the user.

Prototype void FrmSetNotUserModified (FormPtr frm)

Parameters frm Pointer to memory block that contains the form.

Result Returns nothing.

See Also FrmGetUserModiÞedState
Developing Palm OS 2.0 Applications, Part I 277

Form Functions
FrmSetMenu

Purpose Change a formÕs menu bar.

Prototype void FrmSetMenu (FormPtr frm, Word menuRscID)

Parameters frm Memory block that contains the form.

menuRscID Resource ID of the menu.

Result Returns nothing.

FrmSetObjectBounds

Purpose Set the bounds of the speciÞed form object.

Prototype void FrmSetObjectBounds (FormPtr frm,
Word objIndex,
RectanglePtr bounds)

Parameters frmPtr Memory block that contains the form.

objIndex Item number of the object.

bounds Window-relative bounds.

Result Returns nothing.
278 Developing Palm OS 2.0 Applications, Part I

Form Functions
FrmSetObjectPosition

Purpose Set the window-relative coordinate of the speciÞed object.

Prototype void FrmSetObjectPosition (FormPtr frm,
Word objIndex,
SWord x,
SWord y)

Parameters frm Pointer to memory block that contains the form.

objIndex Item number of the object.

x Window-relative coordinate.

y Window-relative coordinate.

Result Returns nothing.

Comments DoesnÕt update the display. Presently, only label objects are affected.

Caveat This function currently doesnÕt work when used on a bitmap.

See Also FrmGetObjectPosition, FrmGetObjectIndex,
FrmGetObjectBounds
Developing Palm OS 2.0 Applications, Part I 279

Form Functions
FrmSetTitle

Purpose Set the title of a form. If the form is visible, draw the new title.

Prototype void FrmSetTitle (FormPtr frm, CharPtr newTitle)

Parameters frm Pointer to memory block that contains the form.

newTitle Pointer to the new title string.

Result Returns nothing.

Comments Draws the title if the form is visible.

Saves the pointer to the passed title string. Does not make a copy.

See Also FrmGetTitle, FrmCopyTitle, FrmCopyLabel

FrmShowObject

Purpose Set an object (UI element) inside a form as usable. If the form is visi-
ble, draw the object.

Prototype void FrmShowObject (FormPtr frm, Word objIndex)

Parameters frm Pointer to memory block that contains the form.

objIndex Item number of the object.

Result Returns nothing.

See Also FrmHideObject, FrmGetObjectIndex
280 Developing Palm OS 2.0 Applications, Part I

Form Functions
FrmUpdateScrollers

Purpose Visually update the Þeld scroll arrow buttons.

Prototype void FrmUpdateScrollers (FormPtr frm,
Word upIndex,
Word downIndex,
Boolean scrollableUp,
Boolean scrollableDown)

Parameters frm Pointer to a form.

upIndex Index of the up-scroller button.

downIndex Index of the down-scroller button.

scrollableUp TRUE if the up-scroll should be active.

scrollableDown TRUE if the down-scroll should be active.

Result Returns nothing.

See Also FrmGetObjectIndex

FrmUpdateForm

Purpose Send a frmUpdateEvent to the speciÞed form.

Prototype void FrmUpdateForm (Word formId, Word updateCode)

Parameters formId Resource ID of form to open.

updateCode If the update code is frmRedrawUpdateCode, the
form reinitializes its global variables and redraws
itself. Otherwise, the form reinitializes its global
variables but does not redraw itself.

Result Returns nothing.
Developing Palm OS 2.0 Applications, Part I 281

Form Functions
FrmVisible

Purpose Return TRUE if the form is visible (is drawn).

Prototype Boolean FrmVisible (FormPtr frm)

Parameters frm Pointer to memory block that contains the form.

Result Returns TRUE if visible; FALSE if not visible.

See Also FrmDrawForm, FrmEraseForm
282 Developing Palm OS 2.0 Applications, Part I

Character Attribute Functions
Character Attribute Functions

GetCharAttr

Purpose Return a pointer to the character attribute. This array is used by the
character classiÞcation and character conversion macros (such as is-
alpha and toascii).

Prototype WordPtr GetCharAttr (void)

Parameters None

Result A pointer to the attributes array. See CharAttr.h for an explanation
of the attributes.

GetCharCaselessValue

Purpose Return a pointer to an array that maps all characters to an assigned
caseless and accentless value. Use this function for Þnding text.

Prototype BytePtr GetCharCaselessValue (void)

Parameters None.

Result Returns a pointer to the sort array.

The compiler pads each byte out to a word so each index position
contains two characters.

Note: array[x].high = sort value for character 2x+1.
Developing Palm OS 2.0 Applications, Part I 283

Character Attribute Functions
Comment The GetCharCaselessValue conversion table converts each char-
acter into a numeric value that is caseless and sorted according to
Microsoft Windows sorting rules:

¥ Punctuation characters have the lowest values,

¥ followed by numbers,

¥ followed by alpha characters.

All forms of each alpha character have equivalent values, so
that e = E = e-grave = e-circumßex, etc.

This conversion table is used by all the Palm OS sorting and com-
parison routines to yield caseless searches and caseless sorts in the
same order as Windows-based programs.

GetCharSortValue

Purpose Return a pointer to an array that maps all characters to an assigned
sorting value. Use this function for ordering (sorting) text.

Prototype BytePtr GetCharSortValue (void)

Parameters None.

Result Returns a pointer to the attributes array.

The compiler pads each byte out to a word so each index position
contains two characters.

Note: array[x].low = sort value for character 2x.
284 Developing Palm OS 2.0 Applications, Part I

GrafÞti Manager Functions

GrfAddMacro

Purpose Add a macro to the macro list.

Prototype Err GrfAddMacro (CharPtr nameP,
BytePtr macroDataP,
Word dataLen)

Parameters nameP Name of macro.

macroDataP Data of macro.

dataLen Size of macro data in bytes.

Result Returns 0 if no error; returns grfErrNoMacros,
grfErrMacroPtrTooSmall, dmErrNotValidRecord,
dmErrWriteOutOfBounds if an error occurs.

See Also GrfGetMacro, GrfGetMacroName, GrfDeleteMacro

GrfAddPoint

Purpose Add a point to the GrafÞti point buffer.

Prototype Err GrfAddPoint (PointType* ptP)

Parameters ptP Pointer to point buffer.

Result Returns 0 if no error; returns grfErrPointBufferFull if an error
occurs.

See Also GrfFlushPoints
Developing Palm OS 2.0 Applications, Part I 285

GrafÞti Manager Functions
GrfCleanState

Purpose Remove any temporary shifts from the dictionary state.

Prototype Err GrfCleanState (void)

Parameters None

Result Returns 0 if no error, or grfErrNoDictionary if an error occurs.

See Also GrfInitState

GrfDeleteMacro

Purpose Delete a macro from the macro list.

Prototype Err GrfDeleteMacro (Word index)

Parameters index Index of the macro to delete.

Result Returns 0 if no error, or grfErrNoMacros,
grfErrMacroNotFound if an error occurs.

See Also GrfAddMacro
286 Developing Palm OS 2.0 Applications, Part I

GrafÞti Manager Functions
GrfFindBranch

Purpose Locate a branch in the GrafÞti dictionary by ßags.

Prototype Err GrfFindBranch (Word flags)

Parameters flags Flags of the branch youÕre searching for.

Result Returns 0 if no error, or grfErrNoDictionary or
grfErrBranchNotFound if an error occurs.

See Also GrfCleanState, GrfInitState

GrfFilterPoints

Purpose Filter the points in the GrafÞti point buffer.

Prototype Err GrfFilterPoints (void)

Parameters None.

Result Always returns 0.

See Also GrfMatch
Developing Palm OS 2.0 Applications, Part I 287

GrafÞti Manager Functions
GrfFlushPoints

Purpose Dispose of all points in the GrafÞti point buffer.

Prototype Err GrfFlushPoints (void)

Parameters None.

Result Always returns 0.

See Also GrfAddPoint

GrfGetAndExpandMacro

Purpose Look up and expand a macro in the current macros.

Prototype Err GrfGetAndExpandMacro(CharPtr nameP,
BytePtr macroDataP,
WordPtr dataLenP)

Parameters nameP Name of macro to look up.

macroDataP Macro contents returned here.

dataLenP On entry, size of macroDataP buffer;
on exit, number of bytes in macro data.

Result Returns 0 if no error, or grfErrNoMacros or
grfErrMacroNotFound if an error occurs.

See Also GrfAddMacro, GrfGetMacro
288 Developing Palm OS 2.0 Applications, Part I

GrafÞti Manager Functions
GrfGetGlyphMapping

Purpose Look up a glyph in the dictionary and return the text.

Prototype Err GrfGetGlyphMapping(Word glyphID,
WordPtr flagsP,
void* dataPtrP,
WordPtr dataLenP,
WordPtr uncertainLenP)

Parameters glyphID Glyph ID to look up.

flagsP Returned dictionary ßags.

dataPtrP Where returned text goes.

dataLenP On entry, size of dataPtrP;
on exit, number of bytes returned.

uncertainLenP Return number of uncertain characters in text.

Result Returns 0 if no error, or grfErrNoDictionary or
grfErrNoMapping if an error occurs.

See Also GrfMatch
Developing Palm OS 2.0 Applications, Part I 289

GrafÞti Manager Functions
GrfGetMacro

Purpose Look up a macro in the current macros.

Prototype Err GrfGetMacro(CharPtr nameP,
BytePtr macroDataP,
WordPtr dataLenP)

Parameters nameP Name of macro to lookup.

macroDataP Macro contents returned here.

dataLenP On entry: size of macroDataP buffer.
On exit: number of bytes in macro data.

Result Returns 0 if no error or grfErrNoMacros,
grfErrMacroNotFound.

See Also GrfAddMacro

GrfGetMacroName

Purpose Look up a macro name by index.

Prototype Err GrfGetMacroName (Word index, CharPtr nameP)

Parameters index Index of macro.

nameP Name returned here.

Result Returns 0 if no error, or grfErrNoMacros or
grfErrMacroNotFound if an error occurs.

See Also GrfAddMacro, GrfGetMacro
290 Developing Palm OS 2.0 Applications, Part I

GrafÞti Manager Functions
GrfGetNumPoints

Purpose Return the number of points in the point buffer.

Prototype Err GrfGetNumPoints (WordPtr numPtsP)

Parameters numPtsP Returned number of points.

Result Always returns 0.

See Also GrfAddPoint

GrfGetPoint

Purpose Return a point out of the GrafÞti point buffer.

Prototype Err GrfGetPoint (Word index, PointType* pointP)

Parameters index Index of the point to get.

pointP Returned point.

Result Returns 0 if no error, or grfErrBadParam if an error occurs.

See Also GrfAddPoint, GrfGetNumPoints
Developing Palm OS 2.0 Applications, Part I 291

GrafÞti Manager Functions
GrfGetState

Purpose Return the current GrafÞti shift state of.

Prototype Err GrfGetState(Boolean* capsLockP,
Boolean* numLockP,
WordPtr tempShiftP,
Boolean* autoShiftedP)

Parameters capsLockP Returns TRUE if caps lock on.

numLockP Returns TRUE if num lock on.

tempShiftP Current temporary shift.

autoShiftedP Returns TRUE if shift not set by the user but by
the system, for example, at the beginning of a
line.

Result Always returns 0.

2.0 Note 2.0 has more more user-friendly auto shifting. It uses an upper case
letter under these conditions:

¥ after an empty Þeld
¥ after a period or other sentence terminator (such as ? or !).
¥ after two spaces

See Also GrfSetState
292 Developing Palm OS 2.0 Applications, Part I

GrafÞti Manager Functions
GrfInitState

Purpose Reinitialize the GrafÞti dictionary state.

Prototype Err GrfInitState (void)

Parameters None.

Result Always returns 0.

See Also GrfGetState, GrfSetState

GrfMatch

Purpose Recognize the current stroke in the GrafÞti point buffer and return
with the recognized text.

Prototype Err GrfMatch (WordPtr flagsP,
void* dataPtrP,
WordPtr dataLenP,
WordPtr uncertainLenP,
GrfMatchInfoPtr matchInfoP)

Parameters flagsP Glyph ßags are returned here.

dataPtrP Return text is placed here.

dataLenP Size of dataptr on exit; number of characters
returned on exit.

uncertainLenP Return number of uncertain characters.

matchInfoP Array of grfMaxMatches, or nil.

Result Returns 0 if no error, or grfErrNoGlyphTable,
grfErrNoDictionary, or grfErrNoMapping if an error occurs.

See Also GrfAddPoint, GrfFlushPoints
Developing Palm OS 2.0 Applications, Part I 293

GrafÞti Manager Functions
GrfMatchGlyph

Purpose Recognize the current stroke as a glyph.

Prototype Err GrfMatchGlyph (GrfMatchInfoPtr matchInfoP,
Word maxUnCertainty,
Word maxMatches)

Parameters matchInfoP Pointer to array of matches to Þll in.

maxUnCertainty Maximum number of errors to tolerate.

maxMatches Size of matchInfoP array.

Result Returns 0 if no error, or grfErrNoGlyphTable if an error occurs.

See Also GrfMatch
294 Developing Palm OS 2.0 Applications, Part I

GrafÞti Manager Functions
GrfProcessStroke

Purpose Translate a stroke to keyboard events using GrafÞti.

Prototype Err GrfProcessStroke (PointType* startPtP,
 PointType* endPtP,

Boolean upShift)

Parameters startPtP Start point of stroke.

endPtP End point of stroke.

upShift Set to TRUE to feed an artiÞcial upshift into the
engine.

Result Returns 0 if recognized.

Comments Called by SysHandleEvent when a penUpEvent is detected in the
writing area. This routine recognizes the stroke and sends the recog-
nized characters into the key queue. It also ßushes the stroke out of
the pen queue after recognition.

See Also SysHandleEvent (documented in ÒDeveloping Palm OS Applica-
tions, Part IIÓ)
Developing Palm OS 2.0 Applications, Part I 295

GrafÞti Manager Functions
GrfSetState

Purpose Set the current shift state of GrafÞti.

Prototype Err GrfSetState(Boolean capsLock,
Boolean numLock,
Boolean upperShift)

Parameters capsLock Set to TRUE to turn on caps lock.

numLock Set to TRUE to turn on num lock.

upperShift Set to TRUE to put into upper shift.

Result Always returns 0.

See Also GrfGetState

SysShortCutListDialog

Purpose Pop up the GrafÞti ShortCut list as a Þeld object with the focus.

Prototype void SysGrfShortCutListDialog (void)

Parameters event Pointer to an EventType structure.

Result The ÞeldÕs text chunk is changed.

See Also GrfGetMacro, GrfGetMacroName
296 Developing Palm OS 2.0 Applications, Part I

GrafÞti Manager Functions
Functions for System Use Only

GrfFieldChange

Prototype Err GrfFieldChange(Boolean resetState,
UIntPtr characterToDelete)

WARNING: System Use Only.

GrfFree

Prototype Err GrfFree(void)

WARNING: System Use Only.
Developing Palm OS 2.0 Applications, Part I 297

GrafÞtiShift Functions
GrafÞtiShift Functions

GsiEnable

Purpose Enable or disable the GrafÞti-shift state indicator.

Prototype void GsiEnable (Boolean enableIt)

Parameters enableIt TRUE to enable, FALSE to disable.

Result Returns nothing.

Comments Enabling the indicator makes it visible, disabling it makes the inser-
tion point invisible.

GsiEnabled

Purpose Return TRUE if the GrafÞti-shift state indicator is enabled, or FALSE
if itÕs disabled.

Prototype Boolean GsiEnabled (void)

Parameters None.

Result TRUE if enabled, FALSE if not.
298 Developing Palm OS 2.0 Applications, Part I

GrafÞtiShift Functions
GsiInitialize

Purpose Initialize the global variables used to manage the GrafÞti-shift state
indicator.

Prototype void GsiInitialize (void)

Parameters None.

Result Returns nothing.

GsiSetLocation

Purpose Set the display-relative position of the GrafÞti-shift state indicator.

Prototype void GsiSetLocation (short x, short y)

Parameters x, y Coordinate of left side and top of the indicator.

Result Returns nothing.

Comments The indicator is not redrawn by this routine.
Developing Palm OS 2.0 Applications, Part I 299

GrafÞtiShift Functions
GsiSetShiftState

Purpose Set the GrafÞti-shift state indicator.

Prototype void GsiSetShiftState (Word lockFlags,
Word tempShift)

Parameters lockFlags glfCapsLock or glfNumLock.

tempShift The current temporary shift.

Result Returns nothing.

Comment This function affects only the state of the UI element, not the under-
lying GrafÞti engine.

See Also GrfSetState
300 Developing Palm OS 2.0 Applications, Part I

Insertion Point Functions
Insertion Point Functions

InsPtEnable

Purpose Enable or disable the insertion point. When the insertion point is
disabled, itÕs invisible; when itÕs enabled, it blinks.

Prototype void InsPtEnable (Boolean enableIt)

Parameters enableIt TRUE = enable; FALSE = disable

Result Returns nothing.

Comments This function is called by the Form functions when a text Þeld loses
or gains the focus, and by the Windows function when a region of
the display is copied (WinCopyRectangle).

See Also InsPtEnabled

InsPtEnabled

Purpose Return TRUE if the insertion point is enabled or FALSE if the inser-
tion point is disabled.

Prototype Boolean InsPtEnabled (void)

Parameters None.

Result Returns TRUE if the insertion point is enabled (blinking); returns
FALSE if the insertion point is disabled (invisible).

See Also InsPtEnable
Developing Palm OS 2.0 Applications, Part I 301

Insertion Point Functions
InsPtGetHeight

Purpose Return the height of the insertion point.

Prototype short InsPtGetHeight (void)

Parameters None.

Result Returns the height of the insertion point, in pixels.

InsPtGetLocation

Purpose Return the screen-relative position of the insertion point.

Prototype void InsPtGetLocation (short *x, short *y)

Parameters x, y Pointer to top-left position of insertion pointÕs x and y
coordinate.

Result Returns nothing. Stores the location in x and y.

Comments This function is called by the Field functions. An application would
not normally call this function.
302 Developing Palm OS 2.0 Applications, Part I

Insertion Point Functions
InsPtSetHeight

Purpose Set the height of the insertion point.

Prototype void InsPtSetHeight (short height)

Parameters height Height of the insertion point in pixels.

Result Returns nothing.

Comments Set the height of the insertion point to match the character height of
the font used in the Þeld that the insertion point is in. When the cur-
rent font is changed, the insertion point height should be set to the
line height of the new font.

If the insertion point is visible when its height is changed, itÕs erased
and redrawn with its new height.

See Also InsPtGetHeight

InsPtSetLocation

Purpose Set the screen-relative position of the insertion point.

Prototype void InsPtSetLocation (short x, short y)

Parameters x, y Number of pixels from the left side (top) of the display.

Result Returns nothing.

Comments The position passed to this function is the location of the top-left
corner of the insertion point.

This function should be called only by the Field functions.

See Also InsPtGetLocation
Developing Palm OS 2.0 Applications, Part I 303

Insertion Point Functions
Functions for System Use Only

InsPtCheckBlink

Prototype void InsPtCheckBlink (void)

WARNING: For System Use Only.

InsPtInitialize

Prototype void InsPtInitialize (void)

WARNING: For System Use Only.
304 Developing Palm OS 2.0 Applications, Part I

Key Manager Functions
Key Manager Functions

KeyCurrentState

Purpose Return bit Þeld with bits set for each key that is currently depressed.

Prototype DWord KeyCurrentState (void)

Parameters None.

Result Returns a DWord with bits set for keys that are depressed. See
keyBitPower, keyBitPageUp, keyBitPageDown, etc., in
KeyMgr.h.

Comments Called by applications that need to poll the keys.

See Also KeyRates
Developing Palm OS 2.0 Applications, Part I 305

Key Manager Functions
KeyRates

Purpose Get or set the key repeat rates.

Prototype Err KeyRates (Boolean set,
WordPtr initDelayP,
WordPtr periodP,
WordPtr doubleTapDelayP,
BooleanPtr queueAheadP)

Parameters set If TRUE, settings are changed; if FALSE,
current settings are returned.

initDelayP Initial delay in ticks for a auto-repeat event.

periodP Auto-repeat rate speciÞed as period in ticks.

doubleTapDelayP
Maximum double-tap delay, in ticks.

queueAheadP If TRUE, auto-repeating keeps queueing up
key events if the queue has keys in it. If
FALSE, auto-repeat doesnÕt enqueue keys
unless the queue is already empty.

Result Returns 0 if no error.

See Also KeyCurrentState

Functions for System Use Only

KeyBootKeys

Prototype DWord KeyBootKeys (void)

WARNING: This function for use by system software only.
306 Developing Palm OS 2.0 Applications, Part I

Key Manager Functions
KeyHandleInterrupt

Prototype ULong KeyHandleInterrupt(Boolean periodic,
DWord status)

WARNING: This function for use by system software only.

KeyInit

Prototype Err KeyInit (void)

WARNING: This function for use by system software only.

KeyResetDoubleTap

Prototype Err KeyResetDoubleTap (void)

WARNING: This function for use by system software only.

KeySleep

Prototype Err KeySleep (Boolean untilReset,
Boolean emergency)

WARNING: This function for use by system software only.

KeyWake

Prototype Err KeyWake (void)

WARNING: This function for use by system software only.
Developing Palm OS 2.0 Applications, Part I 307

List UI Functions
List UI Functions

LstDrawList

Purpose Draw the list object if itÕs usable. Set itÕs visible attribute to TRUE.

Prototype void LstDrawList (ListPtr list)

Parameters list Pointer to list object (ListType data structure).

Result Returns nothing.

Comments If there are more choices than can be displayed, this function en-
sures that the current selection is visible. If possible, the current se-
lection is displayed at the top. The current selection is highlighted.

If the list is disabled, itÕs drawn grayed-out (strongly discouraged).
If itÕs empty, nothing is drawn. If itÕs not usable, nothing is drawn.

See Also FrmGetObjectPtr, LstPopupList, LstEraseList

LstEraseList

Purpose Erase a list object.

Prototype void LstEraseList (ListPtr ListP)

Parameters ListP Pointer to a list object (ListType data structure).

Result Returns nothing.

Comments The visible attribute is set to FALSE by this function.

See Also FrmGetObjectPtr, LstDrawList
308 Developing Palm OS 2.0 Applications, Part I

List UI Functions
LstGetNumberOfItems

Purpose Return the number of items in a list.

Prototype Word LstGetNumberOfItems (ListPtr ListP)

Parameters ListP Pointer to a list object (ListType data structure).

Result Returns the number of items in a list.

See Also FrmGetObjectPtr, LstSetListChoices

LstGetVisibleItems

Purpose Return the number of visible items.

Prototype Int LstGetVisibleItems (ListPtr pList)

Parameters pList Pointer to list object

Result The number of items visible.
Developing Palm OS 2.0 Applications, Part I 309

List UI Functions
LstGetSelection

Purpose Return the currently selected choice in the list. If there is no selec-
tion, return NoListSelection (-1).

Prototype Word LstGetSelection (ListPtr ListP)

Parameters ListP Pointer to list object.

Result Returns the item number of the current list choice. The list choices
are numbered sequentially, starting with 0; -1 = none.

See Also FrmGetObjectPtr, LstSetListChoices, LstSetSelection,
LstGetSelectionText

LstGetSelectionText

Purpose Return a pointer to the text of the speciÞed item in the list, or NULL if
no such item exists.

Prototype CharPtr LstGetSelectionText (ListPtr ListP,
Word itemNum)

Parameters ListP Pointer to list object.

itemNum Item to select (0 = Þrst item in list).

Result Returns a pointer to the text of the current selection, or NULL if out
of bounds.

Comments This is a pointer within ListType structure, not a copy.

See Also FrmGetObjectPtr, LstSetListChoices
310 Developing Palm OS 2.0 Applications, Part I

List UI Functions
LstHandleEvent

Purpose Handle event in the speciÞed list; the list object must have its us-
able and visible attribute set to TRUE.This routine handles two
type of events, penDownEvent and lstEnterEvent; see Com-
ments.

Prototype Boolean LstHandleEvent (ListPtr listP,
EventPtr pEvent)

Parameters listP Pointer to a list object (ListType data structure).

pEvent Pointer to an EventType structure.

Result Return TRUE if the event was handled. The following cases will re-
sult in a return value of TRUE:

¥ A penDownEvent within the bounds of the list

¥ A lstEnterEvent with a list ID value that matches the list
ID in the list data structure

Comments When this routine receives a penDownEvent, it checks if the pen po-
sition is within the bounds of the list object. If it is, this routine
tracks the pen until the pen comes up. If the pen comes up within
the bounds of the list, a lstEnterEvent is added to the event
queue, and the routine is exited.

When this routine receives a lstEnterEvent, it checks that the list
ID in the event record matches the ID of the speciÞed list. If there is
a match, this routine creates and displays a popup window contain-
ing the listÕs choices and the routine is exited.

If a penDownEvent is received while the listÕs popup window is dis-
played and the pen position is outside the bounds of the popup
window, the window is dismissed. If the pen position is within the
bounds of the window, this routine tracks the pen until it comes up.
If the pen comes up outside the list object, a lstEnterEvent is
added to the event queue.
Developing Palm OS 2.0 Applications, Part I 311

List UI Functions
LstMakeItemVisible

Purpose Make an item visible, preferably at the top. If the item is already vis-
ible, make no changes.

Prototype LstMakeItemVisible (ListPtr ListP,
Word itemNum)

Parameters ListP Pointer to a list object (ListType data structure).

itemNum Item to select (0 = Þrst item in list).

Result Returns nothing.

Comments Does not visually update the list. You must call LstDrawList to
update it.

See Also FrmGetObjectPtr, LstSetSelection, LstSetTopItem,
LstDrawList

LstPopupList

Purpose Display a modal window that contains the items in the list.

Prototype short LstPopupList (ListPtr ListP)

Parameters ListP Pointer to list object.

Result Returns the list item selected, or -1 if no item was selected.

Comments Saves the previously active window. Creates and deletes the new
popup window.

See Also FrmGetObjectPtr
312 Developing Palm OS 2.0 Applications, Part I

List UI Functions
LstScrollList

Purpose Scroll the list up or down a number of times.

Prototype Boolean LstScrollList(ListPtr pList,
enum directions direction,
short itemCount)

Parameters pList Pointer to list object

direction Direction to scroll

itemCount Items to scroll in direction

Result Returns TRUE when the list is actually scrolled, FALSE otherwise.
May return FALSE if a scroll past the end of the list is requested.

LstSetDrawFunction

Purpose Set a callback function to draw each item instead of drawing the
itemÕs text string.

Prototype void LstSetDrawFunction (ListPtr list,
ListDrawDataFuncPtr func)

Parameters list Pointer to list object.

func Pointer to function which draws items.

Result Returns nothing.

Comments This function also adjusts topItem to prevent a shrunken list from
being scrolled down too far. Use this function for custom draw func-
tionality.

See Also FrmGetObjectPtr, LstSetListChoices
Developing Palm OS 2.0 Applications, Part I 313

List UI Functions
LstSetHeight

Purpose Set the number of items visible in a list.

Prototype void LstSetHeight (ListPtr ListP,
Word visibleItems)

Parameters ListP Pointer to list object.

visibleItems Number of choices visible at once.

Result Returns nothing.

Comments This function doesnÕt redraw the list if itÕs already visible.

See Also FrmGetObjectPtr

LstSetListChoices

Purpose Set the items of a list to the array of text strings passed to this func-
tion. This function doesnÕt affect the display of the list. If the list is
visible, erases the old list items.

Prototype void LstSetListChoices (ListPtr ListP,
char ** itemsText,
UInt numItems)

Parameters ListP Pointer to a list object.

itemsText Pointer to an array of text strings.

numItems Number of choices in the list.

Result Returns nothing.

See Also FrmGetObjectPtr, LstSetSelection, LstSetTopItem,
LstDrawList, LstSetHeight, LstSetDrawFunction
314 Developing Palm OS 2.0 Applications, Part I

List UI Functions
LstSetPosition

Purpose Set the position of a list.

Prototype void LstSetPosition (ListPtr ListP,
short x,
short y)

Parameters ListP Pointer to a list object

x, y Left and top bound.

Result Returns nothing.

Comments List is not redrawn. DonÕt call this function when the list is visible.

See Also FrmGetObjectPtr

LstSetSelection

Purpose Set the selection for a list.

Prototype void LstSetSelection (ListPtr ListP,
Word itemNum)

Parameters ListP Pointer to a list object.

itemNum Item to select (0 = Þrst item in list; -1 = none).

Result Returns nothing.

Comments The old selection, if any, is unselected. If the list is visible, the select-
ed item is visually updated. The list is scrolled to the selection, if
necessary.

See Also FrmGetObjectPtr, LstSetSelection
Developing Palm OS 2.0 Applications, Part I 315

List UI Functions
LstSetTopItem

Purpose Set the item visible. The item cannot become the top item if itÕs on
the last page.

Prototype void LstSetTopItem (ListPtr ListP, UInt itemNum)

Parameters ListP Pointer to list object.

itemNum Item to select (0 = Þrst item in list).

Result Returns nothing.

Comments Does not update the display.

See Also FrmGetObjectPtr, LstSetSelection, LstMakeItemVisible,
LstDrawList, LstEraseList
316 Developing Palm OS 2.0 Applications, Part I

Menu Functions
Menu Functions

MenuDispose

Purpose Release any memory allocated to support the menu management.

Prototype void MenuDispose (MenuBarPtr MenuP)

Parameters MenuP Pointer returned by MenuInit; this is a pointer to a
MenuBarType data structure.

Result Returns nothing.

Comments This function is useful for applications that have multiple menu
bars. It frees all memory allocated by a menu, resets the command
status, and restores the saved bits to the screen.

See Also MenuInit, MenuDrawMenu
Developing Palm OS 2.0 Applications, Part I 317

Menu Functions
MenuDrawMenu

Purpose Draw the current menu bar and the last pull-down that was visible.

Prototype void MenuDrawMenu (MenuBarPtr MenuP)

Parameters MenuP Pointer to a MenuBarType data structure.

Result Returns nothing.

Comments If a pull-down menu was visible the last time the menu bar was vis-
ible, the pull-down menu is also drawn. The Þrst time a menu bar is
drawn, no pull-down menu is displayed.

The menu bar and the pull-down menu are drawn in front of all the
applications windows.

Screen regions obscured by the menus are saved by this function
and restored by MenuEraseStatus.

See Also MenuInit, MenuEraseStatus, MenuDispose

MenuEraseStatus

Purpose Erase the menu command status.

Prototype void MenuEraseStatus (MenuBarPtr MenuP)

Parameters MenuP Pointer to a MenuBarType data structure, or NULL
for the current menu.

Result Returns nothing.

See Also MenuInit
318 Developing Palm OS 2.0 Applications, Part I

Menu Functions
MenuGetActiveMenu

Purpose Returns a pointer to the current menu.

Prototype MenuBarPtr MenuGetActiveMenu (void)

Parameters None.

Result Returns a pointer to the current menu, NULL if there is none.

See Also MenuSetActiveMenu
Developing Palm OS 2.0 Applications, Part I 319

Menu Functions
MenuHandleEvent

Purpose Handle events in the current menu. This routine handles two types
of events, penDownEvent and winEnterEvent.

Prototype Boolean MenuHandleEvent (MenuBarPtr MenuP,
EventPtr event,
WordPtr error)

Parameters MenuP Pointer to a MenuBarType data structure.

event Pointer to an EventType structure.

error Error (or 0 if no error).

Result Returns TRUE if the event is handled; that is, if the event is a
penDownEvent within the menu bar or the menu, or the event is a
keyDownEvent that the menu supports.

Comments When MenuHandleEvent receives a penDownEvent, it checks if
the pen position is within the bounds of the menu object. If it is,
MenuHandleEvent tracks the pen until it comes up. If the pen
comes up within the bounds of the menu, a winEnterEvent is
added to the event queue, and the routine is exited.

When MenuHandleEvent receives a winEnterEvent, it checks
that the menu ID in the event record matches the ID of the speciÞed
menu. If there is a match, MenuHandleEvent creates and displays a
popup window containing the menuÕs choices, and the routine is
exited.

If a penDownEvent is received while the menuÕs popup window is
displayed and the pen position is outside the bounds of the popup
window, the menu is dismissed. If the pen position is within the
bounds of the window, MenuHandleEvent tracks the pen until it
comes up. If the pen comes up in the menu, a winExitEvent is
added to the event queue.
320 Developing Palm OS 2.0 Applications, Part I

Menu Functions
MenuInit

Purpose Load a menu resource from a resource Þle.

Prototype MenuBarPtr MenuInit (Word resourceId)

Parameters resourceId ID that identiÞes the menu resource.

Result Returns the pointer to a memory block allocated to hold the menu
resource (a pointer to a MenuBarType data structure).

Comments The menu is not usable until MenuSetActiveMenu is called.

See Also MenuSetActiveMenu, MenuDispose

MenuSetActiveMenu

Purpose Set the current menu.

Prototype MenuBarPtr MenuSetActiveMenu (MenuBarPtr MenuP)

Parameters MenuP Pointer to the memory block that contains the new
 menu, or NULL for none.

Result Returns a pointer to the menu that was active before the new menu
was set, or NULL if no menu was active.

See Also MenuGetActiveMenu
Developing Palm OS 2.0 Applications, Part I 321

Miscellaneous User Interface Functions
Miscellaneous User Interface Functions

AbtShowAbout

Purpose Displays the info dialog box. The application name is picked up
from either the application name resource, deÞned in constructor, or
the name of the application database (which is assigned in the
makeÞle).

Prototype void AbtShowAbout (ULong creator)

Parameters creator Creator ID of this application.

Result Returns nothing.

DayHandleEvent

Purpose Handle event in the speciÞed control. This routine handles two type
of events, penDownEvent and ctlEnterEvent.

Prototype Boolean DayHandleEvent (DaySelectorPtr pSelector,
EventPtr pEvent)

Parameters pSelector Pointer to control object (ControlType)

pEvent Pointer to an EventType structure.

Result TRUE if the event was handled or FALSE if it was not.

Posts a daySelectEvent with information on whether to use the
date.

A date is used if the user selects a day in the visible month.
322 Developing Palm OS 2.0 Applications, Part I

Miscellaneous User Interface Functions
LocGetNumberSeparators

Purpose Get localized number separators.

Prototype void LocGetNumberSeparators(
NumberFormatType numberFormat,
Char *thousandSeparator,
Char *decimalSeparator)

Parameters numberFormat The format to use

thousandSeparator Return a localized thousand separator here
 (allocate 1 char).

decimalSeparator Return a localized decimal separator here
 (allocate 1 char).

Result Returns nothing

See Also StrLocalizeNumber, StrDelocalizeNumber (documented in
ÒDeveloping Palm OS Applications, Part II)

KeySetMask

Purpose Specify which keys generate kbdDownEvents.

You can specify this either by using this function or by using the
powerOn modifier.

Prototype DWord KeySetMask(DWord keyMask)

Parameters keyMask Mask with bits set for those keys to generate
keyDownEvents for.

Result Returns the old keyMask.
Developing Palm OS 2.0 Applications, Part I 323

Pen Manager Functions
Pen Manager Functions

PenCalibrate

Purpose Set the calibration of the pen.

Prototype Err PenCalibrate (PointType* digTopLeftP,
 PointType* digBotRightP,

PointType* scrTopLeftP,
PointType* scrBotRightP)

Parameters digTopLeftP Digitizer output from top-left coordinate.

digBotRightP Digitizer output from bottom-right coordinate.

scrTopLeftP Screen coordinate near top-left corner.

scrBotRightP Screen coordinate near bottom-right corner.

Result Returns 0 if no error.

Comments Called by Preferences application when calibrating pen.

See Also PenResetCalibration
324 Developing Palm OS 2.0 Applications, Part I

Pen Manager Functions
PenResetCalibration

Purpose Reset the calibration in preparation for calibrating the pen again.

Prototype Err PenResetCalibration (void)

Parameters None.

Result Always returns 0.

Comments Called by Preferences application before capturing points when cal-
ibrating the pen.

See Also PenCalibrate

WARNING: The digitizer is off after calling this routine and must
be calibrated again!

Functions for System Use Only

PenClose

Prototype Err PenClose (void)

WARNING: This function for use by system software only.

PenGetRawPen

Prototype Err PenGetRawPen (PointType* penP)

See Instead EvtDequeuePenPoint (documented in ÒDeveloping Palm OS Appli-
cations, Part IIÓ)

WARNING: This function for use by system software only.
Developing Palm OS 2.0 Applications, Part I 325

Pen Manager Functions
PenOpen

Prototype Err PenOpen (void)

WARNING: This function for use by system software only.

PenSleep

Prototype Err PenSleep (void)

WARNING: This function for use by system software only.

PenRawToScreen

Prototype Err PenRawToScreen (PointType* penP)

WARNING: This function for use by system software only.

PenScreenToRaw

Prototype Err PenScreenToRaw (PointType* penP)

WARNING: This function for use by system software only.

PenWake

Prototype Err PenWake (void)

WARNING: This function for use by system software only.
326 Developing Palm OS 2.0 Applications, Part I

Scrollbar Functions
Scrollbar Functions

SclDrawScrollBar

Purpose Draw a scroll bar.

Prototype void SclDrawScrollBar (ScrollBarPtr bar)

Parameters bar Pointer to a scroll bar structure.

Result Nothing.

SclGetScrollBar

Purpose Retrieve a scrollbarÕs current position, its range, and the size of a
page. If the scroll bar is visible, itÕs redrawn.

Prototype void SclGetScrollBar (ScrollBarPtr bar,
ShortPtr valueP,
ShortPtr minP,
ShortPtr maxP,
ShortPtr pageSizeP)

Parameters bar Pointer to a scroll bar structure.

valueP Pointer to current value (position).

minP Pointer to minimum value.

maxP Pointer to maximum value.

pageSizeP Pointer to size of a page (used when page scrolling).

Result: Returns nothing.

Stores the current values in valueP, minP, maxP, and pageSizeP.

See Also SclSetScrollBar
Developing Palm OS 2.0 Applications, Part I 327

Scrollbar Functions
SclHandleEvent

Purpose Handles the three scrollbar events

Prototype Boolean SclHandleEvent (ScrollBarPtr bar,
EventPtr event)

Parameters bar Pointer to a scroll bar structure.

event Pointer to an event (EventType data structure).

Result Returns TRUE if the event was handled.

Comment When the user touches a scroll bar with a pen, the system sends a
sclEnterEvent. Generally, applications donÕt need to respond to
that event.

When the user holds and drags the scroll bar with the pen, the sys-
tem sends a sclRepeatEvent. Applications that implement dy-
namic scrolling should catch this event and move the text each time
one arrives.

When the user releases the pen from the scroll bar, the system sends
a sclExitEvent. Applications that implement non-dynamic scroll-
ing should catch this event and move the text when sclExitEvent
arrives. Applications that implement dynamic scrolling can ignore
this event.
328 Developing Palm OS 2.0 Applications, Part I

Scrollbar Functions
SclSetScrollBar

Purpose Set the scrollbarÕs current position, its range, and the size of a page.
If the scroll bar is visible, itÕs redrawn.

Prototype void SclSetScrollBar (ScrollBarPtr bar,
Short value,
Short min,

 Short max,
Short pageSize)

Parameters bar Pointer to a scroll bar structure.

value Current value (position); one of the initialization
values

min Minimum value.

max Maximum value.

pageSize Size of a page (used when page scrolling).

Result Returns nothing.

See Also SclGetScrollBar
Developing Palm OS 2.0 Applications, Part I 329

Functions for System Use Only
Functions for System Use Only
Find

Prototype void Find (GoToParamsPtr goToP)

WARNING: System Use Only!

FindDrawHeader

Prototype Boolean FindDrawHeader (FindParamsPtr params,
CharPtr title)

WARNING: System Use Only!

FindGetLineBounds

Prototype void FindGetLineBounds (FindParamsPtr params,
RectanglePtr r)

WARNING: System Use Only!

FindSaveMatch

Prototype Boolean FindSaveMatch (FindParamsPtr params,
UInt recordNum,
Word pos,
UInt fieldNum,
DWord appCustom,
UInt dbCardNo,
LocalID dbID)

WARNING: System Use Only!
330 Developing Palm OS 2.0 Applications, Part I

Functions for System Use Only
FindStrInStr

Prototype Boolean FindStrInStr (CharPtr strToSearch,
CharPtr strToFind,
WordPtr posP)

WARNING: System Use Only!

UIInitialize

Prototype void UIInitialize (void)

WARNING: System Use Only!

UIReset

Prototype void UIReset (void)

WARNING: System Use Only!
Developing Palm OS 2.0 Applications, Part I 331

Functions for System Use Only
332 Developing Palm OS 2.0 Applications, Part I

Time Selection Functions

SelectDay

Purpose Display a form showing a date; allow user to select a different date.

Prototype Boolean SelectDay (SelectDayType selectDayBy,
SWord *month,

 SWord *day,
 SWord *year,
 CharPtr title)

Parameters selectDayBy

month, day, year Month, day, and year selected.

title String title for the dialog.

Result TRUE if the OK button was pressed. If TRUE, month, day, and year
contain the new date.

See Also SelectDayV10

SelectDayV10

Purpose Display a form showing a date, allow user to select a different date.

Prototype Boolean SelectDay (int *month, int *day,
int *year, CharPtr title)

Parameters month, day, year Month, day and year selected.

title String title for the dialog.

Result Returns TRUE if the OK button was pressed. In that case, the param-
eters passed are changed.

See Also SelectDay
Developing Palm OS 2.0 Applications, Part I 333

Time Selection Functions
SelectTime

Purpose Display a form showing the time and allow the user to select a dif-
ferent time.

Prototype Boolean SelectTime (TimePtr startTimeP,
TimePtr EndTimeP,
Boolean untimed,
CharPtr title,
SWord startOfDay)

Parameters startTimeP, EndTimeP
Pointers to values of type TimeType. Pass values to display
in these two parameters. If the user makes a selection and

 taps the OK button, the selected values are returned here.

untimed Pass in TRUE to indicate that no time is selected.
If the user sets the time to no time then startTime
and endTime are both set to the constant
noTime (-1).

title A pointer to a string to display as the title.
DoesnÕt change as the function executes.

startofDayThe hour that the hour list displays at its top. To see
 earlier hours, the user can scroll the list up. The value
must be between 0 to 12, inclusive.

Result Returns TRUE if the user selects OK and FALSE otherwise. If
TRUE is returned expect the values that startTimeP and endTimeP
are likely to be changed.

See Also SelectDay
334 Developing Palm OS 2.0 Applications, Part I

Table Functions
Table Functions

TblDrawTable

Purpose Draw a table.

Prototype void TblDrawTable (TablePtr table)

Parameters table Pointer to a table object.

Result Returns nothing.

See Also TblEraseTable, TblRedrawTable,
TblSetCustomDrawProcedure

TblEditing

Purpose Check whether a table is in edit mode.

Prototype Boolean TblEditing (TablePtr table)

Parameters table Pointer to a table object.

Result Returns TRUE if the table is in edit mode, FALSE otherwise.

Comments The table is in edit mode while the user edits a text item.
Developing Palm OS 2.0 Applications, Part I 335

Table Functions
TblEraseTable

Purpose Erase a table object.

Prototype void TblEraseTable (TablePtr table)

Parameters table Pointer to a table object.

Result Returns nothing.

See Also TblDrawTable, TblSetCustomDrawProcedure,
TblRedrawTable

TblFindRowData

Purpose Return the row number that contains the speciÞed data value.

Prototype Boolean TblFindRowData (TablePtr table,
ULong data,
WordPtr rowP)

Parameters table Pointer to a table object.

data Row data to Þnd.

rowP Pointer to the row number (return value).

Result Returns TRUE if a match was found, FALSE otherwise.

See Also TblGetRowData, TblFindRowID
336 Developing Palm OS 2.0 Applications, Part I

Table Functions
TblFindRowID

Purpose Return the number of the row that matches the speciÞed ID.

Prototype Boolean TblFindRowID (TablePtr table,
Word id,
WordPtr rowP)

Parameters table Pointer to a table object.

id Row ID to Þnd.

rowP Pointer to the row number (return value).

Result Returns TRUE if a match was found, FALSE otherwise.

See Also TblFindRowData

TblGetBounds

Purpose Return the bounds of a table.

Prototype void TblGetBounds (TablePtr table, RectanglePtr r)

Parameters table Pointer to a table object.

r Pointer to a RectangleType structure.

Result Returns nothing. Stores the bounds in r.

See Also TblGetItemBounds
Developing Palm OS 2.0 Applications, Part I 337

Table Functions
TblGetColumnSpacing

Purpose Return the spacing after the speciÞed column.

Prototype Word TblGetColumnSpacing (TablePtr table,
Word column)

Parameters table Pointer to a table object.

column Column number (zero-based).

Result Returns the spacing after column (in pixels).

See Also TblGetColumnWidth, TblSetColumnSpacing,
TblSetColumnUsable

TblGetColumnWidth

Purpose Return the width of the speciÞed column.

Prototype Word TblGetColumnWidth (TablePtr table,
Word column)

Parameters table Pointer to a table object.

column Column number (zero-based).

Result Returns the width of a column (in pixels).

See Also TblGetColumnSpacing, TblSetColumnWidth,
TblSetColumnUsable
338 Developing Palm OS 2.0 Applications, Part I

Table Functions
TblGetCurrentField

Purpose Return a pointer to the FieldType structure in which the user is
currently editing a text item.

Prototype FieldPtr TblGetCurrentField (TablePtr table)

Parameters table Pointer to a table object.

Result Returns FieldPtr, or NULL if the table is not in edit mode.

See Also TblGetSelection

TblGetItemBounds

Purpose Return the bounds of an item in a table.

Prototype void TblGetItemBounds (TablePtr table,
Word row,
Word column,
RectanglePtr r)

Parameters table Pointer to a table object.

row Row of the item (zero-based).

column Column of the item (zero-based).

r Pointer to a structure that holds the bounds of the
item.

Result Returns nothing. Stores the bounds in r.
Developing Palm OS 2.0 Applications, Part I 339

Table Functions
TblGetItemInt

Purpose Return the integer value stored in a table item.

Prototype Word TblGetItemInt (TablePtr table,
Word row,
Word column)

Parameters table Pointer to a table object.

row Row of the item to select (zero-based).

column Column of the item to select (zero-based).

Result Returns the integer value.

See Also TblSetItemInt

TblGetLastUsableRow

Purpose Return the last row in a table that is usable (visible).

Prototype Word TblGetLastUsableRow (TablePtr table)

Parameters table Pointer to a table object.

Result Returns the row index (zero-based) or -1 if there are no usable rows.

See Also TblGetRowData, TblGetRowID
340 Developing Palm OS 2.0 Applications, Part I

Table Functions
TblGetNumberOfRows

Purpose Return the number of rows in a table.

Prototype Word TblGetNumberOfRows (TablePtr table)

Parameters table Pointer to a table object.

Result Returns the number of rows in the speciÞed table.

TblGetRowData

Purpose Return the data value of the speciÞed row. The data value is a place-
holder for application-speciÞc values.

Prototype ULong TblGetRowData (TablePtr table, Word row)

Parameters table Pointer to a table object.

row Row of the item to select (zero-based).

See Also TblGetRowID, TblSetRowData
Developing Palm OS 2.0 Applications, Part I 341

Table Functions
TblGetRowHeight

Purpose Return the height of the speciÞed row.

Prototype Word TblGetRowHeight (TablePtr table, Word row)

Parameters table Pointer to a table object.

row Row to get (zero-based).

Result Returns the height in pixels.

See Also TblGetItemBounds, TblSetRowHeight

TblGetRowID

Purpose Return the ID value of the speciÞed row.

Prototype Word TblGetRowID (TablePtr table, Word row)

Parameters table Pointer to a table object.

row Row for which the ID will be returned (zero-based).

Result Returns the ID value of the row in the table.

See Also TblGetRowData, TblSetRowHeight
342 Developing Palm OS 2.0 Applications, Part I

Table Functions
TblGetSelection

Purpose Return the row and column of the currently selected table item.

Prototype Boolean TblGetSelection (TablePtr table,
WordPtr rowP,
WordPtr columnP)

Parameters table Pointer to a table object.

rowP, columP Pointer to a Word variable in which to store the
row /column (zero-based).

Result Returns TRUE if the item is highlighted, FALSE if not.

See Also TblSetRowSelectable

TblGrabFocus

Purpose Put a table into edit mode.

Prototype void TblGrabFocus (TablePtr table,
Word row,
Word column)

Parameters table Pointer to a table object.

row Current row to be edited (zero-based).

column Current column to be edited (zero-based).

Result Returns nothing.

Comments Displays an error if the row or column passed is out of bounds. An
editable Þeld must exist in the coordinates passed to this function.

See Also TblReleaseFocus
Developing Palm OS 2.0 Applications, Part I 343

Table Functions
TblHandleEvent

Purpose Handle an event for the table.

Prototype Boolean TblHandleEvent (TablePtr table,
EventPtr event)

Parameters table Pointer to a table object.

event The event to be handled.

Result Returns TRUE if the event was handled, FALSE if it was not.

TblHasScrollBar

Purpose Set the hasScrollBar attribute in the table. A table that has its at-
tribute set will initialize the associated Þeld object such that it will
send fldChanged events when that scroll bar needs to be updated.

Prototype void TblHasScrollBar (TablePtr table,
Boolean hasScrollBar)

Parameters table Pointer to a table object

hasScrollBar TRUE to set the attribute, FALSE to unset it.

Result Returns nothing.
344 Developing Palm OS 2.0 Applications, Part I

Table Functions
TblInsertRow

Purpose Insert a row into the table before the speciÞed row.

The number of rows in the table is not increased; the last row in the
table is removed.

Prototype void TblInsertRow (TablePtr table, Word row)

Parameters table Pointer to a table object.

row Row to insert (zero-based).

Result Returns nothing.

Comments If the row parameter is greater than or equal to the number of rows
in the table, an error is displayed.

See Also TblRemoveRow, TblSetRowUsable, TblSetRowSelectable,
TblMarkRowInvalid
Developing Palm OS 2.0 Applications, Part I 345

Table Functions
TblMarkRowInvalid

Purpose Mark the image of the speciÞed row invalid.

Prototype void TblMarkRowInvalid (TablePtr table, Word row)

Parameters table Pointer to a table object.

row Row of the item to select (zero-based).

Comments After calling this function, call TblRedrawTable to redraw all rows
marked invalid. Rows not marked invalid are not redrawn.

Result Returns nothing.

See Also TblRemoveRow, TblSetRowUsable, TblSetRowSelectable,
TblMarkTableInvalid, TblRowInvalid

TblMarkTableInvalid

Purpose Mark the image of all the rows in a table invalid.

Prototype void TblMarkTableInvalid (TablePtr table)

Parameters table Pointer to a table object.

Result Returns nothing.

Comments After calling this function, you must call TblRedrawTable to re-
draw all rows. Rows not marked invalid are not redrawns.

See Also TblEraseTable, TblRedrawTable, TblMarkTableInvalid
346 Developing Palm OS 2.0 Applications, Part I

Table Functions
TblRedrawTable

Purpose Redraw the rows of the table that are marked invalid.

Prototype void TblRedrawTable (TablePtr table)

Parameters table Pointer to a table object.

Result Returns nothing.

See Also TblMarkTableInvalid

TblReleaseFocus

Purpose Release the focus.

Prototype void TblReleaseFocus (TablePtr table)

Parameters table Pointer to a table object.

Result Returns nothing.

Comments If the current item is a text item, the memory allocated for editing is
released and the insertion point is turned off.

See Also TblGrabFocus
Developing Palm OS 2.0 Applications, Part I 347

Table Functions
TblRemoveRow

Purpose Remove the speciÞed row from the table.

Prototype void TblRemoveRow (TablePtr table, Word row)

Parameters table Pointer to a table object.

row Row to remove (zero-based).

Result Returns nothing.

Comments The number of rows in the table is not decreased; an unusable row is
added to the end of the table. If an invalid row is speciÞed, an error
is displayed.

This function does not visually update the display.

See Also TblInsertRow, TblSetRowUsable, TblSetRowSelectable,
TblMarkRowInvalid

TblRowInvalid

Purpose Determine whether a row is invalid. Invalid rows need to be re-
drawn.

Prototype Boolean TblRowInvalid (TablePtr table, Word row)

Parameters table Pointer to a table object.

row Row number (zero-based).

Result Returns TRUE if the row is invalid, FALSE if itÕs valid.

See Also TblMarkRowInvalid
348 Developing Palm OS 2.0 Applications, Part I

Table Functions
TblRowSelectable

Purpose Determine whether the speciÞed row is selectable. Rows that are not
selectable donÕt highlight when touched.

Prototype Boolean TblRowSelectable (TablePtr table, Word row)

Parameters table Pointer to a table object.

row Row of the item to select (zero-based).

Result Returns TRUE if the row is selectable, FALSE if itÕs not.

TblRowUsable

Purpose Determine whether the speciÞed row is usable.

Prototype Boolean TblRowUsable (TablePtr table, Word row)

Parameters table Pointer to a table object.

row Row number (zero-based).

Result Returns TRUE if the row is usable, FALSE if itÕs not.

Comments Rows that are not usable do not display.

See Also TblRowSelectable, TblGetLastUsableRow
Developing Palm OS 2.0 Applications, Part I 349

Table Functions
TblSelectItem

Purpose Select (highlight) the speciÞed item. If there is already a selected
item, it is unhighlighted.

Prototype void TblSelectItem (TablePtr table,
Word row,
Word column)

Parameters table Pointer to a table object.

row Row of the item to select (zero-based).

column Column of the item to select (zero-based).

Result Returns nothing.

See Also TblRowSelectable, TblGetItemBounds, TblGetItemInt

TblSetBounds

Purpose Sets the bounds of a table.

Prototype void TblSetBounds (TablePtr table, RectanglePtr r)

Parameters table Pointer to a table object.

r Pointer to a RectangleType structure that speciÞes
the bounds for the table.

Result Returns nothing.
350 Developing Palm OS 2.0 Applications, Part I

Table Functions
TblSetColumnEditIndicator

Purpose Set the column attribute that controls whether a column highlights
when the table is in edit mode.

Prototype void TblSetColumnEditIndicator (
TablePtr table,
Word column,
Boolean editIndicator)

Parameters table Pointer to a table object

column Column of the item (zero based)

editIndicator TRUE to highlight, FALSE to turn off highlight.

Result Returns nothing.

TblSetColumnSpacing

Purpose Set the spacing after the speciÞed column.

Prototype void TblSetColumnSpacing (TablePtr table,
Word column,
Word spacing)

Parameters table Pointer to a table object.

column Column number (zero-based).

spacing Spacing after the column.

Result Returns nothing.

See Also TblSetColumnUsable
Developing Palm OS 2.0 Applications, Part I 351

Table Functions
TblSetColumnUsable

Purpose Set a column in a table usable or unusable.

Prototype void TblSetColumnUsable (TablePtr table,
Word row,
Boolean usable)

Parameters table Pointer to a table object.

row Row of the item to select (zero-based).

usable TRUE for usable or FALSE for not usable.

Result Returns nothing.

Comments Columns that are not usable do not display.

See Also TblMarkRowInvalid

TblSetColumnWidth

Purpose Set the width of the speciÞed column.

Prototype void TblSetColumnWidth (TablePtr table,
Word column,
Word width)

Parameters table Pointer to a table object.

column Column number (zero-based).

width Width of the column (in pixels).

Result Returns nothing.

See Also TblGetColumnWidth
352 Developing Palm OS 2.0 Applications, Part I

Table Functions
TblSetCustomDrawProcedure

Purpose Set the custom draw callback procedure for the speciÞed column.

Prototype void TblSetCustomDrawProcedure(TablePtr table,
 Word column,

VoidPtr drawCallback)

Parameters table Pointer to a table object.

column Column of table.

drawCallback Callback function.

Result Returns nothing.

Comments The custom draw callback function is used to draw table items with
a TableItemStyleType of customTableItem (see table.h).

The callback procedure should have this prototype:
void drawCallback (

VoidPtr table,
Word row,
Word column,
RectanglePtr bounds);

See Also TblDrawTable
Developing Palm OS 2.0 Applications, Part I 353

Table Functions
TblSetItemInt

Purpose Set the integer value of the speciÞed item.

Prototype void TblSetItemInt (TablePtr table,
Word row,
Word column,
Word value)

Parameters table Pointer to a table object.

row Row of the item (zero-based).

column Column of the item (zero-based).

value Any byte value (an integer).

Result Returns nothing.

Comments An application can store what it wants in an itemÕs integer value.

See Also TblGetItemInt, TblSetItemPtr
354 Developing Palm OS 2.0 Applications, Part I

Table Functions
TblSetItemPtr

Purpose Set the item to the speciÞed pointer value.

Prototype void TblSetItemPtr (TablePtr table,
Word row,
Word column,
VoidPtr value)

Parameters table Pointer to a table object.

row Row of the item (zero-based).

column Column of the item (zero-based).

value Pointer to data to display in the table item.

Result Returns nothing.

Comments An application can store whatever it wants in the table item.

See Also TblSetItemInt
Developing Palm OS 2.0 Applications, Part I 355

Table Functions
TblSetItemStyle

Purpose Set the item to display its data in a style; for example, text, numbers,
dates, and so on.

Prototype void TblSetItemStyle (TablePtr table,
Word row,
Word column,
TableItemStyleType type)

Parameters table Pointer to a table object.

row Row of the item (zero-based).

column Column of the item (zero-based).

type See Table.h.

Result Returns nothing.

See Also TblSetCustomDrawProcedure
356 Developing Palm OS 2.0 Applications, Part I

Table Functions
TblSetLoadDataProcedure

Purpose Set the load-data callback procedure for the speciÞed column.

Prototype void TblSetLoadDataProcedure(
TablePtr table,
Word column,
TableLoadDataFuncPtr loadDataCallback)

Parameters table Pointer to a table object.

column Column of table.

loadDataCallback Callback procedure.

Result Returns nothing.

Comments The callback procedure is used to obtain the data values of a table
item. It should have this prototype:
VoidHand LoadDataCallback

(VoidPtr table,
 Word row,
 Word column,
 Boolean editable,
 WordPtr dataOffset,
 WordPtr dataSize);

For a text style item, the callback procedure should return the han-
dle of a block that contains a null-terminated text string, the offset
from the start of the block to the start of the string, and the amount
of space allocated for the string.

See Also TblSetCustomDrawProcedure
Developing Palm OS 2.0 Applications, Part I 357

Table Functions
TblSetRowData

Purpose Set the data value of the speciÞed row.

The data value is a placeholder for application-speciÞc values.

Prototype void TblSetRowData (TablePtr table,
Word row,
ULong data)

Parameters table Pointer to a table object.

row Row of the item to select (zero-based).

data Application-speciÞc data.

Result Returns nothing.

See Also TblGetRowData

TblSetRowHeight

Purpose Set the height of the speciÞed row.

Prototype void TblSetRowHeight (TablePtr table,
Word row,
Word height)

Parameters table Pointer to a table object.

row Row to set (zero-based).

height New height in pixels.

Result Returns nothing.

See Also TblGetRowHeight, TblSetRowStaticHeight
358 Developing Palm OS 2.0 Applications, Part I

Table Functions
TblSetRowID

Purpose Set the ID value of the speciÞed row.

Prototype void TblSetRowID (TablePtr table,
Word row,
Word id)

Parameters table Pointer to a table object.

row Row of the item to select (zero-based).

id ID to identify a row.

Result Returns nothing.

See Also TblGetRowID

TblSetRowSelectable

Purpose Set a row in a table to selectable or nonselectable.

Prototype void TblSetRowSelectable (TablePtr table,
Word row,
Boolean selectable)

Parameters table Pointer to a table object.

row Row of the item to select (zero-based).

selectable TRUE or FALSE.

Result Returns nothing.

Comments Rows that are not selectable donÕt highlight when touched.

See Also TblRowSelectable, TblSetRowUsable
Developing Palm OS 2.0 Applications, Part I 359

Table Functions
TblSetRowStaticHeight

Purpose Set the static height attribute of a row. A row that has its static height
attribute set will not expand or contract the height of the row as text
is added or removed from a text item.

Prototype void TblSetRowStaticHeight (TablePtr table,
Word row,
Boolean staticHeight)

Parameters table Pointer to a table object

row Row of the item to select (zero based)

staticHeight TRUE to set the static height, FALSE to unset it.

Result Nothing.

TblSetRowUsable

Purpose Set a row in a table to usable or unusable. Rows that are not usable
do not display.

Prototype void TblSetRowUsable (TablePtr table,
Word row,
Boolean usable)

Parameters table Pointer to a table object.

row Row of the item to select (zero-based).

usable TRUE or FALSE.

Result Returns nothing.

See Also TblRowUsable, TblSetRowSelectable
360 Developing Palm OS 2.0 Applications, Part I

Table Functions
TblSetSaveDataProcedure

Purpose Set the save-data callback procedure for the speciÞed column.

Prototype void TblSetSaveDataProcedure(TablePtr table,
Word column,
VoidPtr saveDataCallback)

Parameters table Pointer to a table object.

column Column of table.

saveDataCallback Callback function.

Comments The callback procedure is called when the table object determines
the data of a text object needs to be saved.

The callback procedure should have this prototype:
VoidPtr SaveDataCallback

(VoidPtr table,
 Word row,
 Word column);

Result Returns nothing.

See Also TblSetCustomDrawProcedure

TblUnhighlightSelection

Purpose Unhighlight the currently selected item in a table.

Prototype void TblUnhighlightSelection (TablePtr table)

Parameters table Pointer to a table object.

Result Returns nothing.
Developing Palm OS 2.0 Applications, Part I 361

Table Functions
362 Developing Palm OS 2.0 Applications, Part I

Window Functions

WinAddWindow

Purpose Add the speciÞed window to the active windows list.

Prototype void WinAddWindow (WinHandle winHandle)

Parameters winHandle Handle of a window.

Result Returns nothing.

Comment The active windows list contains all windows in the current applica-
tionÕs user interface.

See Also WinCreateWindow, WinRemoveWindow

WinClipRectangle

Purpose Clip a rectangle to the clipping rectangle of the draw window.

Prototype void WinClipRectangle (RectanglePtr r)

Parameters r Pointer to a structure holding the rectangle to clip.

Comment The draw window is the window to which all drawing functions
send their output.

The rectangle returned in r is the intersection of the rectangle
passed and the draw windowÕs clipping bounds.

Result Returns nothing.

See Also WinCopyRectangle, WinDrawRectangle,
WinEraseRectangle, WinGetClip
Developing Palm OS 2.0 Applications, Part I 363

Window Functions
WinCopyRectangle

Purpose Copy a rectangular region from one place to another (either between
windows or within a single window).

Prototype void WinCopyRectangle (WinHandle srcWin,
WinHandle dstWin,
RectanglePtr srcRect,
SWord destX,
SWord destY,
ScrOperation mode)

Parameters srcWin Window from which the rectangle is copied.

dstWin Window to which the rectangle is copied.

srcRect Bounds of the region to copy.

destX Top bound of the rectangle in destination window.

destY Left bound of the rectangle in destination window.

mode The method of transfer from the source to the
destination window (see window.h).

Result Returns nothing.

Comments Copies the bits of the window inside the rectangle region.
364 Developing Palm OS 2.0 Applications, Part I

Window Functions
WinCreateWindow

Purpose Create a new window and add it to the window list.

Prototype WinHandle WinCreateWindow (RectanglePtr bounds,
 FrameType frame,

Boolean modal,
 Boolean focusable,
 WordPtr error)

Parameters bounds Display relative bounds of the window.

frame Type of frame around the window (see window.h).

modal TRUE if the window is modal.

focusable TRUE if the window can be the active window.

error Pointer to any error encountered by this function.

Result Returns a handle for the new window.

Comments Windows created by this routine draw to the display. See
WinCreateOffscreenWindow for information on drawing off
screen.

New windows are created disabled, and must be enabled before
they accept input.

See Also WinCreateOffscreenWindow, WinDeleteWindow,
WinInitializeWindow
Developing Palm OS 2.0 Applications, Part I 365

Window Functions
WinCreateOffscreenWindow

Purpose Create a new off-screen window and add it to the window list.

Prototype WinHandle WinCreateOffscreenWindow (
SWord width,
SWord height,
WindowFormatType format,
WordPtr error)

Parameters width, height Width and height of the window in pixels.

format Either screenFormat or genericFormat.

error Pointer to any error this function encounters.

Result Returns the handle of the new window.

Comments Windows created with this routine draw to a memory buffer instead
of the display.

The memory buffer has two formats: screen format and generic for-
mat. Screen format is the native format of the video system, win-
dows in this format can be copied to the display faster. The generic
format is device-independent.

See Also WinCreateWindow, WinAddWindow
366 Developing Palm OS 2.0 Applications, Part I

Window Functions
WinDeleteWindow

Purpose Remove a window from the window list and free the memory used
by the window.

Prototype void WinDeleteWindow (WinHandle winHandle,
Boolean eraseIt)

Parameters winHandle Handle of window to delete.

eraseIt If TRUE, the window is erased before it is deleted.

Result Returns nothing.

See Also WinCreateWindow

WinDisableWindow

Purpose Disable a window but leave it on the active windows list (list of all
windows in the system).

Prototype void WinDisableWindow (WinHandle winHandle)

Parameters winHandle Handle of window to disable.

Result Returns nothing.

Comments Disabled windows ignore all pen input and cannot be made the cur-
rent window or the draw window. Windows are usually disabled
when they are removed from the screen.

This function does not affect the visual appearance of the window.

See Also WinEnableWindow, WinDeleteWindow
Developing Palm OS 2.0 Applications, Part I 367

Window Functions
WinDisplayToWindowPt

Purpose Convert a display-relative coordinate to a window-relative coordi-
nate. The coordinate returned is relative to the display window.

Prototype void WinDisplayToWindowPt (SWordPtr extentX,
SWordPtr extentY)

Parameters extentX, extentY Pointer to x and y coordinate to convert.

Result Returns nothing.

Comments WinWindowToDisplayPt

WinDrawBitmap

Purpose Draw a bitmap at the given x and y coordinates.

Prototype void WinDrawBitmap (BitmapPtr bitmapP,
SWord x,
Sword y)

Parameters bitmapP Pointer to a bitmap.

x, y The x and y coordinates of the top-left corner.

Result Returns nothing.

See Also WinEraseRectangle
368 Developing Palm OS 2.0 Applications, Part I

Window Functions
WinDrawChars

Purpose Draw the speciÞed characters in the draw window.

Prototype void WinDrawChars (CharPtr chars,
Word len,
SWord x,
SWord y)

Parameters chars Pointer to the characters to draw.

len Number of characters to draw.

x, y Left and top bound of Þrst character to draw.

Result Returns nothing.

Comment Before calling this function, consider calling
WinSetUnderlineMode and FntSetFont.

See Also WinDrawInvertedChars, WinEraseChars,
WinSetUnderlineMode

WinDrawGrayLine

Purpose Draw a line in the draw window.

Prototype void WinDrawGrayLine (SWord x1, SWord y1,
SWord x2, SWord y2)

Parameters x1, y1 x and y coordinates of the start of the line.

x2, y2 x and y coordinate of the end of the line.

Result Returns nothing.

See Also WinDrawLine
Developing Palm OS 2.0 Applications, Part I 369

Window Functions
WinDrawGrayRectangleFrame

Purpose Draw a gray rectangular frame in the draw window.

Prototype void WinDrawGrayRectangleFrame (FrameType frame,
RectanglePtr r)

Parameters frame Type of frame to draw.

r Pointer to the rectangle to frame.

Result Returns nothing.

Comments The standard gray pattern is not used by this routine; rather, the
frame is drawn so that the top-left pixel of the frame is always on.

See Also WinDrawRectangleFrame
370 Developing Palm OS 2.0 Applications, Part I

Window Functions
WinDrawInvertedChars

Purpose Draw the speciÞed characters inverted (background color) in the
draw window.

Prototype void WinDrawInvertedChars(CharPtr chars, Word len,
SWord x, SWord y)

Parameters chars Pointer to the characters to draw.

len Number of characters to draw.

x, y Left and top bound of Þrst character to draw.

Result Returns nothing.

Comments The characters are drawn in the background color and the off pixels
are drawn in the foreground color.

Before calling this function, consider calling
WinSetUnderlineMode and FntSetFont.

See Also WinDrawChars

WinDrawLine

Purpose Draw a line in the draw window.

Prototype void WinDrawLine (short x1, short y1,
short x2, short y2)

Parameters x1, y1 x and y coordinates of the start of the line.

x2, y2 x and y coordinate of the end of the line.

Result Returns nothing.

See Also WinDrawGrayLine, WinEraseLine, WinFillLine
Developing Palm OS 2.0 Applications, Part I 371

Window Functions
WinDrawRectangle

Purpose Draw a black rectangle in the draw window; the rectangle can have
square or round corners.

Prototype void WinDrawRectangle (RectanglePtr r,
Word cornerDiam)

Parameters r Pointer to the rectangle to draw.

cornerDiam Diameter of rounded corners.
Zero for square corners.

Result Returns nothing.

Comments The cornerDiam parameter speciÞes the diameter of four imagi-
nary circles used to form the rounded corners. An imaginary circle
is placed within each corner tangent to the rectangle on two sides.

See Also WinFillRectangle, WinEraseRectangle
372 Developing Palm OS 2.0 Applications, Part I

Window Functions
WinDrawRectangleFrame

Purpose Draw a rectangular frame around the speciÞed region in the draw
window.

Prototype void WinDrawRectangleFrame (FrameType frame,
 RectanglePtr r)

Parameters frame Type of frame to draw.

r Pointer to the rectangle to frame.

Result Returns nothing.

Comments The frame is drawn outside the speciÞed region.

See Also WinEraseRectangleFrame, WinGetFramesRectangle,
WinDrawGrayRectangleFrame, WinDrawWindowFrame

WinDrawWindowFrame

Purpose Draw the frame of the current drawing window.

Prototype void WinDrawWindowFrame (void)

Parameters None.

Result Returns nothing.

See Also WinDrawRectangleFrame, WinGetDrawWindow
Developing Palm OS 2.0 Applications, Part I 373

Window Functions
WinEnableWindow

Purpose Enable a window.

Prototype void WinEnableWindow (WinHandle winHandle)

Parameters winHandle Handle of the window to enable.

Result Returns nothing.

Comments An enabled window accepts pen input and can be made the active
window.

This routine does not affect the visual appearance of the window.

See Also WinDisableWindow, WinSetActiveWindow

WinEraseChars

Purpose Erase speciÞed characters in the draw window.

Prototype void WinEraseChars (CharPtr chars, Word len,
SWord x, SWord y)

Parameters chars Pointer to the characters to erase.

len Number of characters to erase.

x, y Left and top bound of Þrst character to erase.

Result Returns nothing.

See Also WinDrawChars
374 Developing Palm OS 2.0 Applications, Part I

Window Functions
WinEraseLine

Purpose Erase a line in the draw window.

Prototype void WinEraseLine (SWord x1, SWord y1,
SWord x2, SWord y2)

Parameters x1, y1 x and y coordinate of the start of the line.

x2, y2 x and y coordinate of the end of the line.

Result Returns nothing.

See Also WinDrawLine

WinEraseRectangle

Purpose Erase a rectangle in the draw window. (The rectangle can have
round or square corners; see WinDrawRectangle.)

Prototype void WinEraseRectangle (RectanglePtr r,
Word cornerDiam)

Parameters r Pointer to the rectangle to erase.

cornerDiam Diameter of rounded corners;
zero for square corners.

Result Returns nothing.

See Also WinDrawRectangle
Developing Palm OS 2.0 Applications, Part I 375

Window Functions
WinEraseRectangleFrame

Purpose Erase a rectangular frame in the draw window.

Prototype void WinEraseRectangleFrame (FrameType frame,
RectanglePtr r)

Parameters frame Type of frame to erase.

r Pointer to the rectangular frame.

Result Returns nothing.

See Also WinDrawRectangleFrame

WinEraseWindow

Purpose Erase the contents of the draw window. This routine doesnÕt erase
the frame around the draw window.

Prototype void WinEraseWindow (void)

Parameters None.

Result Returns nothing.

See Also WinEnableWindow
376 Developing Palm OS 2.0 Applications, Part I

Window Functions
WinFillLine

Purpose Fill a line in the draw window with the current pattern. You can set
the current pattern with WinSetPattern.

Prototype void WinFillLine (SWord x1, SWord y1,
SWord x2, SWord y2)

Parameters x1, y1 x and y coordinate of the start of the line.

x2, y2 x and y coordinate of the end of the line.

Result Returns nothing.

See Also WinSetPattern, WinDrawLine

WinFillRectangle

Purpose Draw a rectangle with current pattern. (The rectangle can have
square or round corners.)

Prototype void WinFillRectangle (RectanglePtr r,
Word cornerDiam)

Parameters r Pointer to the rectangle to draw.

cornerDiam Diameter of rounded corners.
Zero for square corners.

Result Returns nothing.

Comments You can set the current pattern with WinSetPattern.

See Also WinSetPattern. WinDrawRectangle
Developing Palm OS 2.0 Applications, Part I 377

Window Functions
WinGetActiveWindow

Purpose Return the window handle of the active window.

Prototype WinHandle WinGetActiveWindow (void)

Parameters None.

Result Returns the handle of the active window.

See Also WinSetActiveWindow, WinGetDisplayWindow,
WinGetFirstWindow, WinGetDrawWindow, WinRemoveWindow

WinGetClip

Purpose Return the clipping rectangle of the draw window.

Prototype void WinGetClip (RectanglePtr r)

Parameters r Pointer to a structure to hold the clipping bounds.

Result Returns nothing.

See Also WinSetClip
378 Developing Palm OS 2.0 Applications, Part I

Window Functions
WinGetDisplayExtent

Purpose Return the width and height of the display (the screen).

Prototype void WinGetDisplayExtent (SWordPtr extentX,
SWordPtr extentY)

Parameters extentX Pointer to the width of the display.

extentY Pointer to the height of the display.

Result Returns nothing.

WinGetDisplayWindow

Purpose Return the window handle of the display window.

Prototype WinHandle WinGetDisplayWindow (void)

Parameters None.

Result Returns the handle of display window.

Comments The display window is created by the system at start-up; it has the
same size as the physical display (screen).

See Also WinGetDisplayExtent, WinGetActiveWindow,
WinGetDrawWindow
Developing Palm OS 2.0 Applications, Part I 379

Window Functions
WinGetDrawWindow

Purpose Return the window handle of the current draw window.

Prototype WinHandle WinGetDrawWindow (void)

Parameters None.

Result Returns handle of draw window.

See Also WinGetDisplayWindow, WinGetActiveWindow,
WinSetDrawWindow

WinGetFirstWindow

Purpose Return a pointer to the Þrst window in the linked list of windows.

Prototype WinHandle WinGetFirstWindow (void)

Parameters None.

Result Returns handle of Þrst window.

Comments This function is usually used by the system only.

See also WinAddWindow, WinGetActiveWindow
380 Developing Palm OS 2.0 Applications, Part I

Window Functions
WinGetFramesRectangle

Purpose Return the region needed to draw a rectangle with the speciÞed
frame around it.

Prototype void WinGetFramesRectangle (FrameType frame,
 RectanglePtr r,

RectanglePtr obscuredRect)

Parameters frame Type of frame drawn around the rectangle.

r Pointer to the rectangle to frame.

obscuredRect Pointer to the rectangle obscured by the frame.

Result Returns nothing.

Comments Frames are always drawn around (outside) a rectangle.

See Also WinGetWindowBounds
Developing Palm OS 2.0 Applications, Part I 381

Window Functions
WinGetPattern

Purpose Return the current Þll pattern.

Prototype void WinGetPattern (CustomPatternType pattern)

Parameters pattern Pattern buffer to hold pattern.

Result Returns nothing.

Comments The Þll pattern is used by WinFillLine and WinFillRectangle.

A pattern deÞnes an 8-x-8 bit pattern. The pattern is tiled to Þll the
speciÞed region. The pattern structure is eight bytes long, the Þrst
byte is the Þrst row of the pattern.

See Also WinSetPattern

WinGetWindowBounds

Purpose Return the bounds of the current draw window in display-relative
coordinates.

Prototype void WinGetWindowBounds (RectanglePtr r)

Parameters r Pointer to a rectangle.

Result Returns nothing.

See Also WinGetWindowExtent
382 Developing Palm OS 2.0 Applications, Part I

Window Functions
WinGetWindowExtent

Purpose Return the width and height of the current draw window.

Prototype void WinGetWindowExtent (SWordPtr extentX,
SWordPtr extentY)

Parameters extentX Pointer to the width of the draw window.

extentY Pointer to the height of the draw window.

Result Returns nothing.

See Also WinGetWindowBounds, WinGetWindowFrameRect,

WinGetWindowFrameRect

Purpose Return a rectangle, in display-relative coordinates, that deÞnes the
size and location of a window and its frame.

Prototype void WinGetWindowFrameRect (WinHandle winHandle,
RectanglePtr r)

Parameters winHandle Handle of window whose coordinates are desired.

r Pointer to the coordinates of the window.

Result Returns nothing.

See Also WinGetWindowBounds
Developing Palm OS 2.0 Applications, Part I 383

Window Functions
WinGetWindowPointer

Purpose Return a pointer to the speciÞed windowÕs WindowType structure.

Prototype WinPtr WinGetWindowPointer (WinHandle winHandle)

Parameters winHandle Handle of a window.

Result Returns pointer to the speciÞed windowÕs WindowType structure.

See Also WinGetActiveWindow

WinInitializeWindow

Purpose Initialize the screen-dependent members of a WindowType structure
and set the windowÕs clipping bounds to the windowÕs bounds.

Prototype void WinInitializeWindow (WinHandle winHandle)

Parameters winHandle Handle of a window.

Result Returns nothing.

See Also WinCreateWindow
384 Developing Palm OS 2.0 Applications, Part I

Window Functions
WinInvertChars

Purpose Invert the speciÞed characters in the draw window.

Prototype void WinInvertChars (CharPtr chars, Word len,
SWord x, SWord y)

Parameters chars Pointer to the characters to invert.

len Number of characters to invert.

x, y Left and top bound of Þrst character to invert.

Result Returns nothing.

See Also WinDrawInvertedChars, WinDrawChars

WinInvertLine

Purpose Invert a line in the draw window.

Prototype void WinInvertLine (SWord x1, SWord y1,
SWord x2, SWord y2)

Parameters x1, y1 x and y coordinate of the start of the line.

x2, y2 x and y coordinate of the end of the line.

Result Returns nothing.

See Also WinInvertRectangle, WinInvertRectangleFrame,
WinDrawLine, WinEraseLine
Developing Palm OS 2.0 Applications, Part I 385

Window Functions
WinInvertRectangle

Purpose Invert a rectangle in the draw window. (The rectangle can have
square or round corners.)

Prototype void WinInvertRectangle (RectanglePtr r,
Word cornerDiam)

Parameters r Pointer to the rectangle to invert.

cornerDiam Diameter of rounded corners;
zero for square corners.

Result Returns nothing.

See Also WinInvertLine, WinInvertRectangleFrame,
WinDrawRectangle

WinInvertRectangleFrame

Purpose Invert a rectangular frame in the draw window.

Prototype void WinInvertRectangleFrame (FrameType frame,
RectanglePtr r)

Parameters frame Type of frame to invert.

r Pointer to the rectangular frame to invert.

Result Returns nothing.

See Also WinInvertRectangle, WinInvertLine,
WinDrawRectangleFrame, WinEraseRectangleFrame
386 Developing Palm OS 2.0 Applications, Part I

Window Functions
WinModal

Purpose Return TRUE if the speciÞed window is modal.

Prototype Boolean WinModal (WinHandle winHandle)

Parameters winHandle Handle of a window.

Result Returns TRUE if modal, otherwise FALSE.

Comments A window is modal if it cannot lose the focus.

WinRemoveWindow

Purpose Remove the speciÞed window from the window list.

Prototype void WinRemoveWindow (WinHandle winHandle)

Parameters winHandle Handle of a window.

Result Returns nothing.

Comments DoesnÕt free the memory used by the window.

See Also WinAddWindow, WinDeleteWindow, WinGetFirstWindow
Developing Palm OS 2.0 Applications, Part I 387

Window Functions
WinResetClip

Purpose Reset the clipping rectangle of the draw window to the portion of
the draw window that is within the bounds of the display.

Prototype void WinResetClip (void)

Parameters None.

Result Returns nothing.

See Also WinSetClip

WinRestoreBits

Purpose Copy the contents of the speciÞed window to the draw window and
delete the passed window.

Prototype void WinRestoreBits (WinHandle winHandle,
SWord destX,
SWord destY)

Parameters winHandle Handle of window to copy and delete.

destX, destY x and y coordinate in the draw window
to copy to.

Result Returns nothing.

Comments This routine is generally used to restore a region of the display that
was saved with WinSaveBits.

See Also WinSaveBits
388 Developing Palm OS 2.0 Applications, Part I

Window Functions
WinSaveBits

Purpose Create an offscreen window and copy the speciÞed region from the
draw window to the offscreen window.

Prototype WinHandle WinSaveBits (RectanglePtr sourceP,
 WordPtr error)

Parameters sourceP Pointer to the bounds of the region to save, relative to
the display.

error Pointer to any error encountered by this function.

Result Returns the handle of the window containing the saved image, or
zero if an error occurred.

Comments The offscreen window is the same size as the region to copy.

See Also WinRestoreBits
Developing Palm OS 2.0 Applications, Part I 389

Window Functions
WinScrollRectangle

Purpose Scroll a rectangle in the draw window.

Prototype void WinScrollRectangle (RectanglePtr r,
DirectionType direction,
SWord distance,

 RectanglePtr vacated)

Parameters r Pointer to the rectangle to scroll.

direction Direction to scroll (up, down, left, or right).

distance Distance to scroll in pixels.

vacated Pointer to the rectangle that needs to be redrawn
because it has been vacated as a result of the scroll.

Result Returns nothing.

Comments The rectangle scrolls within its own bounds. Any portion of the rect-
angle that is scrolled outside its bounds is clipped.
390 Developing Palm OS 2.0 Applications, Part I

Window Functions
WinSetActiveWindow

Purpose Make a window the active window.

Prototype void WinSetActiveWindow (WinHandle winHandle)

Parameters winHandle Handle of a window

Result Returns nothing.

Comments The active window is not actually set in this routine; ßags are set to
indicate that a window is being exited and another window is being
entered. The routine EvtGetEvent sends a winExitEvent and a
winEnterEvent when it detects these flags. The active window is
set by EvtGetEvent when it sends the winEnterEvent. The draw
window is also set to the new active window when the active win-
dow is changed.

All user input is directed to the active window.

See Also WinAddWindow, WinGetActiveWindow,EvtGetEvent (docu-
mented in ÒDeveloping Palm OS Applications, Part IÓ)

WinSetClip

Purpose Set the clipping rectangle of the draw window.

Prototype void WinSetClip (RectanglePtr r)

Parameters r Pointer to a structure holding the clipping bounds.

Result Returns nothing.

See Also WinClipRectangle, WinSetClip, WinGetClip
Developing Palm OS 2.0 Applications, Part I 391

Window Functions
WinSetDrawWindow

Purpose Set the draw window. (All drawing operations are relative to the
draw window.)

Prototype WinHandle WinSetDrawWindow (WinHandle winHandle)

Parameters winHandle Handle of a window.

Result Returns the draw window.

See Also WinGetDrawWindow, WinSetActiveWindow

WinSetPattern

Purpose Set the current Þll pattern.

Prototype void WinSetPattern (CustomPatternType pattern)

Parameters pattern Pattern to use.

Result Returns nothing.

Comments The Þll pattern is used by WinFillLine and WinFillRectangle.

See Also WinGetPattern
392 Developing Palm OS 2.0 Applications, Part I

Window Functions
WinSetUnderlineMode

Purpose Set the graphic state to enable or disable the underlining of charac-
ters.

Prototype UnderlineModeType
WinSetUnderlineMode (UnderlineModeType mode)

Parameters mode New underline mode type, one of noUnderline,
grayUnderline, solidUnderline.

Result Returns the previous underline mode type.

See Also WinDrawChars

WinSetWindowBounds

Purpose Set the bounds of the window to display relative coordinates.

Prototype void WinSetWindowBounds (WinHandle winHandle,
RectanglePtr r)

Parameters winHandle Handle for the window for which to set the bounds.

r Pointer to a rectangle to use for bounds.

Result Returns nothing.
Developing Palm OS 2.0 Applications, Part I 393

Window Functions
WinWindowToDisplayPt

Purpose Convert a window-relative coordinate to a display-relative coordi-
nate.

Prototype void WinWindowToDisplayPt (SWordPtr extentX,
SWordPtr extentY)

Parameters extentX, extentY Pointer to x and y coordinate to convert.

Result Returns nothing.

Comments The coordinate passed is assumed to be relative to the draw win-
dow.

See Also WinDisplayToWindowPt
394 Developing Palm OS 2.0 Applications, Part I

Index
Numerics
2.0 device 40
68328 processor 35

A
about box 322
AbtShowAbout 322
action codes See launch codes
active form 257, 258
active window 191, 365, 391
active windows list 363
alarms

and launch codes 61
sysAppLaunchCmdSystemTimeChange 69

alert manager 167
alert resource 77
alerts

confirmation 77
custom alert 254
error 77
system-defined 167
warning 77

application design and conduits 27
applications

control flow 43
designing UI 26
event driven 29
initialization 32
Security 68

appStopEvent 174
Auto-Shift (field) 96

B
battery life, maximizing 36
Berkeley Sockets API 31
bitmap label for button 90
bitmaps

drawing 368
bitmaps See Also form bitmap resource
bits behind menu bar 145
blank lines in field 220
button objects 116

button resource 88
bitmap label 90
highlighting 116
increment arrow 89
label 89

buttons (silk-screened buttons) 182

C
C library functions 30
calibrating digitizer 172
calibrating the pen 324
carriage returns 123
catalog resources 86
categories

FrmSetCategoryLabel 273
CategoryCreateList 193
CategoryCreateListV10 194
CategoryEdit 195
CategoryEditV10 196
CategoryFind 196
CategoryFreeList 197
CategoryFreeListV10 198
CategoryGetName 198
CategoryGetNext 199
CategoryInitialize 199
CategorySelect 202
CategorySelectV10 203
CategorySetName 200
CategorySetTriggerLabel 201
CategoryTruncateName 200
changing resources 75
character attribute functions 283Ð284
characters

drawing in window 369
erasing 374
inverting 385
sorting text 284

characters See Also functions starting with Fnt 243
check box object 116
check box resource 91

Group ID 92
toggle area 92

clipboard 214, 229
Developing Palm OS 2.0 Applications, Part I 395

ClipboardAddItem 204
ClipboardGetItem 204
clipping rectangle 391
clock, real-time 37
code #0 resource 33
code #1 resource 32
CodeWarrior IDE 30
conduits and application design 27
Confirmation alert 77
connectivity 37
connector (external) 37
Constructor 28, 74

catalog resources 86
control flow 43
control objects 116

and pen tracking 186
drawing 205
erasing 205
events 117
fields of structure 120
function list 121
structure 118

ControlType structure See Also control
objects 120

conventions for naming 34
coordinates, display-relative vs. window-

relative 368
creating active window 365
creating modal window 365
creating resources 74
creator ID 64
CtlDrawControl 205
CtlEnabled 209
ctlEnterEvent 174
CtlEraseControl 205
ctlExitEvent 175
CtlGetLabel 206
CtlGetValue 206
CtlHandleEvent 117, 207
CtlHideControl 208
CtlHitControl 208
ctlRepeatEvent 175
ctlSelectEvent 176
CtlSetEnabled 209
CtlSetLabel 210

CtlSetUsable 211
CtlSetValue 211
CtlShowControl 212
current time 69
custom fill patterns, getting 382
custom UI element 98

D
data #0 resource 33
date 333
date system resource 122
day selector object 176
DayHandleEvent 322
daySelectEvent 176
designing UI 26
dialogs

command buttons 81
Edit Categories 195
info dialog 322
placement 80

digitizer 168
after reset 39
and pen manager 172
and PenResetCalibration function 325
and penUpEvent 186
calibrating 172
dimensions 38
polling 37
sampling accuracy 38

down arrow 124
doze mode 36
drag-selecting and fldChangedEvent 177
draw window 392
drawing rectangular frame 370, 373
drawItemsCallback 143
drivers, restarting 38
dynamic heap 33

soft reset 38
space requirement 32

dynamic scrolling 188

E
Edit Categories dialog 195
enabled window 374
enabling windows 365
396 Developing Palm OS 2.0 Applications, Part I

erasing characters 374
erasing lines in window 375
erasing rectangle 375
Error alert 77
event loop 49Ð52

example 49
event-driven applications 29, 43
events 173Ð192

naming conventions 34
overview 45Ð53

examples
event loop 49
startup routine 46
stop routine 53

F
field objects 122

and text height 224
different keyDownEvents 124
dynamic resizing 178
events 123
field attributes 127
fields 126
function list 128
line feeds vs. carriage returns 123
modifying 215
structure 124

field resource 94
Auto-Shift 96
Has Scrollbar 96

FieldType structure 124
fill patterns

setting 392
fill patterns, getting 382
Find (global find) 61, 63

saving data 67
Find (lookup) 65
Find icon 182
flags

launch flags 55, 70
FldCalcFieldHeight 212
fldChangedEvent 177

in 2.0 40
FldCompactText 213
FldCopy 214
FldCut 214

FldDirty 215
FldDrawField 216
fldEnterEvent 177
FldEraseField 216
FldFreeMemory 217
FldGetAttributes 217
FldGetBounds 218
FldGetFont 218
FldGetInsPtPosition 219
FldGetMaxChars 219
FldGetNumberOfBlankLines 220
FldGetScrollPosition 220
FldGetScrollValues 221
FldGetSelection 222
FldGetTextAllocatedSize 223
FldGetTextHandle 223
FldGetTextHeight 224
FldGetTextLength 224
FldGetTextPtr 225
FldGetVisibleLines 225
FldGrabFocus 226
FldHandleEvent 123, 227
fldHeightChangedEvent 178
FldInsert 228
FldMakeFullyVisible 228
FldPaste 229
FldRecalculateField 230
FldReleaseFocus 230
FldScrollable 231
FldScrollField 231
FldSendChangeNotification 232
FldSendHeightChangeNotification 232
FldSetAttributes 233
FldSetBounds 233
FldSetDirty 234
FldSetFon 234
FldSetInsertionPoint 235
FldSetInsPtPosition 235
FldSetMaxChars 236
FldSetScrollPosition 236
FldSetSelection 237
FldSetText 238
FldSetTextAllocatedSize 239
FldSetTextHandle 239
Developing Palm OS 2.0 Applications, Part I 397

FldSetTextPtr 240
FldSetUsable 240
FldUndo 241
FldWordWrap 241
FntAverageCharWidth 243
FntBaseLine 243
FntCharHeight 244
FntCharsInWidth 244
FntCharsWidth 245
FntCharWidth 245
FntDescenderHeight 246
FntGetFont 246
FntGetFontPtr 246
FntGetScrollValues 247
FntLineHeight 247
FntLineWidth 248
FntProportionalFont 248
FntSetFont 249
FntWordWrap 249
FntWordWrapReverseNLines 250
focus

and modal window 387
FrmGetFocus 260
FrmSetFocus 276

fonts
and FldGetFont 218
font ID 246
functions 243Ð250

form bitmap resource 97
form objects 130

events 130
FormType structure 132
function list 137
functions 251Ð282

form resource 79
adding menu 84
creating 74
dialog command 81
event flow 81
modal 79
Save Behind 79
screen command buttons 81
title 81

forms
active form 257, 258

FormType structure 132

frames
drawing in window 370, 373
erasing rectangular frame 376

FrmCloseAllForms 251
frmCloseEvent 178
FrmCopyLabel 252
FrmCopyTitle 253
FrmCustomAlert 254
FrmDeleteForm 255
FrmDispatchEvent 255
FrmDoDialog 256
FrmDrawForm 256
FrmEraseForm 257
FrmGetActiveForm 257
FrmGetActiveFormID 258
FrmGetControlGroupSelection 258
FrmGetControlValue 259
FrmGetFirstForm 259
FrmGetFocus 260
FrmGetFormBounds 260
FrmGetFormId 261
FrmGetFormPtr 261
FrmGetGadgetData 262
FrmGetLabel 262
FrmGetNumberOfObjects 263
FrmGetObjectId 264
FrmGetObjectIndex 264
FrmGetObjectPosition 265
FrmGetObjectPtr 265
FrmGetObjectType 266
FrmGetTitle 266
FrmGetUserModifiedState 267
FrmGetWindowHandle 267
FrmGotoForm 268
FrmHandleEvent 130, 268
FrmHelp 269
FrmHideObject 269
FrmInitForm 270
frmLoadEvent 179
frmOpenEvent 179
FrmPointInTitle 270
FrmPopupForm 271
FrmReturnToForm 271
FrmSaveAllForms 272
398 Developing Palm OS 2.0 Applications, Part I

frmSaveEvent 179
FrmSetActiveForm 272
FrmSetCategoryLabel 273
FrmSetControlGroupSelection 274
FrmSetControlValue 275
FrmSetEventHandler 276
FrmSetFocus 276
FrmSetGadgetData 277
FrmSetMenu 278
FrmSetNotUserModified 277
FrmSetObjectBounds 278
FrmSetObjectPosition 279
FrmSetTitle 280
FrmShowObject 280
frmTitleEnterEvent 180
frmTitleSelectEvent 181
frmUpdateEvent 180
FrmUpdateForm 281
FrmUpdateScrollers 281
FrmVisible 282
function naming conventions 34

G
gadget resource 98

FrmSetGadgetData 277
GetCharAttr 283
GetCharCaselessValue 283
GetCharSortValue 284
global find 61, 63

saving data 67
global variables

and launch codes 54
erasing 38

goto (global find) 63
Graffiti

Command shortcuts 184
customizing behavior 168
Help 170
Help character 170

Graffiti manager 168
functions 285Ð297

Graffiti Shift
functions ??Ð300
functions <$start range> 298
getting and setting state 168

Indicator resource 99
Graffiti ShortCuts

database 169
SysShortCutListDialog 296

graffitiReferenceChr 170
GraffitiShift functions 298Ð??
grayUnderline 393
Gremlins 30
GrfAddMacro 285
GrfAddPoint 285
GrfCleanState 286
GrfDeleteMacro 286
GrfFilterPoints 287
GrfFindBranch 287
GrfFlushPoints 288
GrfGetAndExpandMacro 288
GrfGetGlyphMapping 289
GrfGetMacro 290
GrfGetMacroName 290
GrfGetNumPoints 291
GrfGetPoint 291
GrfGetState 292
GrfInitState 293
GrfMatch 293
GrfMatchGlyph 294
GrfProcessStroke 168, 295
GrfSetState 296
Group ID 92
groups of controls 258
GsiEnable 298
GsiEnabled 298
GsiInitialize 299
GsiSetLocation 299
GsiSetShiftState 300
GUI See UI

H
hard reset 38, 39, 68
hardware button presses and key manager 171
hardware overview 35
Has Scrollbar (field) 96
height of text in field 224
Help ID 78
highlighting button objects 116
Developing Palm OS 2.0 Applications, Part I 399

HotSync
and sysAppLaunchCmdSyncNotify 68

I
icons

alert 77
Find icon 182

IDE 30
increment arrow 89
Information alert 77
initialization 64

global variables 46
of application 32

insertion point functions 301Ð303
insertion point object 139
insertion points

and FldGetInsPtPosition 219
and FldGrabFocus 226
and FldReleaseFocus 230
and FldSetInsertionPoint 235
displayed in field 216

InsPtEnable 301
InsPtEnabled 301
InsPtGetHeight 302
InsPtGetLocation 302
InsPtSetHeight 303
InsPtSetLocation 303
inverting characters in draw window 385
inverting line in draw window 385
inverting rectangles 386

K
key manager 171
key manager functions 305Ð306
KeyCurrentState 171, 305
keyDownEvent 171, 182

in field object 124
KeyRates 171, 306
KeySetMask 323

L
label (button) 89
label resource 100

bitmap label for button 90

wrapping text 100
launch codes 29, 54Ð72

and global variables 54
code example 56
creating 72
launch flags 55
parameter blocks 55
predefined 72
responding 71
summary 58
use by application 54
use by system 54

launch flags 55, 70
Layout Appearance panel 75
Layout Properties panel 75
LCD screen 38
left arrow 124
line feeds 123
lines

erasing 375
inverting 385

list objects
and pen tracking 186
creating category list 193
drawItemsCallback 143
events 141
fields 143
function list 144
functions 308Ð316
scroll indicators 140
structure 142

list resource
and popup trigger 102
event flow 102
vs. menu resource 102

ListDrawDataFuncType 143
ListType structure 142
LoadDataCallback (for tables) 357
LocGetNumberSeparators 60, 323
locking system 68
lookup 65

example 65
LstDrawList 308
LstEraseList 308
LstGetNumberOfItems 309
LstGetSelection 310
400 Developing Palm OS 2.0 Applications, Part I

LstGetSelectionText 310
LstGetVisibleItems 309
LstHandleEvent 311
LstMakeItemVisible 312
LstPopupList 312
LstScrollList 313
lstSelectEvent 184
LstSetDrawFunction 313
LstSetHeight 314
LstSetListChoices 314
LstSetPosition 315
LstSetSelection 315
LstSetTopItem 316

M
Makefile 31
managers

overview 29
vs. library 165

mapping, resources and UI objects 28
maximizing battery life 36
memory

and FldCompactText 213
and FldFreeMemory 217
and FldSetText 238

menu bar objects 145
menu bars 82

and user actions 145
bits behind 145

Menu Item Object fields 149
menu objects

 See Also menus 146
events 146
fields 148
function list 150
structure 146

menu pulldown object 149
MenuDispose 317
MenuDrawMenu 318
menuEvent 184
MenuGetActiveMenu 319
MenuHandleEvent 320
MenuInit 321
menus 82

active area 85

adding to form 84
creating 83
event flow 86
FrmSetMenu 278
functions 317Ð321
shortcut key 84
user interaction 84

MenuSetActiveMenu 321
Missing Character Symbol 245
modal form 79
modal window 312, 365
modal windows 387
modes 35
modified field objects 215
modifying Graffiti shortcuts 169
Motorola 68328 35

N
naming conventions 34
nilEvent 185
noUnderline 393

O
Object Identifier 88
off-screen windows 366

P
Palm OS 2.0 40
PalmPilot Professional memory 35
parameter blocks 55
patches, loading during reset 39
pen location polling 38
pen manager 172
pen manager functions 324Ð325
pen queue 172
PenCalibrate 324
penDownEvent 185
penMoveEvent 186
PenResetCalibration 325
penUpEvent 186
PilotMain 54
popSelectEvent 187
popup list

LstPopupList 312
Developing Palm OS 2.0 Applications, Part I 401

popup trigger
event flow 104

popup trigger object 116
popup trigger resource 103

and list 102
predefined launch codes 72
pref #0 resource 32
preferences

application-specific 46
changing with launch codes 66
short cuts 169
system 46

processor 35
push button object 116
push button resource 105

creating row 107
event flow 107

R
radio button See push button 107
RAM 35
real-time clock 37
rectangle

erasing 375
rectangles

inverting 386
scrolling 390

RectangleType structure 115
repeat control object 116

and ctlRepeatEvent 175
repeating button resource 108

event flow 109
ResEdit 74
ResEdit resources

naming conventions 34
reset 38, 68

digitizer screen 39
hard reset 39
loading patches 39
soft reset 38

resources
alert 77
and UI objects 28
changing 75
check box 91
field 94

form 79
form bitmap 97
gadget 98
Graffiti Shift Indicator 99
label 100
menu 82
menu bar 82
popup trigger 103
push button 105
repeating button 108
scrollbar 110
selector trigger 112
string 82
table 114

resources See Also UI resources
retrieving system version number 42
right arrow 124
ROM 35
rounded corners 375, 377
running mode 36

S
Save Behind 79
SclDrawScrollBar 327
sclEnterEvent 187
sclExitEvent 189
SclGetScrollBar 327
SclHandleEvent 328
sclRepeatEvent 188

and sclExitEvent 189
SclSetScrollBar 329
screen command buttons 81
screen layout design 26
screen size 38
scroll arrows

FrmUpdateScrollers 281
scroll position in field 220
scrollbar functions 327Ð329
scrollbar objects 150

fields 152
structure 151

scrollbar resource 110
scrollbars

TblHasScrollBar function 344
scrolling rectangle in window 390
402 Developing Palm OS 2.0 Applications, Part I

Security application 68
SelectDay 333
SelectDay function 333
SelectDayV10 333
selection in field 222
selector trigger object 116
selector trigger resource 112
SelectTime 334
serial communication 37
shortcut key 84
shortcuts, Graffiti 169
sleep mode 35

and current time 37
soft reset 38, 68

dynamic heap 38
solidUnderlin 393
sorting text 284
square corners 375, 377
stack size requirement 32
startup routine, example 46
stExitEvent 183
stop routine example 53
stop routine, example 53
storage heaps, erasing 39
StrDelocalizeNumber, and launch code 60
string resource 82
StrLocalizeNumber

and launch code 60
structure elements, naming convention 34
structure of field object 124
summary of launch codes 58
sysAppLaunchCmdAlarmTriggered 60
sysAppLaunchCmdCountryChange 60
sysAppLaunchCmdDisplayAlarm 61
sysAppLaunchCmdFind 61
sysAppLaunchCmdGoto 63
sysAppLaunchCmdInitDatabase 64
sysAppLaunchCmdLookup 65
sysAppLaunchCmdPanelCalledFromApp 66
SysAppLaunchCmdReset 38
sysAppLaunchCmdReturnFromPanel 67
sysAppLaunchCmdSaveData 67
sysAppLaunchCmdSyncNotify 68
sysAppLaunchCmdSystemLock 68

sysAppLaunchCmdSystemReset 68
sysAppLaunchCmdSystemTimeChange 69
sysAppLaunchFlagNewGlobals launch flag 70
sysAppLaunchFlagNewStack launch flag 70
sysAppLaunchFlagNewThread launch flag 70
sysAppLaunchFlagSubCal launch flag 70
sysAppLaunchFlagUIApp launch flag 70
SysGraffitiReferenceDialog 170
SysShortCutListDialog 296
system preferences 46
system tick interrupts 37
system version number 42

T
table functions 335Ð361
table objects 154

fields 156
structure 154

table resource 114
maximum size 114

tables
setting load data callback 357
setting save data callback 361

TblDrawTable 335
TblEditing 335
tblEnterEvent 190
TblEraseTable 336
tblExitEvent 190
TblFindRowData 336
TblFindRowID 337
TblGetBounds 337
TblGetColumnSpacing 338
TblGetColumnWidth 338
TblGetCurrentField 339
TblGetItemBounds 339
TblGetItemInt 340
TblGetLastUsableRow 340
TblGetNumberOfRows 341
TblGetRowData 341
TblGetRowHeigh 342
TblGetRowHeight 342
TblGetRowID 342
TblGetSelection 343
TblGrabFocus 343
Developing Palm OS 2.0 Applications, Part I 403

TblHandleEvent 344
TblHasScrollBar 344
TblInsertRow 345
TblMarkRowInvalid 346
TblMarkTableInvalid 346
TblRedrawTable 347
TblReleaseFocus 347
TblRemoveRow 348
TblRowInvalid 348
TblRowUsable 349
tblSelectEvent 191
TblSelectItem 350
TblSetBounds 350
TblSetColumnEditIndicator 351
TblSetColumnSpacing 351
TblSetColumnUsable 352
TblSetColumnWidth 352
TblSetCustomDrawProcedure 353
TblSetItemInt 354
TblSetItemPtr 355
TblSetItemStyle 356
TblSetLoadDataProcedure 357
TblSetRowData 358
TblSetRowHeight 358
TblSetRowSelectable 359
TblSetRowStaticHeight 360
TblSetRowUsable 360
TblSetSaveDataProcedure 361
TblUnhighlightSelection 361
text

finding with GetCharCaselessValue 283
text clipboard 214
time

SelectTime function 334
time system resource 122
timer 37
title (form) 81
titles

active area 180
copying form title 253

U
UI design 26
UI objects 115Ð163

buttons 116
check box 116
control objects 116
field 122
form 130
insertion point 139
list 140
menu bars 145
popup trigger 116
push button 116
selector trigger 116
table 154
windows 159

UI resources 74Ð??, 114Ð??
creating 74
custom 98

up arrow 124
user interaction design 26

V
version number (system) 42

W
Warning alert 77
WinAddWindow 363
WinClipRectangle 363
WinCopyRectangle 364
WinCreateOffscreenWindow 366
WinCreateWindow 365
WinDeleteWindow 367
WinDisplayToWindowPt 368
window list 259
window objects 159

fields of structure 160
function list 162
off-screen 159
structure 159

windows
active window 191
enabled window 374

WinDrawBitmap 368
WinDrawChars 369
WinDrawGrayLine 369
WinDrawGrayRectangleFrame 370
WinDrawInvertedChars 371
404 Developing Palm OS 2.0 Applications, Part I

WinDrawLine 371
WinDrawRectangle 372
WinDrawRectangleFrame 373
WinDrawWindowFrame 373
WinEnableWindow 374
winEnterEvent 191
WinEraseChars 374
WinEraseLine 375
WinEraseRectangle 375
WinEraseRectangleFrame 376
WinEraseWindow 376
winExitEvent 192
WinFillLine 377
WinFillRectangle 377
WinGetActiveWindow 378
WinGetClip 378
WinGetDisplayExtent 379
WinGetDisplayWindow 379
WinGetDrawWindow 380
WinGetFirstWindow 380
WinGetFramesRectangle 381
WinGetPattern 382
WinGetWindowBounds 382

WinGetWindowExtent 383
WinGetWindowFrameRect 383
WinGetWindowPointer 384
WinInitializeWindow 384
WinInvertChars 385
WinInvertLine 385
WinInvertRectangle 386
WinInvertRectangleFrame 386
WinModal 387
WinRemoveWindow 387
WinResetClip 388
WinRestoreBits 388
WinSaveBits 389
WinScrollRectangle 390
WinSetActiveWindow 391
WinSetClip 391
WinSetDrawWindow 392
WinSetPattern 392
WinSetUnderlineMode 393
WinSetWindowBounds 393
WinType structure 159
WinWindowToDisplayPt 394
word wrap 249
Developing Palm OS 2.0 Applications, Part I 405

	Table of Contents
	About This Document
	Palm OS SDK Documentation
	What This Guide Contains
	Conventions Used in This Guide

	Developing Palm OS Applications
	Overview of Application Development
	Designing UI and Program Functionality
	Designing Screen Layout and User Interaction

	Constructing UI Resources
	Using Managers and Filling Out the Program Logic
	Using Events and Launch Codes
	Using Palm OS Managers

	Building, Debugging, and Testing
	Building the Application and Running it on the Dev...
	Using Other Components of the SDK

	Internal Structure of an Application
	The ‘code’ #1 Resource
	The ‘pref’ #0 Resource
	The ‘code’ #0 and ‘date’ #0 Resources

	Naming Conventions
	Basic Hardware
	RAM and ROM
	Palm OS Modes of Operation
	Palm OS Connectivity
	Real-Time Clock and Timer
	Palm OS Device Screen and Sound Generation
	Palm OS Device Reset Switch
	Soft Reset
	Soft Reset + Up Arrow
	Hard Reset

	Different Palm OS Devices
	Running 1.0 Applications on the 2.0 Device
	Compiling 1.0 Applications With Palm OS 2.0
	Using Palm OS 2.0 Features
	Running 2.0 Applications on a 1.0 Device
	Retrieving the System Version Number

	Application Control Flow
	How Events Control an Application
	Basic Application Stages
	The Startup Routine
	The Event Loop
	The Stop Routine

	How Launch Codes Control an Application
	Parameter Block
	Launch Flags

	Launch Code Example
	Summary of all Launch Codes
	More About Launch Codes
	sysAppLaunchCmdAlarmTriggered
	Impact on Application

	sysAppLaunchCmdCountryChange
	Impact on Application

	sysAppLaunchCmdDisplayAlarm
	Perform full, possibly blocking, handling of alarm...
	Impact on Application

	sysAppLaunchCmdFind
	Impact on Application
	sysAppLaunchCmdFind Parameter Block

	sysAppLaunchCmdGoto
	Impact on Application
	sysAppLaunchCmdGoto Parameter Block

	sysAppLaunchCmdInitDatabase
	Impact on Application
	sysAppLaunchCmdInitDatabase Parameter Block

	sysAppLaunchCmdLookup
	Impact on Application
	Parameter Block

	sysAppLaunchCmdPanelCalledFromApp
	Impact on Application

	sysAppLaunchCmdReturnFromPanel
	sysAppLaunchCmdSaveData
	Impact on Application
	sysAppLaunchCmdSaveData Parameter Block

	sysAppLaunchCmdSyncNotify
	sysAppLaunchCmdSystemLock
	Impact on Application

	sysAppLaunchCmdSystemReset
	Impact on Application
	sysAppLaunchCmdSystemReset Parameter Block

	sysAppLaunchCmdSystemTimeChange
	Impact on Application

	More About Launch Flags
	Responding to Launch Codes
	Determining Status When Receiving Launch Code

	Predefined Launch Codes
	Creating Your Own Launch Codes

	Palm OS User Interface Resources
	Using Constructor to Work With Resources
	Creating Resources
	Changing Resources

	Project Resources
	Alerts
	Form Resource
	String Resource
	Menus and Menu Bars
	Menu Overview
	Creating a Menu
	Menu Bar and Menu Resources
	Menu User Interaction
	Event Flow for Menu Resource

	Catalog Resources
	Button Resource
	Making a Button with a Bitmap Label

	Check Box Resource
	Field Resource
	Form Bitmap Resource
	Gadget Resource
	Graffiti Shift Indicator Resource
	Label Resource
	List Resource
	Popup Trigger Resource
	Push Button Resource
	Repeating Button Resource
	Scrollbar Resource
	Selector Trigger Resource
	Table Resource

	Palm OS User Interface Objects
	A Note on the Rectangle Structure
	Control Objects
	Control Object Events
	Structure of a Control
	Fields of a ControlType Structure

	Associated Resources
	Control Functions

	Date and Time Objects
	Date and Time Functions

	Field Objects
	Field Object Events
	Structure of a Field
	Fields of a Field Structure
	Field Attributes

	Associated Resources
	Field Functions

	Form Objects
	Form Object Events

	Structure of a Form
	Fields of Form Objects
	Associated Resource
	Form Functions

	Insertion Point Object
	Insertion Point Functions

	List Object
	List Object Events
	Structure of a List
	List Object Fields

	Associated Resources
	List Functions

	Menu Objects
	Menu Events
	Structure of a Menu
	Menu Object Fields
	Menu Pull-Down Fields
	Menu Item Fields
	Associated Resources

	Menu Functions

	Scrollbar Object
	Scrollbar Fields

	Table Objects
	Table Event
	Structure of a Table
	Fields of a Table Structure

	Associated Resource
	Table Functions

	Window Objects
	Window Events
	Structure of a Window
	Fields of a Window Structure

	Window Functions

	Using Palm OS UI Managers
	The Alert Manager
	Alert Resource Information
	Alert Manager Functions

	The Graffiti Manager
	Using GrfProcessStroke
	Using Other High-Level Graffiti Manager Calls
	Special-Purpose Graffiti Manager Calls
	Accessing Graffiti ShortCuts
	2.0 Note on Auto Shifting
	2.0 Note on Graffiti Help
	Graffiti Manager Functions

	The Key Manager
	The Pen Manager

	Palm OS Events
	appStopEvent
	ctlEnterEvent
	ctlExitEvent
	ctlRepeatEvent
	ctlSelectEvent
	daySelectEvent
	fldChangedEvent
	fldEnterEvent
	fldHeightChangedEvent
	frmCloseEvent
	frmLoadEvent
	frmOpenEvent
	frmSaveEvent
	frmUpdateEvent
	keyDownEvent
	lstEnterEvent
	lstExitEvent
	lstSelectEvent
	menuEvent
	nilEvent
	penDownEvent
	penMoveEvent
	penUpEvent
	popSelectEvent
	tblEnterEvent
	tblExitEvent
	tblSelectEvent
	winEnterEvent
	winExitEvent

	Palm OS User Interface Functions
	Category Functions
	CategoryCreateList
	CategoryCreateListV10
	CategoryEdit
	CategoryEditV10
	CategoryFind
	CategoryFreeList
	CategoryFreeListV10

	CategoryGetName
	CategoryGetNext
	CategoryInitialize

	CategoryTruncateName
	CategorySetName

	CategorySetTriggerLabel
	CategorySelect
	CategorySelectV10

	ClipBoard Functions
	ClipboardAddItem
	ClipboardGetItem

	Control Functions
	CtlDrawControl
	CtlEraseControl
	CtlGetLabel
	CtlGetValue
	CtlHandleEvent
	CtlHideControl
	CtlHitControl
	CtlEnabled
	CtlSetEnabled
	CtlSetLabel
	CtlSetUsable
	CtlSetValue
	CtlShowControl

	Field UI Functions
	FldCalcFieldHeight
	FldCompactText
	FldCopy
	FldCut
	FldDelete
	FldDirty
	FldDrawField
	FldEraseField
	FldFreeMemory
	FldGetAttributes
	FldGetBounds
	FldGetFont
	FldGetInsPtPosition
	FldGetMaxChars
	FldGetNumberOfBlankLines

	FldGetScrollPosition
	FldGetScrollValues

	FldGetSelection
	FldGetTextAllocatedSize
	FldGetTextHandle
	FldGetTextHeight
	FldGetTextLength
	FldGetTextPtr
	FldGetVisibleLines
	FldGrabFocus
	FldHandleEvent
	FldInsert
	FldMakeFullyVisible
	FldPaste
	FldRecalculateField
	FldReleaseFocus
	FldScrollable
	FldScrollField
	FldSendChangeNotification
	FldSendHeightChangeNotification
	FldSetAttributes
	FldSetBounds
	FldSetDirty
	FldSetFont
	FldSetInsertionPoint

	FldSetInsPtPosition
	FldSetMaxChars
	FldSetScrollPosition
	FldSetSelection
	FldSetText
	FldSetTextAllocatedSize
	FldSetTextHandle
	FldSetTextPtr
	FldSetUsable
	FldUndo
	FldWordWrap

	Font Functions
	FntAccentHeight
	FntAscent
	FntAverageCharWidth
	FntBaseLine
	FntCharHeight
	FntCharsInWidth
	FntCharsWidth
	FntCharWidth
	FntDescenderHeight
	FntGetFont
	FntGetFontPtr
	FntGetScrollValues

	FntLineHeight
	FntLineWidth
	FntProportionalFont
	FntSetFont
	FntWordWrap
	FntWordWrapReverseNLines

	Form Functions
	FrmAlert
	FrmCloseAllForms
	FrmCopyLabel
	FrmCopyTitle
	FrmCustomAlert
	FrmDeleteForm
	FrmDispatchEvent
	FrmDoDialog
	FrmDrawForm
	FrmEraseForm
	FrmGetActiveForm
	FrmGetActiveFormID
	FrmGetControlGroupSelection
	FrmGetControlValue
	FrmGetFirstForm
	FrmGetFocus
	FrmGetFormBounds
	FrmGetFormId
	FrmGetFormPtr
	FrmGetGadgetData
	FrmGetLabel
	FrmGetNumberOfObjects
	FrmGetObjectBounds
	FrmGetObjectId
	FrmGetObjectIndex
	FrmGetObjectPosition
	FrmGetObjectPtr
	FrmGetObjectType
	FrmGetTitle
	FrmGetUserModifiedState
	FrmGetWindowHandle
	FrmGotoForm
	FrmHandleEvent
	FrmHelp
	FrmHideObject
	FrmInitForm
	FrmPointInTitle

	FrmPopupForm
	FrmReturnToForm
	FrmSaveAllForms
	FrmSetActiveForm
	FrmSetCategoryLabel
	FrmSetControlGroupSelection
	FrmSetControlValue
	FrmSetEventHandler
	FrmSetFocus
	FrmSetGadgetData
	FrmSetNotUserModified
	FrmSetMenu
	FrmSetObjectBounds

	FrmSetObjectPosition
	FrmSetTitle
	FrmShowObject
	FrmUpdateScrollers
	FrmUpdateForm
	FrmVisible

	Character Attribute Functions
	GetCharAttr
	GetCharCaselessValue
	GetCharSortValue

	Graffiti Manager Functions
	GrfAddMacro
	GrfAddPoint
	GrfCleanState
	GrfDeleteMacro
	GrfFindBranch
	GrfFilterPoints
	GrfFlushPoints
	GrfGetAndExpandMacro
	GrfGetGlyphMapping
	GrfGetMacro
	GrfGetMacroName
	GrfGetNumPoints
	GrfGetPoint
	GrfGetState
	GrfInitState
	GrfMatch
	GrfMatchGlyph
	GrfProcessStroke
	GrfSetState
	SysShortCutListDialog
	Functions for System Use Only
	GrfFieldChange
	GrfFree

	GraffitiShift Functions
	GsiEnable
	GsiEnabled
	GsiInitialize
	GsiSetLocation
	GsiSetShiftState

	Insertion Point Functions
	InsPtEnable
	InsPtEnabled
	InsPtGetHeight
	InsPtGetLocation
	InsPtSetHeight
	InsPtSetLocation
	Functions for System Use Only
	InsPtCheckBlink
	InsPtInitialize

	Key Manager Functions
	KeyCurrentState
	KeyRates
	Functions for System Use Only
	KeyBootKeys
	KeyHandleInterrupt
	KeyInit
	KeyResetDoubleTap
	KeySleep
	KeyWake

	List UI Functions
	LstDrawList
	LstEraseList
	LstGetNumberOfItems
	LstGetVisibleItems

	LstGetSelection
	LstGetSelectionText
	LstHandleEvent
	LstMakeItemVisible
	LstPopupList
	LstScrollList

	LstSetDrawFunction
	LstSetHeight
	LstSetListChoices
	LstSetPosition
	LstSetSelection
	LstSetTopItem

	Menu Functions
	MenuDispose
	MenuDrawMenu
	MenuEraseStatus
	MenuGetActiveMenu
	MenuHandleEvent
	MenuInit
	MenuSetActiveMenu

	Miscellaneous User Interface Functions
	AbtShowAbout
	DayHandleEvent
	LocGetNumberSeparators
	KeySetMask

	Pen Manager Functions
	PenCalibrate
	PenResetCalibration
	Functions for System Use Only
	PenClose
	PenGetRawPen
	PenOpen
	PenSleep
	PenRawToScreen
	PenScreenToRaw
	PenWake

	Scrollbar Functions
	SclDrawScrollBar
	SclGetScrollBar
	SclHandleEvent
	SclSetScrollBar

	Functions for System Use Only
	Find
	FindDrawHeader
	FindGetLineBounds
	FindSaveMatch
	FindStrInStr
	UIInitialize
	UIReset

	Time Selection Functions
	SelectDay
	SelectDayV10
	SelectTime

	Table Functions
	TblDrawTable
	TblEditing
	TblEraseTable
	TblFindRowData
	TblFindRowID
	TblGetBounds
	TblGetColumnSpacing
	TblGetColumnWidth
	TblGetCurrentField
	TblGetItemBounds
	TblGetItemInt
	TblGetLastUsableRow
	TblGetNumberOfRows
	TblGetRowData
	TblGetRowHeight
	TblGetRowID
	TblGetSelection
	TblGrabFocus
	TblHandleEvent
	TblHasScrollBar

	TblInsertRow
	TblMarkRowInvalid
	TblMarkTableInvalid
	TblRedrawTable
	TblReleaseFocus
	TblRemoveRow
	TblRowInvalid
	TblRowSelectable
	TblRowUsable
	TblSelectItem
	TblSetBounds
	TblSetColumnEditIndicator

	TblSetColumnSpacing
	TblSetColumnUsable
	TblSetColumnWidth
	TblSetCustomDrawProcedure
	TblSetItemInt
	TblSetItemPtr
	TblSetItemStyle
	TblSetLoadDataProcedure
	TblSetRowData
	TblSetRowHeight
	TblSetRowID
	TblSetRowSelectable
	TblSetRowStaticHeight

	TblSetRowUsable
	TblSetSaveDataProcedure
	TblUnhighlightSelection

	Window Functions
	WinAddWindow
	WinClipRectangle
	WinCopyRectangle
	WinCreateWindow
	WinCreateOffscreenWindow
	WinDeleteWindow
	WinDisableWindow
	WinDisplayToWindowPt
	WinDrawBitmap
	WinDrawChars
	WinDrawGrayLine
	WinDrawGrayRectangleFrame
	WinDrawInvertedChars
	WinDrawLine
	WinDrawRectangle
	WinDrawRectangleFrame
	WinDrawWindowFrame
	WinEnableWindow
	WinEraseChars
	WinEraseLine
	WinEraseRectangle
	WinEraseRectangleFrame
	WinEraseWindow
	WinFillLine
	WinFillRectangle
	WinGetActiveWindow
	WinGetClip
	WinGetDisplayExtent
	WinGetDisplayWindow
	WinGetDrawWindow
	WinGetFirstWindow
	WinGetFramesRectangle
	WinGetPattern
	WinGetWindowBounds
	WinGetWindowExtent
	WinGetWindowFrameRect
	WinGetWindowPointer
	WinInitializeWindow
	WinInvertChars
	WinInvertLine
	WinInvertRectangle
	WinInvertRectangleFrame
	WinModal
	WinRemoveWindow
	WinResetClip
	WinRestoreBits
	WinSaveBits
	WinScrollRectangle
	WinSetActiveWindow
	WinSetClip
	WinSetDrawWindow
	WinSetPattern
	WinSetUnderlineMode
	WinSetWindowBounds

	WinWindowToDisplayPt

	Index

