

Welcome to

Developing PalmOS 2.0
Applications

Part III: Memory and
Communications Management

Navigate this online document as follows:

To see bookmarks Type Control-7
To see information on
Adobe Acrobat Reader

Type Control-?

To navigate Click on
any blue hypertext link
any Table of Contents entry
arrows in the menu bar

U.S. Robotics¨

Developing Palm OSª2.0
Applications

Part III
Some information in this manual may be out of date.

Read all Release Notes Þles for the latest information.

©1996, 1997 U.S. Robotics, Inc. All rights reserved.

Documentation stored on the compact disk may be printed by licensee for personal use.
Except for the foregoing, no part of this documentation may be reproduced or transmit-
ted in any form by any means, electronic or mechanical, including photocopying, record-
ing, or any information storage and retrieval system, without permission in writing from
U.S. Robotics.

U.S. Robotics, the U.S. Robotics logo and GrafÞti are registered trademarks, and Palm
Computing, HotSync, the Palm OS, and the Palm OS logo are trademarks of U.S. Robot-
ics and its subsidiaries.

All other trademarks or registered trademarks are the property of their respective
owners.

ALL SOFTWARE AND DOCUMENTATION ON THE COMPACT DISC ARE SUBJECT
TO THE LICENSE AGREEMENT.

Contact Information:

Metrowerks U.S.A. and international Metrowerks Corporation
2201 Donley Drive, Suite 310
Austin, TX 78758
U.S.A.

Metrowerks Canada Metrowerks Inc.
1500 du College, Suite 300
Ville St-Laurent, QC
Canada H4L 5G6

Metrowerks Mail order Voice: 1-800-377Ð5416
Fax: 1-512-873Ð4901

U.S. Robotics, Palm Computing Division
Mail Order

U.S.A. and Canada: 1-800-881-7256
elsewhere 1-408-848-5604

Metrowerks World Wide Web http://www.metrowerks.com

U.S. Robotics, Palm Computing Division
World Wide Web

http://www.usr.com/palm

Registration information register@metrowerks.com

Technical support support@metrowerks.com

Sales, marketing, & licensing sales@metrowerks.com

CompuServe goto Metrowerks

Table of Contents
About This Document. . 15

Palm OS SDK Documentation 15
What This Guide Contains 16
Conventions Used in This Guide 16

1 Palm OS Memory Management . 19
Introduction to Memory Use on Palm OS 20

RAM and ROM Use 20
PC Connectivity . 21

Memory Architecture 21
Data Storage . 22
Accessing Data. 23

Memory Structure Overview 23
How Applications Access Data 24

Locating Storage Data With Local IDs 24
The Memory Manager. 26

Memory Hierarchy: RAM Store and ROM Store 26
Heap Overview . 27
Memory Manager Structures. 28

Heap Structures 28
Chunk Structures 29
Local ID Structures 30

Using the Memory Manager 31
Memory Manager Function Summary. 32

The Data Manager . 34
Records and Databases 34

Accessing Data With Local IDs. 35
Structure of a Database Header. 35

Database Header Fields. 36
Structure of a Record Entry in a Database Header 37

Using the Data Manager 38
Data Manager Function Summary 41

The Resource Manager 42
Structure of a Resource Database Header 43
Developing Palm OS 2.0 Applications, Part III v

Table of Contents

Using the Resource Manager. 44
Resource Manager Functions 46

2 Memory Management Functions 47
Memory Manager Functions 47

MemCardInfo . 47
MemChunkFree . 48
MemCmp 49
MemDebugMode 49
MemHandleDataStorage 50
MemHandleCardNo 50
MemHandleFree . 51
MemHandleHeapID 51
MemHandleLock. 52
MemHandleNew. 52
MemHandleResize 53
MemHandleSize . 54
MemHandleToLocalID 54
MemHandleUnlock. 55
MemHeapCheck . 55
MemHeapCompact. 56
MemHeapDynamic. 56
MemHeapFlags . 57
MemHeapFreeBytes 58
MemHeapID . 59
MemHeapScramble. 59
MemHeapSize . 60
MemLocalIDKind 60
MemLocalIDToGlobal 61
MemLocalIDToLockedPtr 61
MemLocalIDToPtr 62
MemMove . 62
MemNumCards . 63
MemNumHeaps . 63
MemNumRAMHeaps 64
MemPtrCardNo . 64
vi Developing Palm OS 2.0 Applications, Part III

Table of Contents

MemPtrDataStorage 65
MemPtrFree . 65
MemPtrHeapID . 66
MemPtrToLocalID 66
MemPtrNew. 67
MemPtrRecoverHandle 67
MemPtrResize . 68
MemSet . 68
MemSetDebugMode 69
MemPtrSiz . 69
MemPtrUnlock . 70
MemStoreInfo . 70
Functions for System Use Only. 71

MemCardFormat 71
MemChunkNew. 72
MemHandleFlags 72
MemHandleLockCount. 72
MemHandleOwner 72
MemHandleResetLock 72
MemHandleSetOwner 72
MemHeapFreeByOwnerID 73
MemHeapInit . 73
MemInit . 73
MemInitHeapTable. 73
MemKernelInit 73
MemPtrFlags . 74
MemPtrOwner 74
MemPtrResetLock 74
MemPtrSetOwner 74
MemSemaphoreRelease. 74
MemSemaphoreReserve 74
MemStoreSetInfo 75

Data and Resource Manager Functions 77
DmArchiveRecord 77
DmAttachRecord. 78
DmAttachResource 79
Developing Palm OS 2.0 Applications, Part III vii

Table of Contents

DmCloseDatabase 80
DmCreateDatabase 80
DmCreateDatabaseFromImage. 81
DmDatabaseInfo . 82
DmDatabaseProtect 83
DmDatabaseSize . 84
DmDeleteCategory 85
DmDeleteDatabase 85
DmDeleteRecord . 86
DmDetachRecord 87
DmDetachResource. 88
DmFindDatabase. 89
DmFindRecordByID 89
DmFindResource. 90
DmFindResourceType 91
DmFindSortPosition 92
DmFindSortPosition 93
DmGetAppInfoID 95
DmGetDatabase . 95
DmGetLastErr . 96
DmGetNextDatabaseByTypeCreator 97
DmGetRecord . 99
DmGetResource . 100
DmGetResourceIndex. 100
DmGet1Resource. 101
DmInsertionSort . 102
DmMoveCategory 104
DmMoveRecord . 105
DmNewHandle . 106
DmNextOpenDatabase 106
DmNextOpenResDatabase 107
DmNewRecord . 108
DmNewResource 109
DmNumDatabases 110
DmNumRecords 110
DmNumRecordsInCategory 111
viii Developing Palm OS 2.0 Applications, Part III

Table of Contents

DmNumResources 111
DmOpenDatabase 112
DmOpenDatabaseByTypeCreator 113
DmOpenDatabaseInfo 114
DmPositionInCategory 115
DmQueryNextInCategory 116
DmQueryRecord 117
DmQuickSort . 118
DmRecordInfo . . 119
DmResourceInfo 120
DmReleaseRecord 121
DmReleaseResource 121
DmRemoveRecord 122
DmRemoveResource 123
DmRemoveSecretRecords 123
DmResetRecordStates. 124
DmResizeRecord 125
DmResizeResource 126
DmSearchRecord. 126
DmSearchResource 127
DmSeekRecordInCategory 128
DmSet . 129
DmSetDatabaseInfo 129
DmSetRecordInfo 131
DmSetResourceInfo 132
DmStrCopy . 133
DmWrite . 134
DmWriteCheck . 135
System Use Only 135

DmMoveOpenDBContext. 135

3 Palm OS Communications . 137
Byte Ordering . 137
Communications Architecture Hierarchy 138
The Serial Manager . 140

Using the Serial Manager 140
Developing Palm OS 2.0 Applications, Part III ix

Table of Contents

Serial Manager Function Summary 145
The Serial Link Protocol 146

SLP Packet Structures 146
SLP Packet Format 146
Packet Type Assignment 148
Socket ID Assignment 148
Transaction ID Assignment 149

Transmitting an SLP Packet 149
Receiving an SLP Packet 149

The Serial Link Manager. 150
Using the Serial Link Manager 150
Serial Link Manager Function Summary. 154

4 Communications Functions. 155
Serial Manager Functions 155

SerClearErr . 155
SerClose . 156
SerControl 157
SerGetSettings . . 158
SerGetStatus . . 159
SerOpen . 160
SerReceive 161
SerReceive10 . 162
SerReceiveCheck 163
SerReceiveFlush . 163
SerReceiveWait . 164
SerSend 165
SerSend10 . . 166
SerSendWait . . 167
SerSetReceiveBuffer 168
SerSetSettings . 169
Functions Used Only by System Software 170

SerReceiveISP 170
SerReceiveWindowClose 170
SerReceiveWindowOpen 170
SerSetWakeupHandler 170
x Developing Palm OS 2.0 Applications, Part III

Table of Contents

SerSleep . 170
SerWake . 170

Serial Link Manager Functions 171
SlkClose . 171
SlkCloseSocket . . 172
SlkFlushSocket. . 173
SlkOpen . 173
SlkOpenSocket . . 174
SlkReceivePacket 175
SlkSendPacket . . 177
SlkSetSocketListener 178
SlkSocketRefNum 179
SlkSocketSetTimeout 179
Functions for Use By System Software Only 180

SlkSysPktDefaultResponse 180
SlkProcessRPC 180

Miscellaneous Communications Functions 180
Crc16CalcBlock . 180

5 Palm OS Net Library. 181
Overview . 182

Structure . 182
System Requirements 183
Constraints . 183

The ProgrammerÕs Interface 184
Net Library and Berkeley Sockets API: Differences 184
Example . 185

Using the Net Library 187
Setup and ConÞguration Calls 187

Interface SpeciÞc Settings 188
General Settings 188
Settings for Interface Selection 188
Summary . . 188

Runtime Calls . 189
Initialization and Shutdown 190

Calls Made Before Opening the Net Library 190
Developing Palm OS 2.0 Applications, Part III xi

Table of Contents

Opening the Net Library 190
Closing the Net Library 191
Summary of Initialization 191
Initialization Example 192

Version Checking. 193
Network I/O and Utility Calls 194

6 Net Library Functions . 197
Library Open and Close 198

NetLibOpen 198
NetLibClose 200
NetLibOpenCount 201
NetLibConnectionRefresh 202
NetLibFinishCloseWait 203

Socket Creation and Deletion. 204
NetLibSocketOpen 204
NetLibSocketClose 206

Socket Options . . 207
NetLibSocketOptionSet 207
NetLibSocketOptionGet 210

Socket Connections . 212
NetLibSocketBind 212
NetLibSocketConnect 213
NetLibSocketListen 215
NetLibSocketAccept 217
NetLibSocketAddr 219
NetLibSocketShutdown 221

Send and Receive Routines. 222
NetLibSendPB 222
NetLibSend 224
NetLibReceivePB 226
NetLibReceive 228
NetLibDmReceive 230

Utilities . 233
NetHToNS 233
NetHToNL 233
NetNToHS 234
NetNToHL 234
NetLibAddrAToIN 235
xii Developing Palm OS 2.0 Applications, Part III

Table of Contents

NetLibAddrINToA 236
NetLibSelect . . 237
NetLibGetHostByName 239
NetLibGetMailExchangeByName 241
NetLibGetHostByAddr 243
NetLibGetServByName 246
NetLibTracePrintF 247
NetLibTracePutS 248
NetLibMaster 249

netMasterInterfaceInfo 250
netMasterInterfaceStats 251
netMasterIPStats 252
netMasterICMPStats 252
netMasterUDPStats 252
netMasterTCPStats 252
netMasterTraceEventGet 252

ConÞguration . 253
NetLibSettingGet 253
NetLibSettingSet 256
NetLibIFGet 258
NetLibIFAttach 259
NetLibIFDetach 260
NetLibIFUp 261
NetLibIFDown 262
NetLibIFSettingGet 263
NetLibIFSettingSet 270

Berkeley Sockets API Calls 273
Supported Socket Functions 274
Supported Network Utility Functions 277
Supported Byte Ordering Functions 277
Supported Network Address Conversion Functions 278
Supported System Utility Functions 278

Index . 279
Developing Palm OS 2.0 Applications, Part III xiii

Table of Contents

xiv Developing Palm OS 2.0 Applications, Part III

About This Document

Developing Palm OS 2.0 Applications, Part III, is part of the Palm
OS Software Development Kit. This introduction provides an over-
view of SDK documentation. It discusses the materials included and
the conventions used in this document.

Palm OS SDK Documentation
The following documents are part of the SDK:

Document Description

Palm OS 2.0 Tutorial Twenty-one Phases step developers through how to use the
different part of the system. Each phase includes example
applications.

Developing Palm OS
2.0 Applications.
Part I: Interface Man-
agement

A programmerÕs guide and reference document that intro-
duces all important aspects of developing an applications.
See What This Guide Contains for details.

Developing Palm OS
2.0 Applications.
Part II: System Man-
agement

A programmerÕs guide and reference document for all sys-
tem managers, such as the string manager or the system
event manager.

Developing Palm OS
2.0 Applications,
Part III. Memory and
Communications Man-
agement

ProgrammerÕs guide and reference document for

¥ Memory management; both the database manager and
the memory manager.

¥ The Palm OS communications library for serial com-
munication.

¥ The Palm OS net library, which provides basic net-
work services.

Palm OS 2.0 Cookbook Information about using CodeWarrior for Pilot to create
projects and executables. Also provides a variety of design
guidelines, including localization design guidelines.
Developing Palm OS 2.0 Applications, Part III 15

About This Document

What This Guide Contains

What This Guide Contains
The following are chapter overviews for this guide.

¥ Chapter 1, ÒPalm OS Memory Management,Ó helps you under-
stand memory management on Palm OS. It Þrst discusses mem-
ory layout and architecture, then explains how to use the three
memory managers, which comprise the memory management
API.

¥ Chapter 2, ÒMemory Management Functions,Ó provides ref-
erence-style information for each memory manager function.

¥ Chapter 3, ÒPalm OS Communications,Ó discusses the com-
munications software, which provides the serial communica-
tions capabilities for Palm OS.

¥ Chapter 4, ÒCommunications Functions,Ó provides reference
information for the serial manager functions, serial link man-
ager functions, and miscellaneous communications func-
tions.

¥ Chapter 5, ÒPalm OS Net Library,Ó introduces the Palm OS
net library and explains how to use it.

¥ Chapter 6, ÒNet Library Functions,Ó provides reference infor-
mation for all net library functions, as well as an overview of
the parallel Berkeley Sockets API calls.

Conventions Used in This Guide
This guide uses the following typographical conventions:

This style... Is used for...

fixed width font Code elements such as function,
structure, Þeld, bitÞeld.

fixed width underline Emphasis (for code elements).

bold Emphasis (for other elements).

blue and underlined Hot links.
16 Developing Palm OS 2.0 Applications, Part III

About This Document

Conventions Used in This Guide

black and underlined 2.0 function names (headings
only).

red and underlined 2.0 function names (in Table of
Contents only)

This style... Is used for...
Developing Palm OS 2.0 Applications, Part III 17

About This Document

Conventions Used in This Guide

18 Developing Palm OS 2.0 Applications, Part III

1
Palm OS Memory
Management
This chapter helps you understand memory use on Palm OS. It
starts with an introduction to memory layout and memory architec-
ture.

¥ Introduction to Memory Use on Palm OS provides information
about Palm OS hardware relevant to memory management. For
more information on Palm OS hardware, see ÒBasic HardwareÓ
in Chapter 1 of ÒDeveloping Palm OS Applications, Part 1.Ó

¥ Memory Architecture discusses in detail how memory is
structured on Palm OS. It includes a discussion of the structure
of heaps, chunks, and records, the basic building blocks of Palm
OS memory.

The second part of the chapter explains the different parts of the sys-
temÑthe managersÑthat you can use for memory management.
Each discussion includes a brief overview of the relevant functions,
with links to the related function descriptions.

¥ The Memory Manager maintains location and size of each
memory chunk in nonvolatile storage, volatile storage, and
ROM. It provides functions for allocating chunks, disposing of
chunks, resizing chunks, locking and unlocking chunks, and
compacting the heap when it becomes fragmented.

¥ The Data Manager manages user data, which is stored in
databases for convenient access.

¥ The Resource Manager can be used by applications to
conveniently retrieve and save chunks of data. ItÕs similar to the
data manager, but has the added capability of tagging each
chunk with a unique resource type and ID. These tagged data
chunks, called resources, are stored in resource databases.
Resources are typically used to store the applicationÕs user
interface elements, such as images, fonts, or dialog layouts.
Developing Palm OS 2.0 Applications, Part III 19

Palm OS Memory Management

Introduction to Memory Use on Palm OS

2.0 Note The Palm OS 2.0 memory manager no longer spreads the load
between the different storage heaps. As a result, large applications
are more likely to Þt on a device than they were under Palm OS
1.0.

Introduction to Memory Use on Palm OS
The Palm OS system software supports applications on low-cost,
low-power, palm-top devices. Given these constraints, Palm OS is
efÞcient in its use of both memory and processing resources. This
section looks at two aspects of the device that contribute to this efÞ-
ciency: RAM and ROM Use and PC Connectivity.

RAM and ROM Use

The Þrst implementation of Palm OS provides nearly instantaneous
response to user input while running on a 16 MHz Motorola¨ 68000
type processor with a minimum of 128K of nonvolatile storage
memory and 512K of ROM. The target battery life is 40 hours or
more of ÒonÓ time from two AAA alkaline batteries.

The Palm OS device has its main suite of applications prebuilt into
ROM. The preferred method for updating or enhancing the software
is by replacing the ROM. Additional or replacement applications
and system extensions can be loaded into RAM, but given the limit-
ed amount of RAM, this alternative is not always practical. The
ROM and RAM on each Palm OS device is on a memory module,
permitting the user to completely replace the entire system software
and applications suite by installing a single replacement module.
There is no RAM or ROM storage on the motherboard of the device.

Because the Palm OS device permits easy, wholesale replacement of
the memory module, the design and operation of the system soft-
ware does not have to be cast in stone. Each new ROM module for a
Palm OS device can have different system software and applications
on it. It is still advantageous, however, to keep applications compat-
ible at the source code level to minimize the engineering effort re-
quired to produce each new version of the ROM module.
20 Developing Palm OS 2.0 Applications, Part III

Palm OS Memory Management
Memory Architecture
PC Connectivity

PC connectivity is an integral component of the Palm OS device.
The device comes with a cradle that connects to a desktop PC and
with software for the PC that provides Òone-buttonÓ backup and
synchronization of all data on the device with the userÕs PC.

Because all user data can be backed up on the PC, replacement of
the nonvolatile storage area of the Palm OS device becomes a simple
matter of installing the new module in place of the old one and re-
synchronizing with the PC. The format of the userÕs data in the stor-
age RAM can change with a new version of the ROM; the connectiv-
ity software on the PC is responsible for translating the data into the
correct format when downloading it onto a device with a new ROM.

Memory Architecture
The Palm OS system software is designed around a 32-bit architec-
ture. As a result, there are 32-bit addresses, and the basic data types
are 8, 16, and 32 bits long. The Motorola 68328 processorÕs registers
are all 32 bits wide, which allows a 32-bit execution model. The ex-
ternal data bus is only 16 bits wide; this size reduces cost without
impacting the software model. The processorÕs bus controller auto-
matically breaks down 32-bit reads and writes into multiple 16-bit
reads and writes externally.

The 32-bit addresses available to software provide a total of 4 GB of
address space for storing code and data. This address space affords
a large growth potential for future revisions of both the hardware
and software without affecting the execution model (the Þrst ship-
ping version has less than 1 MB of memory, or .025% of this address
space).

Although a large memory space is available, Palm OS was designed
to work efÞciently with small amounts of RAM. It uses a total of
only 32K of RAM as working space: stacks, globals, temporary
memory allocations, etc. This leaves the remainder of RAM avail-
able for storing such user data as appointments, to do lists, memos,
address lists, etc.
Developing Palm OS 2.0 Applications, Part III 21

Palm OS Memory Management
Memory Architecture
The Palm OS system software divides the total available RAM into
two virtual pieces: dynamic RAM and storage RAM. The dynamic
area of RAM is the 32K used for working space and is analogous to
the total amount of memory installed in a typical desktop system.
The remainder of the available RAM is designated as storage RAM
and is analogous to disk storage on a typical desktop system.

Since power is always applied to the memory system, both areas of
RAM preserve their contents when the device is turned ÒoffÓ (i.e., is
in low-power sleep mode. See ÒPalm OS Power ModesÓ in Chapter
6, ÒUsing Palm OS Managers,Ó of ÒDeveloping Palm OS Applica-
tions, Part 1.Ó Even when the device is explicitly reset, all of memory
is preserved, but the system software reinitializes the dynamic area
only as part of the boot sequence.

Data Storage

Because the Palm OS device has a limited amount of dynamic mem-
ory available and uses nonvolatile RAM instead of disk storage, a
traditional Þle system is not the optimal means for storing and re-
trieving user data such as meetings or address book entries.

Traditional Þle systems work by Þrst reading all or a portion of a Þle
into a memory buffer from disk, using or updating the information
in the memory buffer, and then writing the updated memory buffer
back to disk. Because of the high latency involved in reading or
writing to disk, it is not practical to use small memory buffers and
typically many kilobytes of data are read from or written to disk at a
time.

On the Palm OS device, it makes more sense to access and update
data directly in place, because all nonvolatile information in the
Palm OS device is stored in memory. This eliminates the extra over-
head involved in a Þle system of transferring the data to and from
another memory buffer and also reduces the dynamic memory re-
quirements.

As a further enhancement, data in the Palm OS device is broken
down into multiple Þnite-size records, which can be left freely scat-
tered throughout the memory space. Allowing records to be scat-
22 Developing Palm OS 2.0 Applications, Part III

Palm OS Memory Management
Memory Architecture
tered this way means that the process of adding, deleting, or resiz-
ing a record does not require moving any other records around in
memory.

Accessing Data

User data on the Palm OS device can be managed at the lowest level
through the memory manager because:

¥ Most chunks of data, like address book records, datebook
records, etc., are relatively small (less than 256 bytes).

¥ All data is always resident in memory.

This section Þrst brießy discusses data organization, then explains
the basic principles behind accessing data. More details, including a
list of the API calls, are given in the sections on the different manag-
ers (The Memory Manager, The Data Manager, and The Resource
Manager).

Memory Structure Overview

The Palm OS memory manager is designed to work best with small
chunks of data; in fact, the Þrst implementation enforces the con-
straint that all chunks be less than 64K each (even though the API
does not have this constraint). To support this design, the memory
in the Palm OS device is subdivided into multiple heaps of less than
64K each (see Heap Overview), which can each contain one or more
chunks (see Chunk Structures). Because all heaps are less than 64K
each, memory overhead for managing each heap is kept to a mini-
mum since word (16-bit) offsets can be used to track each chunk in
the heap. Finding and compacting free space is also faster with
smaller heaps.

In the Palm OS environment all data are stored in memory manager
chunks and each chunk resides in a heap. These data include dy-
namic data (such as global variables), nonvolatile storage data (anal-
ogous to Þles in disk-based systems), and any data or resources in
ROM. Some heaps are ROM-based and contain only nonmovable
chunks; some are RAM-based and may contain movable or non-
movable chunks. RAM-based heaps may either be dynamic heaps
(for storing runtime variables) or storage heaps (for storage data).
Developing Palm OS 2.0 Applications, Part III 23

Palm OS Memory Management
Memory Architecture
Every memory chunk used to hold storage data (as opposed to
memory chunks used to store dynamic data) is also referenced
through a database. A database is analogous to a Þle in a traditional
desktop system. In the Palm OS environment, a database is simply a
list of all memory chunks that logically belong to a particular data-
base. Every storage data chunk belongs to one and only one data-
base. For every database, thereÕs a database header chunk that con-
tains a list of data chunks belonging to that database. See The Data
Manager for more information.

How Applications Access Data

Applications reference most data chunks in the Palm OS device
through handles, to minimize fragmentation of heaps. A handle is a
reference to a master chunk pointer. Using handles imposes a slight
performance penalty over direct pointer access but permits the
memory manager to move chunks around in the heap without in-
validating any chunk references that an application might have
stored away. As long as an application uses handles to reference
data, only the master pointer to a chunk needs to be updated by the
memory manager when it moves a chunk during defragmentation.

An application typically locks a chunk handle for a short time while
it has to read or manipulate the contents of the chunk. The process
of locking a chunk tells the memory manager to mark that data
chunk as immobile. When an application no longer needs the data
chunk, it should immediately unlock the handle to keep heap frag-
mentation to a minimum.

Locating Storage Data With Local IDs

Once a storage data record is located, an application can access it
through its handle. A handle, however, is good only until the system
is reset. Memory cards on the Palm OS device can be removed or in-
serted when power is off. When the system resets, it reinitializes all
dynamic memory areas and relaunches applications. A handle to a
storage chunk may not be the same after a reset if the user moves a
memory card to a slot with a different base address. To work in this
environment, all storage data on a memory card must be located
through memory-cardÐrelative references, called local IDs.
24 Developing Palm OS 2.0 Applications, Part III

Palm OS Memory Management
Memory Architecture
Note that the Þrst version of the hardware has only one slot.

A local ID is a card-relative reference to a data chunk and remains
valid no matter what the base address of the card becomes. Once the
base address of the card is determined at runtime, a local ID can be
quickly converted to a real pointer or handle. A local ID of a non-
movable chunk is simply the offset of the chunk from the base ad-
dress of the card. A local ID of a movable chunk is the offset of the
master pointer to the chunk from the base address of the card, but
with the low-order bit set. Since chunks are always aligned on word
boundaries, only local IDs of movable chunks have the low-order
bit set.

When an application needs the handle for a particular data record, it
must use the data manager. The application tells the data manager
which record to get (by index) out of which database. The data man-
ager fetches the local ID of the record out of the database header and
uses it to compute the handle to the record. The handle to the record
is never actually stored in the database itself.
Developing Palm OS 2.0 Applications, Part III 25

Palm OS Memory Management
The Memory Manager
The Memory Manager
The Palm OS memory manager is responsible for maintaining the
location and size of every memory chunk in nonvolatile storage,
volatile storage, and ROM. It provides an API for allocating new
chunks, disposing of chunks, resizing chunks, locking and unlock-
ing chunks, and compacting heaps when they become fragmented.
Because of the limited RAM and processor resources of the Palm OS
device, the memory manager is efÞcient in its use of processing
power and memory.

This section gives some background information on the organiza-
tion of memory in Palm OS and provides an overview of the API,
discussing these topics:

¥ Memory Hierarchy: RAM Store and ROM Store
¥ Heap Overview
¥ Memory Manager Structures
¥ Using the Memory Manager
¥ Memory Manager Function Summary

Memory Hierarchy: RAM Store and ROM Store

The processor address space on the Palm OS device spans 4 GB
since the 68328 has 32 internal address lines. Each memory card in
the Palm OS device has 256 MB of address space reserved for it.
Memory card 0 starts at address $1000000, memory card 1 starts at
address $2000000, and so on.

Each memory card can contain ROM, RAM, or both. The ROM and
RAM on each card is further divided into one or more heaps of 64K
(in the current implementation) or less. All the RAM-based heaps on
a memory card are treated as the RAM store, and all the ROM-based
heaps are treated as the ROM store. The heaps for a store do not
have to be adjacent to each other in address space; they can be scat-
tered throughout the memory space on the card.
26 Developing Palm OS 2.0 Applications, Part III

Palm OS Memory Management
The Memory Manager
Heap Overview

A heap is a 64K (or less) contiguous area of memory used to contain
and manage one or more smaller chunks of memory. When applica-
tions work with memory (allocate, resize, lock, etc.) they usually
work with chunks of memory. An application can specify in which
heap it wishes to allocate a new chunk of memory. The memory
manager manages each heap independently and rearranges chunks
as necessary to defragment the heap and merge free space. Once a
chunk is allocated in a speciÞc heap, the memory manager never
moves it out of that heap.

2.0 Note In Palm OS 2.0, the memory manager no longer spreads the load
between the different storage heaps. As a result, large applications
are more likely to Þt on a device than they were under Palm OS
1.0.

Heaps in the Palm OS environment are referenced through heap
IDs. A heap ID is a 16-bit value that the memory manager uses to
uniquely identify any heap in the entire address space. The heap IDs
in card 0 start at 0 and increment sequentially, Þrst through the
RAM heaps and then through the ROM heaps. The heap IDs in card
1 start at some value greater than 0 and also increment sequentially,
Þrst through all the RAM heaps and then through the ROM heaps.

The Þrst heap(s) in card 0 is (are) dynamic heap(s), used for tempo-
rary memory allocations only; that is, non-Þle-related data, stack
space, etc. Dynamic heaps are reinitialized every time the Palm OS
device is reset. Every time an application quits, the system software
frees any chunks in dynamic heaps that have been allocated by that
application. All other heaps are nonvolatile and retain their contents
through soft reset cycles. These nonvolatile heaps are used to store
database directories, headers, and records.
Developing Palm OS 2.0 Applications, Part III 27

Palm OS Memory Management
The Memory Manager
Memory Manager Structures

This section discusses the different structures the memory manager
uses:

¥ Heap Structures
¥ Chunk Structures
¥ Local ID Structures

Heap Structures

WARNING: Expect the heap structure to change in the future. Use
the API to work with heaps.

A heap consists of the heap header, master pointer table, and the
heap chunks.

¥ Heap header. The heap header is located at the beginning of
the heap. It holds the size of the heap and contains flags for the
heap that provide certain information to the memory manager;
for example, whether the heap is ROM-based.

¥ Master pointer table. Following the heap header is a master
pointer table. It is used to store 32-bit pointers to movable
chunks in the heap.

Ð When the memory manager moves a chunk to compact the
heap, the pointer for that chunk in the master pointer table is
updated to the chunkÕs new location. The handles an applica-
tion uses to track movable chunks reference the address of
the master pointer to the chunk, not the chunk itself. In this
way, handles remain valid even after a chunk is moved.

Ð If the master pointer table becomes full, another is allocated
and its offset is stored in the nextMstrPtrTable Þeld of the
previous master pointer table. Any number of master pointer
tables can be linked in this way.

¥ Heap chunks. Following the master pointer table are the actual
chunks in the heap.

Ð Movable chunks are generally allocated at the beginning of
the heap, and nonmovable chunks at the end of the heap.
28 Developing Palm OS 2.0 Applications, Part III

Palm OS Memory Management
The Memory Manager
Ð Nonmovable chunks do not need an entry in the master
pointer table since they are never relocated by the memory
manager.

Ð Applications can easily walk the heap by hopping from
chunk to chunk because each chunk header contains the size
of the chunk. All free and nonmovable chunks can be found
in this manner by checking the ßags in each chunk header.

Because heaps can be ROM-based, there is no information in the
header that must be changed when using a heap. Also, ROM-
based heaps contain only nonmovable chunks and have a master
pointer table with 0 entries.

Chunk Structures

WARNING: Expect the chunk structure to change in the future.
Use the API to work with chunks.

A chunk consists of a chunk header, a lock:owner byte and a
Flags:size adjustment byte, and the hOffset word.

¥ Chunk header. At the start of the chunk is a 6-byte chunk
header. The chunk header contains the size of the chunk, which
is larger than the size requested by the application and includes
the size of the header itself. Since an entire heap must be 64K or
less, the maximum data size for a chunk is 64K, minus the size
of the heap header and master pointer table, minus 6 bytes for
the chunk header.

¥ Lock:owner byte. Following the size field is a byte that holds
the lock count in the high nibble and the owner ID in the low
nibble.

Ð The lock count is incremented every time a chunk is locked
and decremented every time a chunk is unlocked. A movable
chunk can be locked a maximum of 14 times before being un-
locked. Nonmovable chunks always have 15 in the lock Þeld.

Ð The owner ID determines the owner of a memory chunk and
is set by the memory manager when allocating a new chunk.
The owner ID is useful information for debugging and for
garbage collection when an application terminates abnormal-
ly.
Developing Palm OS 2.0 Applications, Part III 29

Palm OS Memory Management
The Memory Manager
¥ Flags:size adjustment byte. Following the lock:owner
byte is a byte that contains flags in the high nibble and a size
adjustment in the low nibble.

Ð The ßags nibble has 1 bit currently deÞned, which is set for
free chunks.

Ð The size adjustment nibble can be used to calculate the re-
quested size of the chunk, given the actual size. The request-
ed size is computed by taking the size as stored in the chunk
header and subtracting the size of the header and the size ad-
justment Þeld. The actual size of a chunk is always a multiple
of two so that chunks always start on a word boundary.

¥ hOffset word. The last word in the chunk header is the
distance from the master pointer for the chunk to the chunkÕs
header, divided by two. Note that this offset could be a
negative value if the master pointer table is at a higher address
than the chunk itself. For nonmovable chunks that do not need
an entry in the master pointer table, this field is 0.

Local ID Structures

WARNING: Expect the local ID structure to change in the future.
Use the API to work with chunks.

Chunks that contain database records or other database information
are tracked by the data manager through local IDs. A local ID is card
relative and is always valid no matter what memory slot the card re-
sides in. A local ID can be easily converted to a pointer or the handle
to a chunk once the base address of the card is known.

The upper 31 bits of a local ID contain the offset of the chunk or
master pointer to the chunk from the beginning of the card. The
low-order bit is set for local IDs of handles and clear for local IDs of
pointers.

The memory manager call MemLocalIDToGlobal takes a local ID
and a card number (either 0 or 1) and converts the local ID to a
pointer or handle. It looks at the card number and adds the appro-
priate card base address to convert the local ID to a pointer or han-
dle for that card.
30 Developing Palm OS 2.0 Applications, Part III

Palm OS Memory Management
The Memory Manager
Using the Memory Manager

Usually, applications use the memory manager to allocate memory
only in the dynamic heap(s). The data manager provides an API for
allocating memory in the storage heaps that hold user data. The
data manager calls the memory manager as appropriate to do its
low-level allocations.

To allocate a movable chunk, call MemHandleNew and pass the de-
sired chunk size. Before you can read or write data to this chunk,
you must call MemHandleLock to lock it and get a pointer to it.
Every time you lock a chunk, its lock count is incremented. You can
lock a chunk a maximum of 14 times before an error is returned.
MemHandleUnlock unlocks a chunk.

To determine the size of a movable chunk, pass its handle to
MemHandleSize. To resize it, call MemHandleResize. You general-
ly cannot increase the size of a chunk if itÕs locked unless there hap-
pens to be free space in the heap immediately following the chunk.
If the chunk is unlocked, the memory manager is allowed to move it
to another area of the heap to increase its size.When you no longer
need the chunk, call MemHandleFree, which releases the chunk
even if it is locked.

If you have a pointer to a locked, movable chunk, you can recover
the handle by calling MemPtrRecoverHandle. In fact, all of the
MemPtrXXX calls, including MemPtrSize, also work on pointers to
locked, movable chunks.

To allocate a nonmovable chunk, call MemPtrNew and pass the de-
sired size of the chunk. This call returns a pointer to the chunk,
which can be used directly to read or write to it.

To determine the size of a nonmovable chunk, call MemPtrSize.
To resize it, call MemPtrResize. You generally canÕt increase the
size of a nonmovable chunk unless there is free space in the heap
immediately following the chunk. When you no longer need the
chunk, call MemPtrFree, which releases the chunk even if itÕs
locked.
Developing Palm OS 2.0 Applications, Part III 31

Palm OS Memory Management
The Memory Manager
Use the memory manager utility routines MemMove and MemSet to
conveniently move memory from one place to another or to Þll
memory with a speciÞc value.

When an application allocates memory in the dynamic heap(s), the
memory manager gives it an owner ID that associates that chunk
with the application. When the application quits, all chunks in the
dynamic heap that have its owner ID are disposed of automatically.
If the system needs to allocate a chunk that is not disposed of when
an application quits, it has to change the owner ID to 0 by calling the
system function MemHandleSetOwner. This function is not used by
applications.

Memory Manager Function Summary

The following functions are available for application use:

¥ MemCardInfo
¥ MemChunkFree

¥ MemDebugMode

¥ MemHandleDataStorage

¥ MemHandleCardNo

¥ MemHandleFree

¥ MemHandleHeapID

¥ MemHandleLock

¥ MemHandleNew

¥ MemHandleResize

¥ MemHandleSize

¥ MemHandleToLocalID

¥ MemHandleUnlock

¥ MemHeapCheck

¥ MemHeapCompact

¥ MemHeapDynamic

¥ MemHeapFlags

¥ MemHeapFreeBytes

¥ MemHeapID

¥ MemHeapScramble
32 Developing Palm OS 2.0 Applications, Part III

Palm OS Memory Management
The Memory Manager
¥ MemHeapSize

¥ MemLocalIDKind

¥ MemLocalIDToGlobal

¥ MemLocalIDToLockedPtr

¥ MemLocalIDToPtr

¥ MemMove

¥ MemNumCards

¥ MemNumHeaps

¥ MemNumRAMHeaps

¥ MemPtrCardNo

¥ MemPtrDataStorage

¥ MemPtrFree

¥ MemPtrHeapID

¥ MemPtrToLocalID

¥ MemPtrNew

¥ MemPtrRecoverHandle

¥ MemPtrResize

¥ MemSet

¥ MemSetDebugMode

¥ MemPtrSiz

¥ MemPtrUnlock

¥ MemStoreInfo
Developing Palm OS 2.0 Applications, Part III 33

Palm OS Memory Management
The Data Manager
The Data Manager
The Palm OS device has only a limited amount of dynamic memory
available and uses nonvolatile RAM instead of disk storage. Using a
traditional Þle system is therefore not the optimal method for stor-
ing and retrieving user data such as meetings, address book entries,
and so on.

¥ A traditional Þle system Þrst reads all or a portion of a Þle
into a memory buffer from disk, using and/or updating the
information in the memory buffer, and then writes the updat-
ed memory buffer back to disk.

¥ Palm OS accesses and updates all information in place. This
makes sense because all nonvolatile information in the Palm
OS device is stored in memory. Updating information in
place eliminates the overhead of transferring the data to and
from another memory buffer involved in a Þle system. It also
reduces the dynamic memory requirements.

As a further enhancement, data in the Palm OS device is broken
down into multiple, Þnite-size records that can be left scattered
throughout the memory space. Allowing records to be scattered
throughout memory means that adding, deleting, or resizing a
record does not require moving other records around in memory.

This section explains how to use the database manager by discuss-
ing these topics:

¥ Records and Databases
¥ Structure of a Database Header
¥ Using the Data Manager

Records and Databases

Databases organize related records; every record belongs to one and
only one database. A database may be a collection of all address
book entries, all datebook entries, and so on. A Palm OS application
can create, delete, open, and close databases as necessary, just as a
traditional Þle system can create, delete, open, and close a tradition-
al Þle. There is no restriction on where the records for a particular
database reside as long as they are all on the same memory card.
34 Developing Palm OS 2.0 Applications, Part III

Palm OS Memory Management
The Data Manager
The records from one database can be interspersed with the records
from one or more other databases in memory.

Storing data by database Þts nicely with the Palm OS memory man-
ager design. Each record in a database is in fact a memory manager
chunk. The data manager uses memory manager calls to allocate,
delete, and resize database records. All heaps except for the dynam-
ic heap(s) are nonvolatile, so database records can be stored in any
heap except the dynamic heap(s) (see Heap Overview). Because
records can be stored anywhere on the memory card, databases can
be distributed over multiple discontiguous areas of physical RAM.

Accessing Data With Local IDs

A database maintains a list of all records that belong to it by storing
the local ID of each record in the database header. Because local IDs
are used, the memory card can be placed into any memory slot of a
Palm OS device. An application Þnds a particular record in a data-
base by index. When an application requests a particular record, the
data manager fetches the local ID of the record from the database
header by index, converts the local ID to a handle using the card
number that contains the database header, and returns the handle to
the record.

2.0 Note In the previous version of this document, a discussion of presorted
lists appeared here. These lists arenÕt actually useful, so discus-
sion of them has been eliminated in this version of the document.

Structure of a Database Header

A database header consists of some basic database information and
a list of records in the database. Each record entry in the header has
the local ID of the record, 8 attribute bits, and a 3-byte unique ID for
the record.

This section provides information about database headers, discuss-
ing these topics:

¥ Database Header Fields
¥ Structure of a Record Entry in a Database Header.
Developing Palm OS 2.0 Applications, Part III 35

Palm OS Memory Management
The Data Manager
WARNING: Expect the database header structure to change in the
future. Use the API to work with database structures.

Database Header Fields

The database header has the following Þelds:

¥ The name field holds the name of the database.
¥ The attributes field has flags for the database.
¥ The version field holds an application-specific version

number for that database.
¥ The modificationNumber is incremented every time a record

in the database is deleted, added, or modified. Thus
applications can quickly determine if a shared database has
been modified by another process.

¥ The appInfoID is an optional field that an application can use
to store application-specific information about the database. For
example, it might be used to store user display preferences for a
particular database.

¥ The sortInfoID is another optional field an application can
use for storing the local ID of a sort table for the database.

¥ The type and creator fields are each 4 bytes and hold the
database type and creator. The system uses these fields to
distinguish application databases from data databases and to
associate data databases with the appropriate application. See
ÒThe System ManagerÓ in Chapter 6, ÒUsing Palm OS
Managers,Ó of ÒDeveloping Palm OS Applications, Part IÓ for
more information.

¥ The numRecords field holds the number of record entries
stored in the database header itself. If all the record entries
cannot fit in the header, then nextRecordList has the local ID
of a recordList that contains the next set of records.

Each record entry stored in a record list has three fields and is 8
bytes in length. Each entry has the local ID of the record which
takes up 4 bytes: 1 byte of attributes and a 3-byte unique ID for
the record. The attribute Þeld, shown in Figure 1.1, is 8 bits
long and contains 4 ßags and a 4-bit category number. The cate-
36 Developing Palm OS 2.0 Applications, Part III

Palm OS Memory Management
The Data Manager
gory number is used to place records into user-deÞned catego-
ries like ÒbusinessÓ or Òpersonal.Ó

Figure 1.1 Record Attributes

Structure of a Record Entry in a Database Header

Each record entry has the local ID of the record, 8 attribute bits, and
a 3-byte unique ID for the record.

¥ Local IDs make the database is slot-independent. Since all
records for a database reside on the same memory card as the
header, the handle of any record in the database can be quickly
calculated. When an application requests a specific record from
a database, the data manager returns a handle to the record that
it determines from the stored local ID.

A special situation occurs with ROM-based databases. Because
ROM-based heaps use nonmovable chunks exclusively, the local
IDs to records in a ROM-based database are local IDs of pointers,
not handles. So, when an application opens a ROM-based data-
base, the data manager allocates and initializes a fake handle for
each record and returns the appropriate fake handle when the
application requests a record. Because of this, applications can
use handles to access both RAM- and ROM-based database
records.

¥ The unique ID must be unique for each record within a
database. It remains the same for a particular record no matter
how many times the record is modified. It is used during
synchronization with the desktop to track records on the Palm
OS device with the same records on the desktop system.

When the user deletes or archives a record on Palm OS:

Category (4)

secret bit
busy bit

dirty bit

delete bit
Developing Palm OS 2.0 Applications, Part III 37

Palm OS Memory Management
The Data Manager
¥ The delete bit is set in the attributes flags, but its entry in
the database header remains until the next synchronization
with the PC.

¥ The dirty bit is set whenever a record is updated.
¥ The busy bit is set when an application currently has a record

locked for reading or writing.
¥ The secret bit is set for records that should not be displayed

before the user password has been entered on the device.

When a user ÒdeletesÓ a record on the Palm OS device, the recordÕs
data chunk is freed, the local ID stored in the record entry is set to 0,
and the delete bit is set in the attributes. When the user archives a
record, the deleted bit is also set but the chunk is not freed and the
local ID is preserved. This way, the next time the user synchronizes
with the desktop system, the desktop can quickly determine which
records to delete (since their record entries are still around on the
Palm OS device). In the case of archived records, the desktop can
save the record data on the PC before it permanently removes the
record entry and data from the Palm OS device. For deleted records,
the PC just has to delete the same record from the PC before perma-
nently removing the record entry from the Palm OS device.

Figure 1.2 Record Attributes

Using the Data Manager

Using the data manager is similar to using a traditional Þle manag-
er, except that the data is broken down into multiple records instead
of being stored in one contiguous chunk. To create or delete a data-
base, call DmCreateDatabase and DmDeleteDatabase.

Category (4)

secret bit
busy bit

dirty bit

delete bit
38 Developing Palm OS 2.0 Applications, Part III

Palm OS Memory Management
The Data Manager
Each memory card is akin to a disk drive and can contain multiple
databases. To open a database for reading or writing, you must Þrst
get the database ID, which is simply the local ID of the database
header. Calling DmFindDatabase searches a particular memory
card for a database by name and returns the local ID of the database
header. Alternatively, calling DmGetDatabase returns the database
ID for each database on a card by index.

After determining the database ID, you can open the database for
read-only or read/write access. When you open a database, the sys-
tem locks down the database header and returns a reference to a da-
tabase access structure, which tracks information about the open da-
tabase and caches certain information for optimum performance.
The database access structure is a relatively small structure (less
than 100 bytes) allocated in the dynamic heap that is disposed of
when the database is closed.

Call DmDatabaseInfo, DmSetDatabaseInfo and
DmDatabaseSize to query or set information about a database,
such as its name, size, creation and modiÞcation dates, attributes,
type, and creator.

Call DmGetRecord, DmQueryRecord and DmReleaseRecord
when viewing or updating a database.

¥ DmGetRecord takes a record index as a parameter, marks the
record busy, and returns a handle to the record. If a record is
already busy when DmGetRecord is called, an error is returned.

¥ DmQueryRecord is faster if the application only needs to view
the record; it doesnÕt check or set the busy bit, so itÕs not
necessary to call DmReleaseRecord when finished viewing the
record.

¥ DmReleaseRecord clears the busy bit, and updates the
modification number of the database and marks the record
dirty if the dirty parameter is true.

To resize a record to grow or shrink its contents, call
DmResizeRecord. This routine automatically reallocates the record
in another heap of the same card if the current heap does not have
enough space for it. Note that if the data manager needs to move the
Developing Palm OS 2.0 Applications, Part III 39

Palm OS Memory Management
The Data Manager
record into another heap to resize it, the handle to the record chang-
es. DmResizeRecord returns the new handle to the record.

To add a new record to a database, call DmNewRecord. This routine
can insert the new record at any index position, append it to the
end, or replace an existing record by index. It returns a handle to the
new record.

There are three methods for removing a record: DmRemoveRecord,
DmDeleteRecord, and DmArchiveRecord.

¥ DmRemoveRecord removes the recordÕs entry from the
database header and disposes of the record data.

¥ DmDeleteRecord also disposes of the record data, but instead
of removing the recordÕs entry from the database header, it sets
the deleted bit in the record entry attributes field and clears the
local chunk ID.

¥ DmArchiveRecord does not dispose of the recordÕs data; it just
sets the deleted bit in the record entry.

Both DmDeleteRecord and DmArchiveRecord are useful for syn-
chronizing information with a desktop PC. Since the unique ID of
the deleted or archived record is still kept in the database header,
the desktop PC can perform the necessary operations on its own
copy of the database before permanently removing the record from
the Palm OS database.

Call DmRecordInfo and DmSetRecordInfo to retrieve or set the
record information stored in the database header, such as the at-
tributes, unique ID, and local ID of the record. Typically, these rou-
tines are used to set or retrieve the category of a record that is stored
in the lower-4 bits of the recordÕs attribute Þeld.

To move records from one index to another or from one database to
another, call DmMoveRecord, DmAttachRecord, and
DmDetachRecord. DmDetachRecord removes a record entry from
the database header and returns the record handle. Given the han-
dle of a new record, DmAttachRecord inserts or appends that new
record to a database or replaces an existing record with the new
record. DmMoveRecord is an optimized way to move a record from
one index to another in the same database.
40 Developing Palm OS 2.0 Applications, Part III

Palm OS Memory Management
The Data Manager
Data Manager Function Summary
¥ DmAttachRecord

¥ DmArchiveRecord

¥ DmCloseDatabase

¥ DmCreateDatabase

¥ DmCreateDatabaseFromImage

¥ DmDatabaseInfo

¥ DmDatabaseSize

¥ DmDeleteDatabase

¥ DmDeleteRecord

¥ DmDetachRecord

¥ DmFindDatabase

¥ DmFindRecordByID

¥ DmFindSortPosition

¥ DmGetAppInfoID

¥ DmGetDatabase

¥ DmGetLastErr

¥ DmGetNextDatabaseByTypeCreator

¥ DmGetRecord

¥ DmInsertionSort

¥ DmMoveCategory

¥ DmMoveRecord

¥ DmNewHandle

¥ DmNewRecord

¥ DmNextOpenDatabase

¥ DmNumDatabases

¥ DmNumRecords

¥ DmNumRecordsInCategory

¥ DmOpenDatabase

¥ DmOpenDatabaseInfo

¥ DmOpenDatabaseByTypeCreator

¥ DmPositionInCategory

¥ DmQueryNextInCategory
Developing Palm OS 2.0 Applications, Part III 41

Palm OS Memory Management
The Resource Manager
¥ DmQueryRecord

¥ DmQuickSort

¥ DmRecordInfo

¥ DmReleaseRecord

¥ DmRemoveRecord

¥ DmRemoveSecretRecords

¥ DmResetRecordStates

¥ DmResizeRecord

¥ DmSearchRecord

¥ DmSeekRecordInCategory

¥ DmSet

¥ DmSetDatabaseInfo

¥ DmSetRecordInfo

¥ DmStrCopy

¥ DmWrite

¥ DmWriteCheck

The Resource Manager
Applications can use the resource manager much like the data man-
ager to conveniently retrieve and save chunks of data. It has the
added capability of tagging each chunk of data with a unique re-
source type and resource ID. These tagged data chunks, called re-
sources, are stored in resource databases. Resource databases are al-
most identical in structure to normal databases except for a slight
amount of increased storage overhead per resource record (two
extra bytes). In fact, the resource manager is nothing more than a
subset of routines in the data manager that are broken out here for
conceptual reasons only.

Resources are typically used to store the user interface elements of
an application, such as images, fonts, dialog layouts, and so forth.
Part of building an application involves creating these resources and
merging them with the actual executable code. In the Palm OS envi-
ronment, an application is, in fact, simply a resource database with
the executable code stored as one or more code resources and the
42 Developing Palm OS 2.0 Applications, Part III

Palm OS Memory Management
The Resource Manager
graphics elements and other miscellaneous data stored in the same
database as other resource types.

Applications may also Þnd the resource manager useful for storing
and retrieving application preferences, saved window positions,
state information, and so forth. These preferences settings can be
stored in a separate resource database.

This section explains how to work with the resource manager and
discusses these topics:

¥ Structure of a Resource Database Header
¥ Using the Resource Manager
¥ Resource Manager Functions

Structure of a Resource Database Header

A resource database header consists of some general database infor-
mation followed by a list of resources in the database. The Þrst por-
tion of the header is identical in structure to a normal database
header. Resource database headers are distinguished from normal
database headers by the dmHdrAttrResDB bit in the attributes
Þeld.

WARNING: Expect the resource database header structure to
change in the future. Use the API to work with resource database
structures.

¥ The name field holds the name of the resource database.
¥ The attributes field has flags for the database and always

has the dmHdrAttrResDB bit set.
¥ The modificationNumber is incremented every time a

resource in the database is deleted, added, or modified. Thus,
applications can quickly determine if a shared resource
database has been modified by another process.

¥ The appInfoID and sortInfoID fields are not normally
needed for a resource database but are included to match the
structure of a regular database. An application may optionally
use these fields for its own purposes.
Developing Palm OS 2.0 Applications, Part III 43

Palm OS Memory Management
The Resource Manager
¥ The type and creator fields hold 4-byte signatures of the
database type and creator as defined by the application that
created the database.

¥ The numResources field holds the number of resource info
entries that are stored in the header itself. In most cases, this is
the total number of resources. If all the resource info entries
cannot fit in the header, however, then nextResourceList
has the chunkID of a resourceList that contains the next set
of resource info entries.

Each 10-byte resource info entry in the header has the resource type,
the resource ID, and the local ID of the memory manager chunk that
contains the resource data.

Using the Resource Manager

You can create, delete, open, and close resource databases with the
routines used to create normal record-based databases (see Using
the Data Manager). This includes all database-level (not record-lev-
el) routines in the data manager such as DmCreateDatabase,
DmDeleteDatabase, DmDatabaseInfo, and so on.

When you create a new database using DmCreateDatabase, the
type of database created (record or resource) depends on the value
of the resDB parameter. If set, a resource database is created and the
dmHdrAttrResDB bit is set in the attributes field of the database
header. Given a database header ID, an application can determine
which type of database it is by calling DmDatabaseInfo and exam-
ining the dmHdrAttrResDB bit in the returned attributes Þeld.

Once a resource database has been opened, an application can read
and manipulate its resources by using the resource-based access
routines of the resource manager. Generally, applications use the
DmGetResource and DmReleaseResource routines.

DmGetResource returns a handle to a resource, given the type and
ID. This routine searches all open resource databases for a resource
of the given type and ID, and returns a handle to it. The search starts
with the most recently opened database. To search only the most re-
cently opened resource database for a resource instead of all open
resource databases, call DmGet1Resource.
44 Developing Palm OS 2.0 Applications, Part III

Palm OS Memory Management
The Resource Manager
DmReleaseResource should be called as soon as an application
Þnishes reading or writing the resource data. To resize a resource,
call DmResizeResource, which accepts a handle to a resource and
reallocates the resource in another heap of the same card if neces-
sary. It returns the handle of the resource, which might have been
changed if the resource had to be moved to another heap to be re-
sized.

The remaining resource manager routines are usually not required
for most applications. These include functions to get and set re-
source attributes, move resources from one database to another, get
resources by index, and create new resources. Most of these func-
tions reference resources by index to optimize performance. When
referencing a resource by index, the DmOpenRef of the open re-
source database that the resource belongs to must also be speciÞed.
Call DmSearchResource to find a resource by type and ID or by
pointer by searching in all open resource databases.

To get the DmOpenRef of the topmost open resource database, call
DmNextOpenResDatabase and pass nil as the current DmOpenRef.
To Þnd out the DmOpenRef of each successive database, call
DmNextOpenResDatabase repeatedly with each successive
DmOpenRef.

Given the access pointer of a speciÞc open resource database,
DmFindResource can be used to return the index of a resource,
given its type and ID. DmFindResourceType can be used to get the
index of every resource of a given type. To get a resource handle by
index, call DmGetResourceIndex.

To determine how many resources are in a given database, call
DmNumResources. To get and set attributes of a resource including
its type and ID, call DmResourceInfo and DmSetResourceInfo.
To attach an existing data chunk to a resource database as a new re-
source, call DmAttachResource. To detach a resource from a data-
base, call DmDetachResource.

To create a new resource, call DmNewResource and pass the desired
size, type, and ID of the new resource. To delete a resource, call
DmRemoveResource. Removing a resource disposes of its data
chunk and removes its entry from the database header.
Developing Palm OS 2.0 Applications, Part III 45

Palm OS Memory Management
The Resource Manager
Resource Manager Functions

To work with resources, you can use the functions listed in Data
Manager Function Summary as well as these functions:

¥ DmAttachResource

¥ DmDatabaseProtect

¥ DmDetachResource

¥ DmDeleteCategory

¥ DmFindResource

¥ DmFindResourceType

¥ DmFindSortPosition

¥ DmGetResource

¥ DmGetResourceIndex

¥ DmGet1Resource

¥ DmNewResource

¥ DmNextOpenResDatabase

¥ DmNumResources

¥ DmReleaseResource

¥ DmRemoveResource

¥ DmResizeResource

¥ DmSearchResource

¥ DmSetResourceInfo
46 Developing Palm OS 2.0 Applications, Part III

2
Memory Management
Functions

Memory Manager Functions

MemCardInfo

Purpose Return information about a memory card.

Prototype Err MemCardInfo (UInt cardNo,
CharPtr cardNameP,
CharPtr manufNamP,
UIntPtr versionP,
ULongPtr crDateP,
ULongPtr romSizeP,
ULongPTr ramSizeP,
ULongPtr freeBytesP)

Parameters cardNo Card number.

cardNameP Pointer to character array (32 bytes), or 0.

manufNameP Pointer to character array (32 bytes), or 0.

versionP Pointer to version variable, or 0.

crDateP Pointer to creation date variable, or 0.

romSizeP Pointer to ROM size variable, or 0.

ramSizeP Pointer to RAM size variable, or 0.

freeBytesP Pointer to free byte-count variable, or 0.
Developing Palm OS 2.0 Applications, Part III 47

Memory Management Functions
Memory Manager Functions
Result Returns 0 if no error.

Comments Pass 0 for those variables that you donÕt want returned.

MemChunkFree

Purpose Dispose of a chunk.

Prototype Err MemChunkFree (VoidPtr chunkDataP)

Parameters chunkDataP Chunk data pointer.

Result 0 No error.

memErrInvalidParam Invalid parameter.

Comments Call this routine to dispose of a chunk, which is disposed of even if
itÕs locked.
48 Developing Palm OS 2.0 Applications, Part III

Memory Management Functions
Memory Manager Functions
MemCmp

Purpose Compare two blocks of memory.

Prototype Int MemCmp (VoidPtr s1, VoidPtr s2, ULong numBytes)

Parameters s1, s2 Pointers to block of memory.

numBytes Number of bytes to compare.

Result Zero if they match, non-zero if not.

+ if s1 > s2

- if s1 < s2

MemDebugMode

Purpose Return the current debugging mode of the memory manager.

Prototype Word MemDebugMode (void)

Parameters No parameters.

Result Returns debug ßags as described for MemSetDebugMode.
Developing Palm OS 2.0 Applications Part III 49

Memory Management Functions
Memory Manager Functions
MemHandleDataStorage

Purpose Return TRUE if the given handle is part of a data storage heap. If not,
itÕs a handle in the dynamic heap.

Prototype Boolean MemHandleDataStorage (VoidHand h)

Parameters h Chunk handle.

Result Returns TRUE if the handle is part of a data storage heap.

Comments Called by Fields package routines to determine if they need to
worry about data storage write-protection when editing a text Þeld.

See Also MemPtrDataStorage

MemHandleCardNo

Purpose Return the card number a chunk resides in.

Prototype UInt MemHandleCardNo (VoidHand h)

Parameters -> h Chunk handle.

Result Returns the card number.

Comments Call this routine to retrieve the card number (0 or 1) a movable
chunk resides on.

See Also MemPtrCardNo
50 Developing Palm OS 2.0 Applications, Part III

Memory Management Functions
Memory Manager Functions
MemHandleFree

Purpose Dispose of a movable chunk.

Prototype Err MemHandleFree (VoidHand h)

Parameters -> h Chunk handle.

Result: Returns 0 if no error, or memErrInvalidParam if an error occurs.

Comments Call this routine to dispose of a movable chunk.

See Also MemHandleNew

MemHandleHeapID

Purpose Return the heap ID of a chunk.

Prototype UInt MemHandleHeapID (VoidHand h)

Parameters -> h Chunk handle.

Result Returns the heap ID of a chunk.

Comments Call this routine to get the heap ID of the heap a chunk resides in.

See Also MemPtrHeapID
Developing Palm OS 2.0 Applications Part III 51

Memory Management Functions
Memory Manager Functions
MemHandleLock

Purpose Lock a chunk and obtain a pointer to the chunkÕs data.

Prototype VoidPtr MemHandleLock (VoidHand h)

Parameters -> h Chunk handle.

Result Returns a pointer to the chunk.

Comments Call this routine to lock a chunk and obtain a pointer to the chunk.

MemHandleLock and MemHandleUnlock should be used in pairs.

See Also MemHandleNew, MemHandleUnlock

MemHandleNew

Purpose Allocate a new movable chunk in the dynamic heap.

Prototype VoidHand MemHandleNew (ULong size)

Parameters -> size The desired size of the chunk.

Result Returns a handle to the new chunk, or 0 if unsuccessful.

Comments Allocates a movable chunk in the dynamic heap and returns a han-
dle to it. Use this call when allocating dynamic memory.

Before you call MemHandleNew, you have to call MemHandleLock:
the data passed to MemHandleNew must be locked, and must be ac-
cessed through the pointer returned by MemHandleLock.

See Also MemPtrFree, MemPtrNew, MemHandleFree, MemHandleLock
52 Developing Palm OS 2.0 Applications, Part III

Memory Management Functions
Memory Manager Functions
MemHandleResize

Purpose Resize a chunk.

Prototype Err MemHandleResize (VoidHandle h,
ULong newSize)

Parameters -> h Chunk handle.

-> newSize The new desired size.

Result 0 No error.
memErrInvalidParam Invalid parameter passed.
memErrNotEnoughSpace Not enough free space in heap to grow

chunk.
memErrChunkLocked CanÕt grow chunk because itÕs locked.

Comments Call this routine to resize a chunk. This routine is always successful
when shrinking the size of a chunk, even if the chunk is locked.
When growing a chunk, it Þrst attempts to grab free space immedi-
ately following the chunk so that the chunk does not have to move.
If the chunk has to move to another free area of the heap to grow, it
must be movable and have a lock count of 0.

A disadvantage of using MemHandleResize for resizing a record is
that MemHandleResize will only try to resize the chunk within the
same heap, whereas DmResizeRecord will look for space in other
data heaps if it canÕt Þnd enough space in the original heap.

See Also MemHandleNew, MemHandleSize
Developing Palm OS 2.0 Applications Part III 53

Memory Management Functions
Memory Manager Functions
MemHandleSize

Purpose Return the requested size of a chunk.

Prototype ULong MemHandleSize (VoidHand h)

Parameters -> h Chunk handle.

Result Returns the requested size of the chunk.

Comments Call this routine to get the size originally requested for a chunk.

See Also MemHandleResize

MemHandleToLocalID

Purpose Convert a handle into a local chunk ID which is card relative.

Prototype LocalID MemHandleToLocalID (VoidHand h)

Parameters -> h Chunk handle.

Result Returns local ID, or nil (0) if unsuccessful.

Comments Call this routine to convert a chunk handle to a local ID.

See Also MemLocalIDToGlobal, MemLocalIDToLockedPtr
54 Developing Palm OS 2.0 Applications, Part III

Memory Management Functions
Memory Manager Functions
MemHandleUnlock

Purpose Unlock a chunk given a chunk handle.

Prototype Err MemHandleUnlock (VoidHand h)

Parameters -> h The chunk handle.

Result 0 No error.

memErrInvalidParam Invalid parameter passed.

Comments Call this routine to decrement the lock count for a chunk.

MemHandleLock and MemHandleUnlock should be used in pairs.

See Also MemHandleLock

MemHeapCheck

Purpose Check validity of a given heap.

Prototype Err MemHeapCheck (UInt heapID)

Parameters heapID ID of heap to check.

Result Returns 0 if no error.

See Also MemDebugMode, MemSetDebugMode
Developing Palm OS 2.0 Applications Part III 55

Memory Management Functions
Memory Manager Functions
MemHeapCompact

Purpose Compact a heap.

Prototype Err MemHeapCompact (UInt heapID)

Parameters -> heapID ID of the heap to compact.

Result Always returns 0.

Comments Call this routine to compact a heap and merge all free space. This
routine attempts to move all movable chunks to the start of the heap
and merge all free space in the center of the heap.

The system software calls this function at various times; for exam-
ple, during memory allocation (if sufÞcient free space is not avail-
able) and during system reboot.

MemHeapDynamic

Purpose Return TRUE if the given heap is a dynamic heap.

Prototype Boolean MemHeapDynamic (UInt heapID)

Parameters heapID ID of the heap to be tested.

Result Returns TRUE if dynamic, FALSE if not.

Comments Dynamic heaps are used for volatile storage, application stacks, glo-
bals, and dynamically allocated memory.

See Also MemNumHeaps, MemHeapID
56 Developing Palm OS 2.0 Applications, Part III

Memory Management Functions
Memory Manager Functions
MemHeapFlags

Purpose Return the heap ßags for a heap.

Prototype UInt MemHeapFlags (UInt heapID)

Parameters -> heapID ID of heap.

Result Returns the heap ßags.

Comments Call this routine to retrieve the heap ßags for a heap. The ßags can
be examined to determine if the heap is ROM based or not. ROM-
based heaps have the memHeapFlagReadOnly bit set.

See Also MemNumHeaps, MemHeapID
Developing Palm OS 2.0 Applications Part III 57

Memory Management Functions
Memory Manager Functions
MemHeapFreeBytes

Purpose Return the total number of free bytes in a heap and the size of the
largest free chunk in the heap.

Prototype Err MemHeapFreeBytes (UInt heapID,
ULongPtr freeP,
ULongPtr maxP)

Parameters -> heapID ID of heap.

<-> freeP Pointer to a variable of type ULong for free bytes.

<-> maxP Pointer to a variable of type ULong for max free
chunk size.

Result Always returns 0.

Comments Call this routine to retrieve the total number of free bytes left in a
heap and the size of the largest free chunk. This routine doesnÕt
compact the heap but the caller may compact the heap explicitly be-
fore calling this routine to determine if an allocation will succeed or
not.

See Also MemHeapSize, MemHeapID, MemHeapCompact
58 Developing Palm OS 2.0 Applications, Part III

Memory Management Functions
Memory Manager Functions
MemHeapID

Purpose Return the heap ID for a heap, given its index and the card number.

Prototype UInt MemHeapID (UInt cardNo, UInt heapIndex)

Parameters -> cardNo The card number, either 0 or 1.

-> heapIndex The heap index, anywhere from 0 to
 MemNumHeaps - 1.

Result Returns the heap ID.

Comments Call this routine to retrieve the heap ID of a heap, given the heap
index and the card number. A heap ID must be used to obtain infor-
mation on a heap such as its size, free bytes, etc., and is also passed
to any routines which manipulate heaps.

See Also MemNumHeaps

MemHeapScramble

Purpose Scramble the given heap.

Prototype Err MemHeapScramble (UInt heapID)

Parameters heapID ID of heap to scramble.

Comments The system does multiple passes over the heap, attempting to move
each movable chunk.

Useful during debugging.

Result Always returns 0.

See Also MemDebugMode, MemSetDebugMode
Developing Palm OS 2.0 Applications Part III 59

Memory Management Functions
Memory Manager Functions
MemHeapSize

Purpose Return the total size of a heap including the heap header.

Prototype ULong MemHeapSize (UInt heapID)

Parameters -> heapID ID of heap.

Result Returns the total size of the heap.

See Also MemHeapFreeBytes, MemHeapID

MemLocalIDKind

Purpose Return whether or not a local ID references a handle or a pointer.

Prototype LocalIDKind MemLocalIDKind (LocalID local)

Parameters -> local Local ID to query

Result Returns LocalIDKind, or a memIDHandle or memIDPtr (see
MemoryMgr.h).

Comments This routine determines if the given local ID is to a nonmovable
(memIDPtr) or movable (memIDHandle) chunk.
60 Developing Palm OS 2.0 Applications, Part III

Memory Management Functions
Memory Manager Functions
MemLocalIDToGlobal

Purpose Convert a local ID, which is card relative, into a global pointer in the
designated card.

Prototype VoidPtr MemLocalIDToGlobal (LocalID local,
UInt cardNo)

Parameters -> local The local ID to convert.

-> cardNo Memory card the chunk resides in.

Result Returns pointer or handle to chunk.

See Also MemLocalIDKind, MemLocalIDToLockedPtr

MemLocalIDToLockedPtr

Purpose Return a pointer to a chunk given its local ID and card number.

Note: If the local ID references a movable chunk handle, this
routine automatically locks the chunk before returning.

Prototype VoidPtr MemLocalIDToLockedPtr(LocalID local,
UInt cardNo)

Parameters local Local chunk ID.

cardNo Card number.

Result Returns pointer to chunk, or 0 if an error occurs.

See Also MemLocalIDToGlobal, MemLocalIDToPtr, MemLocalIDKind,
MemPtrToLocalID, MemHandleToLocalID
Developing Palm OS 2.0 Applications Part III 61

Memory Management Functions
Memory Manager Functions
MemLocalIDToPtr

Purpose Return pointer to chunk, given the local ID and card number.

Prototype VoidPtr MemLocalIDToPtr(LocalID local,
UInt cardNo)

Parameters -> local Local ID to query.

-> cardNo Card number the chunk resides in.

Result Returns a pointer to the chunk, or 0 if error.

Comments If the local ID references a movable chunk and that chunk is not
locked, this function returns 0 to indicate an error.

See Also MemLocalIDToGlobal, MemLocalIDToLockedPtr

MemMove

Purpose Move a range of memory to another range in the dynamic heap.

Prototype Err MemMove(VoidPtr dstP,
VoidPtr srcP,
ULong numBytes)

Parameters dstP Pointer to destination.

srcP Pointer to source.

numBytes Number of bytes to move.

Result Always returns 0.

Comments Handles overlapping ranges.

For operations where the destination is in a data heap, see DmSet,
DmWrite, and related functions.
62 Developing Palm OS 2.0 Applications, Part III

Memory Management Functions
Memory Manager Functions
MemNumCards

Purpose Return the number of memory card slots in the system. Not all slots
need to be populated.

Prototype UInt MemNumCards (void)

Parameters None.

Result Returns number of slots in the system.

MemNumHeaps

Purpose Return the number of heaps available on a particular card.

Prototype UInt MemNumHeaps (UInt cardNo)

Parameters -> cardNo The card number; either 0 or 1.

Result Number of heaps available, including ROM- and RAM-based
heaps.

Comments Call this routine to retrieve the total number of heaps on a memory
card. The information can be obtained by calling MemHeapSize,
MemHeapFreeBytes, and MemHeapFlags on each heap using its
heap ID. The heap ID is obtained by calling MemHeapID with the
card number and the heap index, which can be any value from 0 to
MemNumHeaps.
Developing Palm OS 2.0 Applications Part III 63

Memory Management Functions
Memory Manager Functions
MemNumRAMHeaps

Purpose Return the number of RAM heaps in the given card.

Prototype UInt MemNumRAMHeaps (UInt cardNo)

Parameters cardNo The card number.

Result Returns the number of RAM heaps.

See Also MemNumCards

MemPtrCardNo

Purpose Return the card number (0 or 1) a nonmovable chunk resides on.

Prototype UInt MemPtrCardNo (VoidPtr chunkP)

Parameters -> chunkP Pointer to the chunk.

Result Returns the card number.

See Also MemHandleCardNo
64 Developing Palm OS 2.0 Applications, Part III

Memory Management Functions
Memory Manager Functions
MemPtrDataStorage

Purpose Return TRUE if the given pointer is part of a data storage heap; if
not, it is a pointer in the dynamic heap.

Prototype Boolean MemPtrDataStorage (VoidPtr p)

Parameters p Pointer to a chunk.

Result Returns TRUE if the chunk is part of a data storage heap.

Comments Called by Fields package to determine if it needs to worry about
data storage write-protection when editing a text Þeld.

See Also MemHeapDynamic

MemPtrFree

Purpose Macro to dispose of a chunk.

Prototype Err MemPtrFree (VoidPtr p)

Parameters -> p Pointer to a chunk.

Result Returns 0 if no error or memErrInvalidParam (invalid parameter).

Comments Call this routine to dispose of a nonmovable chunk.
Developing Palm OS 2.0 Applications Part III 65

Memory Management Functions
Memory Manager Functions
MemPtrHeapID

Purpose Return the heap ID of a chunk.

Prototype UInt MemPtrHeapID (VoidPtr p)

Parameters -> p Pointer to the chunk.

Result Returns the heap ID of a chunk.

Comments Call this routine to get the heap ID of the heap a chunk resides in.

MemPtrToLocalID

Purpose Convert a pointer into a card-relative local chunk ID.

Prototype LocalID MemPtrToLocalID (VoidPtr chunkP)

Parameters -> chunkP Pointer to a chunk.

Result Returns the local ID of the chunk.

Comments Call this routine to convert a chunk pointer to a local ID.

See Also MemLocalIDToPtr
66 Developing Palm OS 2.0 Applications, Part III

Memory Management Functions
Memory Manager Functions
MemPtrNew

Purpose Allocate a new nonmovable chunk in the dynamic heap.

Prototype VoidPtr MemPtrNew (ULong size)

Parameters -> size The desired size of the chunk.

Result Returns pointer to the new chunk, or 0 if unsuccessful.

Comments This routine allocates a nonmovable chunk in the dynamic heap and
returns a pointer to the chunk. Applications can use it when allocat-
ing dynamic memory.

MemPtrRecoverHandle

Purpose Recover the handle of a movable chunk, given a pointer to its data.

Prototype VoidHand MemPtrRecoverHandle (VoidPtr p)

Parameters -> p Pointer to the chunk.

Result Returns the handle of the chunk, or 0 if unsuccessful.

Comments DonÕt call this function for pointers in ROM or nonmovable data
chunks.
Developing Palm OS 2.0 Applications Part III 67

Memory Management Functions
Memory Manager Functions
MemPtrResize

Purpose Resize a chunk.

Prototype Err MemPtrResize (VoidPtr p, ULong newSize)

Parameters -> p Pointer to the chunk.

-> newSize The new desired size.

Result Returns 0 if no error, or memErrNotEnoughSpace
memErrInvalidParam, or memErrChunkLocked if an error occurs.

Comments Call this routine to resize a locked chunk. This routine is always suc-
cessful when shrinking the size of a chunk. When growing a chunk,
it attempts to use free space immediately following the chunk.

See Also MemPtrSiz, MemHandleResize

MemSet

Purpose Set a memory range in a dynamic heap to a speciÞc value.

Prototype Err MemSet(VoidPtr dstP,
ULong numBytes,
Byte value)

Parameters dstP Pointer to the destination.

numBytes Number of bytes to set.

value Value to set.

Result Always returns 0.

Comments For operations where the destination is in a data heap, see DmSet,
DmWrite, and related functions.
68 Developing Palm OS 2.0 Applications, Part III

Memory Management Functions
Memory Manager Functions
MemSetDebugMode

Purpose Set the debugging mode of the memory manager.

Prototype Err MemSetDebugMode (Word flags)

Parameters flags Debug ßags.

Comments Provide one (or none) of the following ßags:

memDebugModeCheckOnChange

memDebugModeCheckOnAll

memDebugModeScrambleOnChange

memDebugModeScrambleOnAll

memDebugModeFillFree

memDebugModeAllHeaps

memDebugModeAllHeaps

memDebugModeRecordMinDynHeapFree

Result Returns 0 if no error, or -1 if an error occurs.

MemPtrSiz

Purpose Return the size of a chunk.

Prototype ULong MemPtrSize (VoidPtr p)

Parameters -> p Pointer to the chunk.

Result The requested size of the chunk.

Comments Call this routine to get the original requested size of a chunk.
Developing Palm OS 2.0 Applications Part III 69

Memory Management Functions
Memory Manager Functions
MemPtrUnlock

Purpose Unlock a chunk, given a pointer to the chunk.

Prototype Err MemPtrUnlock (VoidPtr p)

Parameters p Pointer to a chunk.

Result 0 if no error, or memErrInvalidParam if an error occurs.

Comments A chunk must not be unlocked more times than it was locked.

See Also MemHandleLock

MemStoreInfo

Purpose Return information on either the RAM store or the ROM store for a
memory card.

Prototype Err MemStoreInfo (UInt cardNo,
UInt storeNumber,
UIntPtr versionP,
UIntPtr flagsP,
CharPtr nameP,
ULongPtr crDateP,
ULongPtr bckUpDateP,
ULongPtr heapListOffsetP,
ULongPtr initCodeOffset1P,
ULongPtr initCodeOffset2P,
LocalID* databaseDirIDP)

Parameters -> cardNo Card number, either 0 or 1.

-> storeNumber Store number; 0 for ROM, 1 for RAM.

<-> versionP Pointer to version variable, or 0.
70 Developing Palm OS 2.0 Applications, Part III

Memory Management Functions
Memory Manager Functions
<-> flagsP Pointer to ßags variable, or 0.

<-> nameP Pointer to character array (32 bytes), or
 0.

<-> crDateP Pointer to creation date variable, or 0.

<-> bckUpDateP Pointer to backup date variable, or 0.

<-> heapListOffsetP Pointer to heapListOffset variable,
or 0.

<-> initCodeOffset1P Pointer to initCodeOffset1 variable,
or 0.

<-> initCodeOffset2P Pointer to initCodeOffset2 variable,
or 0.

<-> databaseDirIDP Pointer to database directory chunk ID
variable, or 0.

Result Returns 0 if no error, or memErrCardNoPresent,
memErrRAMOnlyCard, or memErrInvalidStoreHeader if an
error occurs.

Comments Call this routine to retrieve any or all information on either the RAM
store or the ROM store for a card. Pass 0 for variables that you donÕt
wish returned.

Functions for System Use Only

MemCardFormat

Prototype Err MemCardFormat (UInt cardNo,
CharPtr cardNameP,
CharPtr manufNameP,
CharPtr ramStoreNameP)

WARNING: This function for use by system software only.
Developing Palm OS 2.0 Applications Part III 71

Memory Management Functions
Memory Manager Functions
MemChunkNew

Prototype VoidPtr MemChunkNew (UInt heapID,
ULong size,
UInt attributes)

WARNING: This function for use by system software only.

MemHandleFlags

Prototype UInt MemHandleFlags (VoidHand h)

WARNING: This function for use by system software only.

MemHandleLockCount

Prototype UInt MemHandleLockCount (VoidHand h)

WARNING: This function for use by system software only.

MemHandleOwner

Prototype UInt MemHandleOwner (VoidHand h)

WARNING: This function for use by system software only.

MemHandleResetLock

Prototype Err MemHandleResetLock (VoidHand h)

WARNING: This function for use by system software only.

MemHandleSetOwner

Prototype Err MemHandleSetOwner (VoidHand h,
UInt owner)
72 Developing Palm OS 2.0 Applications, Part III

Memory Management Functions
Memory Manager Functions
WARNING: This function for use by system software only.

MemHeapFreeByOwnerID

Prototype Err MemHeapFreeByOwnerID (UInt heapID,
UInt ownerID)

WARNING: This function for use by system software only.

MemHeapInit

Prototype Err MemHeapInit(UInt heapID,
Int numHandles,
Boolean initContents)

WARNING: This function for use by system software only.

MemInit

Prototype Err MemInit (void)

WARNING: This function for use by system software only.

MemInitHeapTable

Prototype Err MemInitHeapTable (UInt cardNo)

WARNING: This function for use by system software only.

MemKernelInit

Prototype Err MemKernelInit(void)

WARNING: This function for use by system software only.
Developing Palm OS 2.0 Applications Part III 73

Memory Management Functions
Memory Manager Functions
MemPtrFlags

Prototype UInt MemPtrFlags (VoidPtr chunkDataP)

WARNING: This function for use by system software only.

MemPtrOwner

Prototype UIntMemPtrOwner (VoidPtr chunkDataP)

WARNING: This function for use by system software only.

MemPtrResetLock

Prototype Err MemPtrResetLock (VoidPtr chunkP)

WARNING: This function for use by system software only.

MemPtrSetOwner

Prototype Err MemPtrSetOwner (VoidPtr chunkP, UInt owner)

WARNING: This function for use by system software only.

MemSemaphoreRelease

Prototype Err MemSemaphoreRelease (Boolean writeAccess)

WARNING: This function for use by system software only.

MemSemaphoreReserve

Prototype Err MemSemaphoreReserve (Boolean writeAccess)

WARMING: This function for use by system software only.
74 Developing Palm OS 2.0 Applications, Part III

Memory Management Functions
Memory Manager Functions
MemStoreSetInfo

Prototype Err MemStoreSetInfo (UInt cardNo,
UInt storeNumber,
UIntPtr versionP,
UIntPtr flagsP,
CharPtr nameP,
ULongPtr crDateP,
ULongPtr bckUpDateP,
ULongPtr heapListOffsetP,
ULongPtr initCodeOffset1P,
ULongPtr initCodeOffset2P,
LocalID* databaseDirIDP)

WARNING: This function for use by system software only.
Developing Palm OS 2.0 Applications Part III 75

Memory Management Functions
Memory Manager Functions
76 Developing Palm OS 2.0 Applications, Part III

Data and Resource Manager Functions

DmArchiveRecord

Purpose Mark a record as archived by leaving the recordÕs chunk around and
setting the delete bit for the next sync.

Prototype Err DmArchiveRecord (DmOpenRef dbR, UInt index)

Parameters -> dbR DmOpenRef to open database.

-> index Which record to archive.

Result Returns 0 if no error or dmErrIndexOutOfRange or
dmErrReadOnly if an error occurs.

Comments Marks the delete bit in the database header for the record but does
not dispose of the recordÕs data chunk.

See Also DmRemoveRecord, DmDetachRecord, DmNewRecord,
DmDeleteRecord
Developing Palm OS 2.0 Applications, Part III 77

Data and Resource Manager Functions
DmAttachRecord

Purpose Attach an existing chunk ID handle to a database as a record.

Prototype Err DmAttachRecord (DmOpenRef dbR,
UIntPtr atP,
Handle newH,
Handle* oldHP)

Parameters -> dbR DmOpenRef to open database.

<-> atP Pointer to index where new record should be placed.

-> newH Handle of new record.

<-> oldHP Pointer to return old handle if replacing existing
record.

Result Returns 0 if no error, or dmErrIndexOutOfRange,
dmErrMemError, dmErrReadOnly, dmErrRecordInWrongCard,
memErrChunkLocked, memErrInvalidParam, or
memErrNotEnoughSpace if an error occurs.

Comments Given the handle of an existing chunk, this routine makes that
chunk a new record in a database and sets the dirty bit. The parame-
ter atP points to an index variable. If oldHP is NIL, the new record
is inserted at index *atP and all record indices that follow are shift-
ed down. If *atP is greater than the number of records currently in
the database, the new record is appended to the end and its index is
returned in *atP. If oldHP is not NIL, the new record replaces an ex-
isting record at index *atP and the handle of the old record is re-
turned in *oldHP so that the application can free it or attach it to an-
other database.

Useful for cutting and pasting between databases.

See Also DmDetachRecord, DmNewRecord, DmNewHandle
78 Developing Palm OS 2.0 Applications, Part III

Data and Resource Manager Functions
DmAttachResource

Purpose Attach an existing chunk ID to a resource database as a new re-
source.

Prototype Err DmAttachResource (DmOpenRef dbR,
VoidHand newH,
ULong resType,
Int resID)

Parameters -> dbR DmOpenRef to open database.

-> newH Handle of new resourceÕs data.

-> resType Type of the new resource.

-> resID ID of the new resource.

Result Returns 0 if no error, or dmErrIndexOutOfRange,
dmErrMemError, dmErrReadOnly, dmErrRecordInWrongCard,
memErrChunkLocked, memErrInvalidParam, or
memErrNotEnoughSpace if an error occurs.

Comments Given the handle of an existing chunk with resource data in it, this
routine makes that chunk a new resource in a resource database.
The new resource will have the given type and ID.

See Also DmDetachResource, DmRemoveResource, DmNewHandle,
DmNewResource
Developing Palm OS 2.0 Applications, Part III 79

Data and Resource Manager Functions
DmCloseDatabase

Purpose Close a database.

Prototype Err DmCloseDatabase (DmOpenRef dbR)

Parameters dbR Database access pointer.

Result Returns 0 if no error or dmErrInvalidParam if an error occurs.

Comments This routine doesnÕt unlock any records in the database which have
been left locked, so the application should be careful not to leave
records locked. When performance is not an issue, call
DmResetRecordStates before closing the database in order to un-
lock all records and clear the busy bits.

See Also DmOpenDatabase, DmDeleteDatabase,
DmOpenDatabaseByTypeCreator

DmCreateDatabase

Purpose Create a new database on the speciÞed card with the given name,
creator, and type.

Prototype Err DmCreateDatabase (UInt cardNo,
CharPtr nameP,
ULong creator,
ULong type,
Boolean resDB)

Parameters -> cardNo The card number to create the database on.

-> nameP Name of new database, up to 31 ASCII bytes
long.

-> creator Creator of the database.

-> type Type of the database.
80 Developing Palm OS 2.0 Applications, Part III

Data and Resource Manager Functions
-> resDB If TRUE, create a resource database.

Result Returns 0 if no error, or dmErrInvalidDatabaseName,
dmErrAlreadyExists, memErrCardNotPresent,
dmErrMemError, memErrChunkLocked, memErrInvalidParam,
memErrInvalidStoreHeader, memErrNotEnoughSpace, or
memErrRAMOnlyCard if an error occurs.

Comments Call this routine to create a new database on a speciÞc card. This
routine doesnÕt check for a database with the same name, so check
for it yourself. Once created, the database ID can be retrieved by
calling DmFindDatabase and the database opened using the data-
base ID. To create a resource database instead of a record-based da-
tabase, set the resDB Boolean to TRUE.

See Also DmCreateDatabaseFromImage, DmOpenDatabase,
DmDeleteDatabase

DmCreateDatabaseFromImage

Purpose Call to create an entire database from a single resource that contains
an image of the database; usually, make this call from an applica-
tionÕs reset action code during boot.

Prototype Err DMCreateDatabaseFromImage (Ptr bufferP)

Parameters bufferP Pointer to locked resource containing database image.

Result Returns 0 if no error

Comments Use this function to create the default database for an application.

See Also DmCreateDatabase, DmOpenDatabase
Developing Palm OS 2.0 Applications, Part III 81

Data and Resource Manager Functions
DmDatabaseInfo

Purpose Retrieve information about a database.

Prototype Err DmDatabaseInfo (
UInt cardNo, LocalID dbID,
CharPtr nameP, UIntPtr attributesP,
UIntPtr versionP, ULongPtr crDateP,
ULongPtr modDateP, ULongPtr bckUpDateP,
ULongPtr modNumP, LocalID* appInfoIDP,
LocalID* sortInfoIDP, ULongPtr typeP,
ULongPtr creatorP)

Parameters -> cardNo Number of card database resides on.

-> dbID Database ID of the database.

<-> nameP Pointer to 32-byte character array for
returning the name, or NIL.

<-> attributesP Pointer to return attributes variable, or NIL.

versionP Pointer to new version, or NIL.

<-> crDateP Pointer to return creation date variable, or NIL.

<-> modDateP Pointer to return modiÞcation date variable, or
NIL.

<-> bckUpDateP Pointer to return backup date variable, or NIL.

<-> modNumP Pointer to return modiÞcation number
variable, or NIL.

<-> appInfoIDP Pointer to return appInfoID variable, or NIL.

<-> sortInfoIDP Pointer to return sortInfoID variable, or NIL.

<-> typeP Pointer to return type variable, or NIL.

<-> creatorP Pointer to return creator variable, or NIL.

Result Returns 0 if no error, or dmErrInvalidParam if an error occurs.
82 Developing Palm OS 2.0 Applications, Part III

Data and Resource Manager Functions
Comments Call this routine to retrieve any or all information about a database.
This routine accepts NIL for any return variable parameter pointer
you donÕt want returned.

See Also DmSetDatabaseInfo, DmDatabaseSize,
DmOpenDatabaseInfo, DmFindDatabase,
DmGetNextDatabaseByTypeCreator

DmDatabaseProtect

Purpose This routine can be used to prevent a database from being deleted
(by passing TRUE for 'protect'). It increments the protect count if
protect is TRUE and decrements it if protect is FALSE.

Use this function if you want to keep a particular record or resource
in a database locked down but donÕt want to keep the database
open. This information is kept in the dynamic heap so all databases
are ÒunprotectedÓ at system reset.

Prototype Err DmDatabaseProtect(UInt cardNo,
LocalID dbID,
Boolean protect)

Parameters cardNo Card number of database to protect/unprotect.

dbID Local ID of database to protect/unprotect.

protect If TRUE, protect count will be incremented.
If FALSE, protect count will be decremented.

Result Zero if successful.
Developing Palm OS 2.0 Applications, Part III 83

Data and Resource Manager Functions
DmDatabaseSize

Purpose Retrieve size information on a database.

Prototype Err DmDatabaseSize (UInt cardNo,
ChunkID dbID,
ULongPtr numRecordsP,
ULongPtr totalBytesP,
ULongPtr dataBytesP)

Parameters -> cardNo Card number database resides on.

-> dbID Database ID of the database.

<-> numRecordsP Pointer to return numRecords variable, or NIL.

<-> totalBytesP Pointer to return totalBytes variable, or NIL.

<-> dataBytesP Pointer to return dataBytes variable, or NIL.

Result Returns 0 if no error, or dmErrMemError if an error occurs.

Comments Call this routine to retrieve the size of a database. Any of the return
data variable pointers can be NIL.

¥ The total number of records is returned in *numRecordsP.
¥ The total number of bytes used by the database

including the overhead is returned in *totalBytesP.
¥ The total number of bytes used to store just each recordÕs

data, not including overhead, is returned in
*dataBytesP.

See Also DmDatabaseInfo, DmOpenDatabaseInfo, DmFindDatabase,
DmGetNextDatabaseByTypeCreator
84 Developing Palm OS 2.0 Applications, Part III

Data and Resource Manager Functions
DmDeleteCategory

Purpose Delete all records in a category. The category name is not changed.

Prototype Err DmDeleteCategory (DmOpenRef dbR,
UInt categoryNum)

Parameters dbR Database access pointer.

categoryNum Category of records to delete.

Result Zero if there is no error, an error code otherwise.

DmDeleteDatabase

Purpose Delete a database and all its records.

Prototype Err DmDeleteDatabase (UInt cardNo, LocalID dbID)

Parameters --> cardNo Card number the database resides on.

--> dbID Database ID.

Result Returns 0 if no error, or dmErrCantFind, dmErrCantOpen,
memErrChunkLocked, dmErrDatabaseOpen, dmErrROMBased,
memErrInvalidParam, or memErrNotEnoughSpace if an error oc-
curs.

Comments Call this routine to delete a database. This routine accepts a database
ID as a parameter. To determine the database ID, call either
DmFindDatabase or DmGetDatabase with a database index.

See Also DmDeleteRecord, DmRemoveRecord, DmRemoveResource,
DmCreateDatabase, DmGetNextDatabaseByTypeCreator,
DmFindDatabase
Developing Palm OS 2.0 Applications, Part III 85

Data and Resource Manager Functions
DmDeleteRecord

Purpose Delete a recordÕs chunk from a database but leave the record entry
in the header and set the delete bit for the next sync.

Prototype Err DmDeleteRecord (DmOpenRef dbR, UInt index)

Parameters -> dbR DmOpenRef to open database.

-> index Which record to delete.

Result Returns 0 if no error, or dmErrIndexOutOfRange,
dmErrReadOnly, or memErrInvalidParam if an error occurs.

Comments Marks the delete bit in the database header for the record and dis-
poses of the recordÕs data chunk. Does not remove the record entry
from the database header, but simply sets the localChunkID of the
record entry to NIL.

See Also DmDetachRecord, DmRemoveRecord, DmArchiveRecord,
DmNewRecord
86 Developing Palm OS 2.0 Applications, Part III

Data and Resource Manager Functions
DmDetachRecord

Purpose Detach and orphan a record from a database but donÕt delete the
recordÕs chunk.

Prototype Err DmDetachRecord (DmOpenRef dbR,
UInt index,
Handle* oldHP)

Parameters -> dbR DmOpenRef to open.

-> index Index of the record to detach.

<-> oldHP Pointer to return handle of the detached record.

Result Returns 0 if no error or dmErrReadOnly (database is marked read
only), dmErrIndexOutOfRange (index out of range),
memErrChunkLocked, memErrInvalidParam, or
memErrNotEnoughSpace if an error occurs.

Comments This routine detaches a record from a database by removing its
entry from the database header and returns the handle of the
recordÕs data chunk in *oldHP. Unlike DmDeleteRecord, this rou-
tine removes any traces of the record, including its entry in the data-
base header.

See Also DmAttachRecord, DmRemoveRecord, DmArchiveRecord,
DmDeleteRecord
Developing Palm OS 2.0 Applications, Part III 87

Data and Resource Manager Functions
DmDetachResource

Purpose Detach a resource from a database and return the handle of the re-
sourceÕs data.

Prototype Err DmDetachResource (DmOpenRef dbR,
Int index,
VoidHand* oldHP)

Parameters -> dbR DmOpenRef to open database.

-> index Index of resource to detach.

<-> oldHP Pointer to return handle of the detached record.

Result Returns 0 if no error, or dmErrCorruptDatabase,
dmErrIndexOutOfRange, dmErrReadOnly,
memErrChunkLocked, memErrInvalidParam, or
memErrNotEnoughSpace if an error occurs.

Comments This routine detaches a resource from a database by removing its
entry from the database header and returns the handle of the re-
sourceÕs data chunk in *oldHP.

See Also DmAttachResource, DmRemoveResource
88 Developing Palm OS 2.0 Applications, Part III

Data and Resource Manager Functions
DmFindDatabase

Purpose Return the database ID of a database by card number and name.

Prototype LocalID DmFindDatabase (UInt cardNo,
CharPtr nameP)

Parameters -> cardNo Number of card to search.

-> nameP Name of the database to look for.

Result Returns the database ID, or 0 if not found.

See Also DmGetNextDatabaseByTypeCreator, DmDatabaseInfo,
DmOpenDatabase

DmFindRecordByID

Purpose Return the index of the record with the given unique ID.

Prototype Err DmFindRecordByID (DmOpenRef dbR,
ULong uniqueID,
UIntPtr indexP)

Parameters dbR Database access pointer.

uniqueID Unique ID to search for.

indexP Return index.

Result Returns 0 if found, otherwise dmErrUniqueIDNotFound.

See Also DmQueryRecord, DmGetRecord, DmRecordInfo
Developing Palm OS 2.0 Applications, Part III 89

Data and Resource Manager Functions
DmFindResource

Purpose Search the given database for a resource by type and ID, or by point-
er if it is non-NIL.

Prototype Int DmFindResource (DmOpenRef dbR,
ULong resType,
Int resID,
VoidHand findResH)

Parameters -> dbR Open resource database access pointer.

-> resType Type of resource to search for.

-> resID ID of resource to search for.

->findResH Pointer to locked resource, or NIL.

Result Returns index of resource in resource database, or -1 if not found.

Comments Use this routine to Þnd a resource in a particular resource database
by type and ID or by pointer. It is particularly useful when you want
to search only one database for a resource and that database is not
the topmost one.

If findResH is NIL, the resource is searched for by type and ID.

If findResH is not NIL, resType and resID are ignored and the
index of the given locked resource is returned.

Once the index of a resource is determined, it can be locked down
and accessed by calling DmGetResourceIndex.

See Also DmGetResource, DmSearchResource, DmResourceInfo,
DmGetResourceIndex, DmFindResourceType
90 Developing Palm OS 2.0 Applications, Part III

Data and Resource Manager Functions
DmFindResourceType

Purpose Search the given database for a resource by type and type index.

Prototype Int DmFindResourceType (DmOpenRef dbR,
ULong resType,
Int typeIndex)

Parameters -> dbR Open resource database access pointer.

-> resType Type of resource to search for.

-> typeIndex Index of given resource type.

Result Index of resource in resource database, or -1 if not found.

Comments Use this routine to retrieve all the resources of a given type in a re-
source database. By starting at typeIndex 0 and incrementing until
an error is returned, the total number of resources of a given type
and the index of each of these resources can be determined. Once
the index of a resource is determined, it can be locked down and ac-
cessed by calling DmGetResourceIndex.

See Also DmGetResource, DmSearchResource, DmResourceInfo,
DmGetResourceIndex, DmFindResource
Developing Palm OS 2.0 Applications, Part III 91

Data and Resource Manager Functions
DmFindSortPosition

Purpose Return to where a record is or should be. Useful to Þnd where to in-
sert a record. Uses a binary search.

Prototype UInt DmFindSortPosition(DmOpenRef dbR,
VoidPtr newRecord,

 SortRecordInfoPtr newRecordInfo,
DmComparF *compar,
Int other)

Parameters dbR Database access pointer.

newRecord Pointer to the new record.

newRecordInfo Information about the new record.

compar Pointer to comparison.

other Other info for comparison.

Result The position where the record should be inserted.

The position should be viewed as between the record returned and
the record before it. Note that the return value may be one greater
than the number of records.

Caveat If there are deleted records in the database, DmFindSortPosition
only works if those records are at the end of the database.
DmFindSortPosition always assumes that a deleted record is
greater than or equal to any other record.

See Also DmFindSortPosition
92 Developing Palm OS 2.0 Applications, Part III

Data and Resource Manager Functions
DmFindSortPosition

Purpose Return to where a record is or should be.

Useful to Þnd an existing record or Þnd where to insert a record.
Uses a binary search.

Prototype UInt DmFindSortPosition(DmOpenRef dbR,
VoidPtr newRecord,
DmComparF *compar,
Int other)

Parameters dbR Database access pointer.

newRecord Pointer to the new record.

compar Comparison function (see Comments).

other Any value the application wants to pass to the
comparison function.

Result Returns the position where the record should be inserted. The posi-
tion should be viewed as between the record returned and the
record before it. Note that the return value may be one greater than
the number of records.

Comments The comparison function, compar, accepts two arguments, elem1
and elem2, each a pointer to an entry in the table. The comparison
function compares each of the pointed-to items (*elem1 and
*elem2), and returns an integer based on the result of the compari-
son.

If the items... compar returns...

*elem1 < *elem2 an integer < 0

*elem1 == *elem2 0

*elem1 > *elem2 an integer > 0
Developing Palm OS 2.0 Applications, Part III 93

Data and Resource Manager Functions
2.0 Note DmComparF has changed; it previously had three parameters but
now has six. DmComparF is the typedef of a callback used by
SysInsertionSort, DmInsertionSort, and
FindInsertPosition.

The new compar parameters allow a Palm OS application to pass
more information to the system than before, most noticeably the
record (and all associated information) which allows sorting by
unique ID, so that the Palm OS device and the desktop always
match.

The revised callback is used by new sorting routines (and can be
used the same way by your application):

typedef Int DmComparF (void *,
void *,
Int other,
SortRecordInfoPtr,
SortRecordInfoPtr,

 VoidHand appInfoH);

As a rule, the change in the number of arguments from three to six
doesnÕt cause problems when a 1.0 application is run on a 2.0 de-
vice, because the system only pulls the arguments that are there-
from the stack.

Keep in mind, however, that some optimized applications built with
tools other than Metrowerks CodeWarrior for Pilot may have prob-
lems as a result of the change in arguments when running on a 2.0
device.

See Also DmQuickSort, DmInsertionSort
94 Developing Palm OS 2.0 Applications, Part III

Data and Resource Manager Functions
DmGetAppInfoID

Purpose Return the local ID of the application info block.

Prototype LocalID DmGetAppInfoID (DmOpenRef dbR).

Parameters dbR Database access pointer.

Result Returns local ID of the application info block

See Also DmDatabaseInfo, DmOpenDatabase

DmGetDatabase

Purpose Return the database header ID of a database by index and card
number.

Prototype LocalID DmGetDatabase (UInt cardNo, UInt index)

Parameters -> cardNo Card number of database.

-> index Index of database.

Result Returns the database ID, or 0 if an invalid parameter passed.

Comments Call this routine to retrieve the database ID of a database by index.
The index should range from 0 to DmNumDatabases-1. This routine
is useful for getting a directory of all databases on a card.

See Also DmOpenDatabase, DmNumDatabases, DmDatabaseInfo,
DmDatabaseSize
Developing Palm OS 2.0 Applications, Part III 95

Data and Resource Manager Functions
DmGetLastErr

Purpose Return error code from last data manager call.

Prototype Err DmGetLastErr (void)

Parameters None.

Result Error code from last unsuccessful data manager call.

Comments Use this routine to determine why a data manager call failed. In par-
ticular, calls like DmGetRecord return 0 only if unsuccessful, so call-
ing DmGetLastErr is the only way to determine why they failed.

Note that DmGetLastErr does not always reßect the error status of
the last data manager call. Rather, it reßects the error status of data
manager calls that donÕt return an error code. For some of those
calls, the saved error code value is not set to 0 when the call is suc-
cessful.

For example, if a call to DmOpenDatabaseByTypeCreator returns
NULL for database reference (that is, it fails), DmGetLastErr returns
something meaningful; otherwise, it returns the error value of some
previous data manager call.

Only the following data manager functions currently affect the
value returned by DmGetLastErr:

DmFindDatabase, DmOpenDatabaseByTypeCreator,
DmOpenDatabase, DmNewRecord, DmQueryRecord,
DmGetRecord, DmQueryNextInCategory,
DmPositionInCategory, DmSeekRecordInCategory,
DmResizeRecord, DmGetResource, DmGet1Resource,
DmNewResource, DmGetResourceIndex.
96 Developing Palm OS 2.0 Applications, Part III

Data and Resource Manager Functions
DmGetNextDatabaseByTypeCreator

Purpose Return a database header ID and card number given the type
and/or creator. This routine searches all memory cards for a match.

Prototype Err DmGetNextDatabaseByTypeCreator
(Boolean newSearch,
DmSearchStatePtr stateInfoP,
ULong type,
ULong creator,
Boolean onlyLatestVers,
UIntPtr cardNoP,
LocalID* dbIDP)

Parameters -> newSearch TRUE if starting a new search.

-> stateInfoP If newSearch is FALSE, this must point to the
same data used for the previous invocation.

-> type Type of database to search for, pass 0 as a
wildcard.

-> creator Creator of database to search for, pass 0 as
a wildcard.

-> onlyLatestVers
If TRUE, only latest version of each database
with a given type and creator is returned.

<- cardNoP On exit, the card number of the found database.

<- dbIDP Database local ID of the found database.

Result 0 No error.

dmErrCantFind No matches found.

Comments To start the search, pass TRUE for newSearch. To continue a search
where the previous one left off, pass FALSE for newSearch. When
continuing a search, stateInfoP must point to the same structure
passed during the previous invocation.
Developing Palm OS 2.0 Applications, Part III 97

Data and Resource Manager Functions
If the type parameter is NIL, this routine can be called successively
to return all databases of the given creator. If the creator parame-
ter is NIL, this routine can be called successively to return all data-
bases of the given type.

If the onlyLatestVers parameter is set, only the latest version of
each database with a given creator/type pair is returned.

If youÕre searching for the latest version and either type or
creator is NIL (wildcard), this routine returns the index of the next
database which matches the search criteria. This database canÕt have
been superseded by a newer version of that database with the same
type and creator.

See Also DmGetDatabase, DmFindDatabase, DmDatabaseInfo,
DmOpenDatabaseByTypeCreator, DmDatabaseSize
98 Developing Palm OS 2.0 Applications, Part III

Data and Resource Manager Functions
DmGetRecord

Purpose Return a handle to a record by index and mark the record busy.

Prototype VoidHand DmGetRecord (DmOpenRef dbR,
UInt index)

Parameters -> dbR DmOpenRef to open database.

-> index Which record to retrieve.

Result Returns handle to record data.

Comments Returns handle to given record and sets the busy bit for the record.
If another call to DmGetRecord for the same record is attempted be-
fore the record is released, an error is returned.

If the record is ROM-based (pointer accessed), this routine makes a
fake handle to it and store this handle in the DmAccessType struc-
ture.

 DmReleaseRecord should be called as soon as the caller Þnishes
viewing or editing the record.

See Also DmSearchRecord, DmFindRecordByID, DmRecordInfo,
DmReleaseRecord, DmQueryRecord
Developing Palm OS 2.0 Applications, Part III 99

Data and Resource Manager Functions
DmGetResource

Purpose Search all open resource databases and return a handle to a re-
source, given the resource type and ID.

Prototype VoidHand DmGetResource (ULong type, Int ID)

Parameters -> type The resource type.

->ID The resource ID.

Result Returns pointer to resource data, or NIL if unsuccessful.

Comments Searches all open resource databases starting with the most recently
opened one for a resource of the given type and ID. If found, the re-
source handle is returned. The application should call
DmReleaseRecord as soon as it Þnishes accessing the resource data
to avoid fragmenting the heap.

See Also DmGet1Resource, DmReleaseResource

DmGetResourceIndex

Purpose Return a handle to a resource by index.

Prototype VoidHand DmGetResourceIndex (DmOpenRef dbR,
Int index)

Parameters -> dbR Access pointer to open database.

-> index Index of resource to lock down.

Result Handle to resource data, or NIL if unsuccessful.

See Also DmFindResource, DmFindResourceType, DmSearchResource
100 Developing Palm OS 2.0 Applications, Part III

Data and Resource Manager Functions
DmGet1Resource

Purpose Search the most recently opened resource database and return a
handle to a resource given the resource type and ID.

Prototype VoidHand DmGet1Resource (ULong type, Int ID)

Parameters -> type The resource type.

-> ID The resource ID.

Result Returns a pointer to resource data, or NIL if unsuccessful.

Comments Searches the most recently opened resource database for a resource
of the given type and ID. If found, the resource handle is returned.
The application should call DmReleaseRecord as soon as it Þnishes
accessing the resource data in order to avoid fragmenting the heap.

See Also DmGetResource, DmReleaseResource
Developing Palm OS 2.0 Applications, Part III 101

Data and Resource Manager Functions
DmInsertionSort

 Purpose Sort records in a database.

Prototype Err DmInsertionSort (DmOpenRef dbR,
DmComparF *compar,
Int other)

Parameters dbR Database access pointer.

compar Comparison function (see below).

other Any value the application wants to pass to the
comparison function.

Result Returns 0 if no error, or dmErrReadOnly if read-only database. Re-
turns dmErrInvalidParam for an invalid parameter.

Comments Deleted records are placed last in any order. All others are sorted ac-
cording to the passed comparison function. Only records which are
out of order move. Moved records are moved to the end of the range
of equal records. If a large number of records are being sorted, try to
use the quick sort.

The following insertion-sort algorithm is used: Starting with the sec-
ond record, each record is compared to the preceding record. Each
record not greater than the last is inserted into sorted position with-
in those already sorted. A binary insertion is performed. A moved
record is inserted after any other equal records.

The comparison function, compar, accepts two arguments, *elem1
and * elem2, each a pointer to an entry in the table. The compari-
son function compares each of the pointed-to items (*elem1 and
elem2), and returns an integer based on the result of the com-
parison.

If the items... compar returns...

*elem1 < *elem2 an integer < 0

*elem1 == *elem2 0

*elem1 > *elem2 an integer > 0
102 Developing Palm OS 2.0 Applications, Part III

Data and Resource Manager Functions
DmInsertionSort is also called by SysAppLaunch (see Part 1) to
move an application database it is launching out of the system list
and into the applicationÕs list.

2.0 Note DmComparF has changed; it previously had 3 parameters and now
has 6. DmComparF is the typedef of a callback used by
SysInsertionSort, DmInsertionSort, and
FindInsertPosition.

The new parameters allow a Palm OS application to pass more in-
formation to the system than before, most noticeably the record
(and all associated information) which allows sorting by unique ID,
so that the Palm OS device and the desktop always match.

The revised callback is used by new sorting routines (and can be
used the same way by your application):

typedef Int DmComparF (void *,
void *,
Int other,
SortRecordInfoPtr,
SortRecordInfoPtr,

 VoidHand appInfoH);

As a rule, this change in the number of arguments doesnÕt cause
problems when a 1.0 application is run on a 2.0 device, because
the system only pulls the arguments from the stack that are there.

Keep in mind, however, that some optimized applications built with
tools other than Metrowerks CodeWarrior for Pilot may have prob-
lems as a result of the change in arguments when running on a 2.0
device.

See Also DmQuickSort
Developing Palm OS 2.0 Applications, Part III 103

Data and Resource Manager Functions
DmMoveCategory

Purpose Move all records in a category to another category.

Prototype Err DmMoveCategory (DmOpenRef dbR,
UInt toCategory,
UInt fromCategory,
Boolean dirty)

Parameters -> dbR DmOpenRef to open database.

<- toCategory Category to which to retrieve records.

-> fromCategory Category from which to retrieve records.

-> dirty If TRUE, set the dirty bit.

Result Returns 0 if successful, or dmErrReadOnly if read-only database.

Comments If dirty is TRUE, the moved records are marked as dirty.
104 Developing Palm OS 2.0 Applications, Part III

Data and Resource Manager Functions
DmMoveRecord

Purpose Move a record from one index to another.

Prototype Err DmMoveRecord (DmOpenRef dbR,
UInt from,
UInt to)

Parameters -> dbR DmOpenRef to open database.

-> from Index of record to move.

-> to Where to move the record.

Result Returns 0 if no error or one of dmErrIndexOutOfRange,
dmErrReadOnly, memErrChunkLocked, memErrInvalidParam,
or memErrNotEnoughSpace if an error occurs.

Comments Insert the record at the to index and move other records down. The
to position should be viewed as an insertion position. This value
may be one greater than the index of the last record in the database.
Developing Palm OS 2.0 Applications, Part III 105

Data and Resource Manager Functions
DmNewHandle

Purpose Attempt to allocate a new chunk in the same data heap or card as
the database header of the passed database access pointer. If there is
not enough space in that data heap, try other heaps.

Prototype VoidHand DmNewHandle (DmOpenRef dbR, ULong size)

Parameters -> dbR DmOpenRef to open database.

-> size Size of new handle.

Result Returns the chunkID of new chunk, or 0 if not enough space.

Comments Allocates a new handle of the given size. Ensures that the new han-
dle is in the same memory card as the given database. This guaran-
tees that you can attach the handle to the database as a record to ob-
tain and save its LocalID in the appInfoID or sortInfoID Þelds
of the header.

DmNextOpenDatabase

Purpose Return DmOpenRef to next open database for the current task.

Prototype DmOpenRef DmNextOpenDatabase (DmOpenRef currentP)

Parameters -> currentP Current database access pointer or NIL.

Result DmOpenRef to next open database, or NIL if there are no more.

Comments Call this routine successively to get the DmOpenRefs of all open da-
tabases. Pass NIL for currentP to get the Þrst one. Applications
donÕt usually call this function, but is useful for system information.

See Also DmOpenDatabaseInfo, DmDatabaseInfo
106 Developing Palm OS 2.0 Applications, Part III

Data and Resource Manager Functions
DmNextOpenResDatabase

Purpose Return access pointer to next open resource database in the search
chain.

Prototype DmOpenRef DmNextOpenResDatabase (DmOpenRef dbR)

Parameters dbR Database reference, or 0 to start search from the top.

Result Pointer to next open resource database.

Comments Returns pointer to next open resource database. To get a pointer to
the Þrst one in the search chain, pass NIL for dbR. This Þrst database
is the Þrst and only one searched when DmGet1Resource is called.
Developing Palm OS 2.0 Applications, Part III 107

Data and Resource Manager Functions
DmNewRecord

Purpose Return a handle to a new record in the database and mark the
record busy.

Prototype VoidHand DmNewRecord (DmOpenRef dbR,
UIntPtr atP,
ULong size)

Parameters -> dbR DmOpenRef to open database.

<-> atP Pointer to index where new record should be placed.

-> size Size of new record.

Result Pointer to record data, or 0 if error.

Comments Allocates a new record of the given size, and returns a handle to the
record data. The parameter atP points to an index variable. The
new record is inserted at index *atP and all record indices that fol-
low are shifted down. If *atP is greater than the number of records
currently in the database, the new record is appended to the end
and its index is returned in *atP.

Both the busy and dirty bits are set for the new record and a
unique ID is automatically created.

See Also DmAttachRecord, DmRemoveRecord, DmDeleteRecord
108 Developing Palm OS 2.0 Applications, Part III

Data and Resource Manager Functions
DmNewResource

Purpose Allocate and add a new resource to a resource database.

Prototype VoidHand DmNewResource (DmOpenRef dbR,
ULong resType,
Int resID,
ULong size)

Parameters -> dbR DmOpenRef to open database.

-> resType Type of the new resource.

-> resID ID of the new resource.

-> size Desired size of the new resource.

Result Returns a handle to new resource, or NIL if unsuccessful.

Comments Allocates a memory chunk for a new resource and adds it to the
given resource database. The new resource has the given type and
ID. If successful, the application should call DmReleaseResource
as soon as it Þnishes initializing the resource.

See Also DmAttachResource, DmRemoveResource
Developing Palm OS 2.0 Applications, Part III 109

Data and Resource Manager Functions
DmNumDatabases

Purpose Determine how many databases reside on a memory card.

Prototype UInt DmNumDatabases (UInt cardNo)

Parameters -> cardNo Number of the card to check.

Result Returns the number of databases found.

Comments This routine is helpful for getting a directory of all databases on a
card. The routine DmGetDatabase accepts an index from 0 to
DmNumDatabases -1 and returns a database ID by index.

See Also DmGetDatabase

DmNumRecords

Purpose Return the number of records in a database.

Prototype UInt DmNumRecords (DmOpenRef dbR)

Parameters -> dbR DmOpenRef to open database.

Result Returns the number of records in a database.

See Also DmNumRecordsInCategory, DmRecordInfo, DmSetRecordInfo
110 Developing Palm OS 2.0 Applications, Part III

Data and Resource Manager Functions
DmNumRecordsInCategory

 Purpose Return the number of records of a speciÞed category in a database.

 Prototype UInt DmNumRecordsInCategory (DmOpenRef dbR,
UInt category)

Parameters dbr DmOpenRef to open database.

category Category.

Result Returns the number of records.

See Also DmNumRecords, DmQueryNextInCategory,
DmPositionInCategory, DmSeekRecordInCategory,
DmMoveCategory

DmNumResources

Purpose Return the total number of resources in a given resource database.

Prototype UInt DmNumResources (DmOpenRef dbR)

Parameters -> dbR DmOpenRef to open database.

Result Returns the total number of resources in the given database.
Developing Palm OS 2.0 Applications, Part III 111

Data and Resource Manager Functions
DmOpenDatabase

Purpose Open a database and return a reference to it.

Prototype DmOpenRef DmOpenDatabase (UInt cardNo,
LocalID dbID,
UInt mode)

Parameters -> cardNo Card number database resides on.

-> dbID The database ID of the database.

-> mode Which mode to open database in (see below).

Result Returns DmOpenRef to open database, or 0 if unsuccessful.

Comments Call this routine to open a database for reading or writing. The mode
parameter can be one or more of the following constants ORed to-
gether:

This routine returns a DmOpenRef which must be used to access
particular records in a database. If unsuccessful, 0 is returned and
the cause of the error can be determined by calling DmGetLastErr.

See Also DmCloseDatabase, DmCreateDatabase, DmFindDatabase,
DmOpenDatabaseByTypeCreator, DmDeleteDatabase

dmModeReadWrite Read-write access.

dmModeReadOnly Read-only access.

dmModeLeaveOpen Leave database open even after applica-
tion quits.

dmModeExclusive DonÕt let anyone else open this database.
112 Developing Palm OS 2.0 Applications, Part III

Data and Resource Manager Functions
DmOpenDatabaseByTypeCreator

Purpose Open the most recent revision of a database with the given type and
creator.

Prototype DmOpenRef DmOpenDatabaseByTypeCreator(
ULong type,
ULong creator,
UInt mode)

Parameters type Type of database.

creator Creator of database.

mode Open mode; see Comments for DmOpenDatabase.

Result DmOpenRef to open database, or 0 if unsuccessful.

See Also DmCreateDatabase, DmOpenDatabase, DmOpenDatabaseInfo,
DmCloseDatabase
Developing Palm OS 2.0 Applications, Part III 113

Data and Resource Manager Functions
DmOpenDatabaseInfo

Purpose Retrieve information about an open database.

Prototype Err DmOpenDatabaseInfo (DmOpenRef dbR,
 LocalIDPtr dbIDP,
 UIntPtr openCountP,
 UIntPtr modeP,
 UIntPtr cardNoP,
 BooleanPtr resDBP)

Parameters -> dbR DmOpenRef to open database.

<-> dbIDP Pointer to return dbID variable, or NIL.

<-> openCountP Pointer to return openCount variable, or NIL.

<-> modeP Pointer to return mode variable, or NIL.

<-> cardNoP Pointer to return card number, or NIL.

<-> resDBP Pointer to return resDB Boolean, or NIL.

Result 0 No error.

dmErrInvalidParam Invalid parameter passed.

Comments This routine retrieves information about an open database. Any NIL
return parameter pointers are ignored.

See Also DmDatabaseInfo
114 Developing Palm OS 2.0 Applications, Part III

Data and Resource Manager Functions
DmPositionInCategory

Purpose Return a position of a record within the speciÞed category.

Prototype UInt DmPositionInCategory (DmOpenRef dbR,
UInt index,
UInt category)

Parameters dbR DmOpenRef to open database.

index Index of the record.

category Category to search.

Result Returns the position (zero-based).

Comments If the record is ROM-based (pointer accessed) this routine makes a
fake handle to it and stores this handle in the DmAccessType struc-
ture.

See Also DmQueryNextInCategory, DmSeekRecordInCategory,
DmMoveCategory
Developing Palm OS 2.0 Applications, Part III 115

Data and Resource Manager Functions
DmQueryNextInCategory

Purpose Return a handle to the next record in the speciÞed category for read-
ing only (does not set the busy bit).

Prototype VoidHand DmQueryNextInCategory (DmOpenRef dbR,
 UIntPtr indexP,

UInt category)

Parameters dbR DmOpenRef to open database.

indexP Index of a known record (often retrieved with
DmPositionInCategory).

category Which category to query.

Result Returns a handle to the record following a known record.

See Also DmNumRecordsInCategory, DmPositionInCategory,
DmSeekRecordInCategory
116 Developing Palm OS 2.0 Applications, Part III

Data and Resource Manager Functions
DmQueryRecord

Purpose Return a handle to a record for reading only (does not set the busy
bit).

Prototype VoidHand DmQueryRecord (DmOpenRef dbR,
UInt index)

Parameters -> dbR DmOpenRef to open database.

-> index Which record to retrieve.

Result Returns record handle, or 0 if record is out of range or deleted.

Comments Returns handle to given record. Use this routine only when viewing
the record. This routine successfully returns a handle to the record
even if the record is busy.

If the record is ROM-based (pointer accessed) this routine returns
the fake handle to it.
Developing Palm OS 2.0 Applications, Part III 117

Data and Resource Manager Functions
DmQuickSort

Purpose Sort records in a database.

Prototype Err DmQuickSort(const DmOpenRef dbR,
DmComparF *compar,
Int other)

Parameters dbR Database access pointer.

compar Comparison function (see Comments).

other Any value the application wants to pass to the
comparison function.

Result Returns 0 if no error or DmErrReadOnly if an error occurred.

Comments Deleted records are placed last in any order. All others are sorted ac-
cording to the passed comparison function.

The comparison function, compar, accepts two arguments, elem1
and elem2, each a pointer to an entry in the table. The comparison
function compares each of the pointed-to items (*elem1 and
*elem2), and returns an integer based on the result of the compari-
son.

If the items... compar returns...

*elem1 < *elem2 an integer < 0

*elem1 == *elem2 0

*elem1 > *elem2 an integer > 0

See Also DmFindSortPosition, DmInsertionSort
118 Developing Palm OS 2.0 Applications, Part III

Data and Resource Manager Functions
DmRecordInfo

Purpose Retrieve the record information as stored in the database header.

Prototype Err DmRecordInfo (DmOpenRef dbR,
UInt index,
UBytePtr attrP,
ULongPtr uniqueIDP,
LocalID* chunkIDP)

Parameters -> dbR DmOpenRef to open database.

-> index Index of record.

<-> attrP Pointer to return attribute variable, or NIL.

<-> uniqueIDP Pointer to return unique ID variable, or NIL.

<-> chunkIDP Pointer to return Local ID variable, or NIL.

Result Returns 0 if no error or dmErrIndexOutOfRange if an error oc-
curred.

Comments Retrieves information about a record. Any of the return variable
pointers can be NIL.

See Also DmNumRecords, DmSetRecordInfo, DmQueryNextInCategory
Developing Palm OS 2.0 Applications, Part III 119

Data and Resource Manager Functions
DmResourceInfo

Purpose Retrieve information on a given resource.

Prototype Err DmResourceInfo (DmOpenRef dbR,
Int index,
ULongPtr resTypeP,
IntPtr resIDP,
LocalID* chunkLocalIDP)

Parameters -> dbR DmOpenRef to open database.

-> index Index of resource to get info on.

<-> resTypeP Pointer to return resType variable, or NIL.

<-> resIDP Pointer to return resID variable, or NIL.

<-> chunkLocalIDP
Pointer to return chunkID variable, or NIL.

Result Returns 0 if no error or dmErrIndexOutOfRange if an error oc-
curred.

Comments Use this routine to retrieve all or a portion of the information on a
particular resource. Any or all of the return variable pointers can be
NIL. The type and ID of the resource are returned in *resTypeP and
*resIDP. The memory manager local ID of the resource data is re-
turned in *chunkLocalIDP.

See Also DmGetResource, DmGet1Resource, DmSetResourceInfo,
DmFindResource, DmFindResourceType
120 Developing Palm OS 2.0 Applications, Part III

Data and Resource Manager Functions
DmReleaseRecord

Purpose Clear the busy bit for the given record and set the dirty bit if dirty
is TRUE.

Prototype Err DmReleaseRecord (DmOpenRef dbR,
UInt index,
Boolean dirty)

Parameters -> dbR DmOpenRef to open database.

-> index The record to unlock.

-> dirty If TRUE, set the dirty bit.

Result Returns 0 if no error or dmErrIndexOutOfRange if an error oc-
curred.

Comments Call this routine when you Þnish modifying or reading a record that
youÕve called DmGetRecord on.

See Also DmGetRecord

DmReleaseResource

Purpose Release a resource acquired with DmGetResource.

Prototype Err DmReleaseResource (VoidHand resourceH)

Parameters -> resourceH Handle to resource.

Result Returns 0 if no error.

Comments Marks a resource as being no longer needed by the application.

See Also DmGet1Resource, DmGetResource
Developing Palm OS 2.0 Applications, Part III 121

Data and Resource Manager Functions
DmRemoveRecord

Purpose Remove a record from a database and dispose of its data chunk.

Prototype Err DmRemoveRecord (DmOpenRef dbR,
UInt index)

Parameters -> dbR DmOpenRef to open database.

-> index Index of the record to remove.

Result Returns 0 if no error, or dmErrCorruptDatabase,
dmErrIndexOutOfRange, dmErrReadOnly,
memErrChunkLocked, memErrInvalidParam, or
memErrNotEnoughSpace if an error occurs.

Comments Disposes of a the recordÕs data chunk and removes the recordÕs
entry from the database header.

See Also DmDetachRecord, DmDeleteRecord, DmArchiveRecord,
DmNewRecord
122 Developing Palm OS 2.0 Applications, Part III

Data and Resource Manager Functions
DmRemoveResource

Purpose Delete a resource from a resource database.

Prototype Err DmRemoveResource (DmOpenRef dbR, Int index)

Parameters -> dbR DmOpenRef to open database.

-> index Index of resource to delete.

Result Returns 0 if no error or dmErrCorruptDatabase,
dmErrIndexOutOfRange, dmErrReadOnly,
memErrChunkLocked, memErrInvalidParam, or
memErrNotEnoughSpace if an error occurs.

Comments This routine disposes of the memory manager chunk that holds the
given resource and removes its entry from the database header.

See Also DmDetachResource, DmRemoveResource, DmAttachResource

DmRemoveSecretRecords

Purpose Remove all secret records.

Prototype Err DmRemoveSecretRecords (DmOpenRef dbR)

Parameters dbR DmOpenRef to open database.

Result Returns 0 if no error or dmErrReadOnly (read-only database) if an
error occurred.

See Also DmRemoveRecord, DmRecordInfo, DmSetRecordInfo
Developing Palm OS 2.0 Applications, Part III 123

Data and Resource Manager Functions
DmResetRecordStates

Purpose Unlock all records in a database and clear all busy bits.

Prototype Err DmResetRecordStates (DmOpenRef dbR)

Parameters -> dbR DmOpenRef to open database.

Result Returns 0 if no error or dmErrROMBased if an error occurred.

Comments This routine unlocks all records in a database and clears all busy
bits. It can optionally be called before closing a database to ensure
that the records are all unlocked. For performance reasons, the data
manager does not call DmResetRecordStates automatically when
closing a database.

This routine automatically allocates the record in another data heap
if the current heap is too full.
124 Developing Palm OS 2.0 Applications, Part III

Data and Resource Manager Functions
DmResizeRecord

Purpose Resize a record by index.

Prototype VoidHand DmResizeRecord (DmOpenRef dbR,
UInt index,
ULong newSize)

Parameters -> dbR DmOpenRef to open database.

-> index Which record to retrieve.

-> newSize New size of record.

Result Pointer to resized record, or NIL if unsuccessful.

Comments This routine reallocates the record in another heap of the same
memory card if the current heap is not big enough. If this happens,
the handle changes, so be sure to use the returned handle to access
the resized resource.
Developing Palm OS 2.0 Applications, Part III 125

Data and Resource Manager Functions
DmResizeResource

Purpose Resize a resource and return the new handle.

Prototype VoidHand DmResizeResource (VoidHand resourceH,
ULong newSize)

Parameters -> resourceH Handle to resource.

-> newSize Desired new size of resource.

Result Returns a handle to newly sized resource or NIL if unsuccessful.

Comments Resizes the resource and returns new handle. If necessary in order
to grow the resource, this routine will reallocate it in another heap
on the same memory card that it is currently in.

The handle may change if the resource had to be reallocated in a dif-
ferent data heap because there was not enough space in its present
data heap.

DmSearchRecord

Purpose Search all open record databases for a record with the handle
passed.

Prototype Int DmSearchRecord (VoidHand recH,
DmOpenRef* dbRP)

Parameters recH Record handle.

dbRP Pointer to return variable of type DmOpenRef.

Result Returns the index of the record and database access pointer; if not
found, index will be -1 and *dbRP will be 0.

See Also DmGetRecord, DmFindRecordByID, DmRecordInfo
126 Developing Palm OS 2.0 Applications, Part III

Data and Resource Manager Functions
DmSearchResource

Purpose Search all open resource databases for a resource by type and ID, or
by pointer if it is non-NIL.

Prototype Int DmSearchResource (ULong resType,
Int resID,
VoidHand resH,
DmOpenRef* dbRP)

Parameters -> resType Type of resource to search for.

-> resID ID of resource to search for.

-> resH Pointer to locked resource, or NIL.

-> dbRP Pointer to return variable of type DmOpenRef.

Result Returns the index of the resource, stores DmOpenRef in dbRP.

Comments This routine can be used to Þnd a resource in all open resource data-
bases by type and ID or by pointer. If resH is NIL, the resource is
searched for by type and ID. If resH is not NIL, resType and
resID is ignored and the index of the resource handle is returned.
On return *dbRP contains the access pointer of the resource data-
base that the resource was eventually found in. Once the index of a
resource is determined, it can be locked down and accessed by call-
ing DmGetResourceByIndex.

See Also DmGetResource, DmFindResourceType, DmResourceInfo,
DmGetResourceIndex, DmFindResource
Developing Palm OS 2.0 Applications, Part III 127

Data and Resource Manager Functions
DmSeekRecordInCategory

Purpose Return the index of the record at the offset from the passed record
index. (The offset parameter indicates the number of records to
move forward or backward; the value for backward is negative.)

Prototype Err DmSeekRecordInCategory (DmOpenRef dbR,
 UIntPtr indexP,

Int offset,
Int direction,
UInt category)

Parameters dbR DmOpenRef to open database.

index Pointer to the returned index.

offset Offset of the passed record index.

direction dmSeekForward or dmSeekBackward.

category Category ID.

Result Returns 0 if no error; returns dmErrIndexOutOfRange or
dmErrSeekFailed if an error occurred.

See Also DmNumRecordsInCategory, DmQueryNextInCategory,
DmPositionInCategory, DmMoveCategory
128 Developing Palm OS 2.0 Applications, Part III

Data and Resource Manager Functions
DmSet

Purpose Write a speciÞed value into a section of a record. This function also
checks the validity of the pointer for the record and makes sure the
writing of the record information doesnÕt exceed the bounds of the
record.

Prototype Err DmSet (VoidPtr recordP,
ULong offset,
ULong bytes,
Byte value)

Parameters recordP Pointer to locked data record (chunk pointer).

offset Offset within record to start writing.

bytes Number of bytes to write.

value Byte value to write.

Result Returns 0 if no error; returns dmErrNotValidRecord or
dmErrWriteOutOfBounds if an error occurred.

Comments Must be used to write to data manager records because the data
storage area is write-protected.

See Also DmWrite

DmSetDatabaseInfo

Purpose Set information about a database.

Prototype Err DmSetDatabaseInfo (UInt cardNo,
LocalID dbID, CharPtr nameP,
UIntPtr attributesP, UIntPtr versionP
ULongPtr crDateP, ULongPtr modDateP,
ULongPtr bckUpDateP, ULongPtr modNumP,
LocalID* appInfoIDP, LocalID* sortInfoIDP,
Developing Palm OS 2.0 Applications, Part III 129

Data and Resource Manager Functions
ULongPtr typeP, ULongPtr creatorP)

Parameters -> cardNo Card number the database resides on.

-> dbID Database ID of the database.

-> nameP Pointer to 32-byte character array for new
name, or NIL.

-> attributesP Pointer to new attributes variable, or NIL.

versionP Pointer to new version, or NIL.

-> crDateP Pointer to new creation date variable, or NIL.

-> modDateP Pointer to new modiÞcation date variable, or
NIL.

-> bckUpDateP Pointer to new backup date variable, or NIL.

-> modNumP Pointer to new modiÞcation number variable,
or NIL.

-> appInfoIDP Pointer to new appInfoID variable, or NIL.

-> sortInfoIDP Pointer to new sortInfoID variable, or NIL.

-> typeP Pointer to new type variable, or NIL.

-> creatorP Pointer to new creator variable, or NIL.

Result Returns 0 if no error or dmErrInvalidParam if an error occurred.

Comments When this call changes appInfoID or sortInfoID, the old chunk
ID (if any) is marked as an orphan chunk and the new chunk ID is
unorphaned. Consequently, you shouldnÕt replace an existing
appInfoID or sortInfoID if that chunk has already been attached
to another database.

Call this routine to set any or all information about a database ex-
cept for the card number and database ID. This routine sets the new
value for any non-NIL parameter.

See Also DmDatabaseInfo, DmOpenDatabaseInfo, DmFindDatabase,
DmGetNextDatabaseByTypeCreator
130 Developing Palm OS 2.0 Applications, Part III

Data and Resource Manager Functions
DmSetRecordInfo

Purpose Set record information stored in the database header.

Prototype Err DmSetRecordInfo (DmOpenRef dbR,
UInt index,
UBytePtr attrP,
ULongPtr uniqueIDP)

Parameters -> dbR DmOpenRef to open database.

-> index Index of record.

-> attrP Pointer to new attribute variable, or NIL.

-> uniqueIDP Pointer to new unique ID variable, or NIL.

Result Returns 0 if no error; returns dmErrIndexOutOfRange or
dmErrReadOnly if an error occurred.

Comments Sets information about a record.

See Also DmNumRecords, DmRecordInfo
Developing Palm OS 2.0 Applications, Part III 131

Data and Resource Manager Functions
DmSetResourceInfo

Purpose Set information on a given resource.

Prototype Err DmSetResourceInfo (DmOpenRef dbR,
Int index,
ULongPtr resTypeP,
IntPtr resIDP)

Parameters -> dbR DmOpenRef to open database.

-> index Index of resource to set info for.

<-> resTypeP Pointer to new resType, or NIL.

<-> resIDP Pointer to new resID, or NIL.

Result Returns 0 if no error; returns dmErrIndexOutOfRange or
dmErrReadOnly if an error occurred.

Comments Use this routine to set all or a portion of the information on a partic-
ular resource. Any or all of the new info pointers can be NIL. If not
NIL, the type and ID of the resource are changed to *resTypeP and
*resIDP.

Normally, the unique ID for a record is automatically created by the
data manager when a record is created using DmNewRecord, so an
application would not typically change the unique ID.
132 Developing Palm OS 2.0 Applications, Part III

Data and Resource Manager Functions
DmStrCopy

Purpose Check the validity of the chunk pointer for the record and make
sure that writing the record will not exceed the chunk bounds.

Prototype Err DmStrCopy (VoidPtr recordP,
ULong offset,
CharPtr srcP)

Parameters recordP Pointer to data record (chunk pointer).

offset Offset within record to start writing.

srcP Pointer to 0-terminated string.

Result Returns 0 if no error; returns dmErrNotValidRecord or
dmErrWriteOutOfBounds if an error occurred.

See Also DmWrite, DmSet
Developing Palm OS 2.0 Applications, Part III 133

Data and Resource Manager Functions
DmWrite

Purpose Must be used to write to data manager records because the data
storage area is write-protected. This routine checks the validity of
the chunk pointer for the record and makes sure that the write will
not exceed the chunk bounds.

Prototype Err DmWrite (VoidPtr recordP, ULong offset,
VoidPtr srcP, ULong bytes)

Parameters recordP Pointer to locked data record (chunk pointer).

offset Offset within record to start writing.

srcP Pointer to data to copy into record.

bytes Number of bytes to write.

Result Returns 0 if no error; returns dmErrNotValidRecord or
dmErrWriteOutOfBounds if an error occurred.

See Also DmSet
134 Developing Palm OS 2.0 Applications, Part III

Data and Resource Manager Functions
DmWriteCheck

Purpose Check the parameters of a write operation to a data storage chunk
before actually performing the write.

Prototype Err DmWriteCheck(VoidPtr recordP,
ULong offset,
ULong bytes)

Parameters recordP Locked pointer to recordH.

offset Offset into record to start writing.

bytes Number of bytes to write.

Result Returns 0 if no error; returns dmErrNotValidRecord or
dmErrWriteOutOfBounds if an error occurred.

System Use Only

DmMoveOpenDBContext

Prototype Err DmMoveOpenDBContext (DmOpenRef* dstHeadP,
DmOpenRef dbR)

WARNING: System Use Only!
Developing Palm OS 2.0 Applications, Part III 135

Data and Resource Manager Functions
136 Developing Palm OS 2.0 Applications, Part III

3
Palm OS
Communications
The Palm OS communications software provides high-performance
serial communications capabilities, including byte-level serial I/O,
best-effort packet-based I/O with CRC-16, reliable data transport
with retries and acknowledgments, connection management, and
modem dialing capabilities.

This chapter helps you understand the different parts of the com-
munications software and explains how to use them, discussing
these topics:

¥ Byte Ordering brießy explains the byte order used for all
data.

¥ Communications Architecture Hierarchy provides an over-
view of the hierarchy, including an illustration.

¥ The Serial Manager is responsible for byte-level serial I/O
and control of the RS232 signals.

¥ The Serial Link Protocol provides an efÞcient mechanism for
sending and receiving packets.

¥ The Serial Link Manager is the Palm OS implementation of
the serial link protocol.

Byte Ordering
By convention, all data coming from and going to the Palm OS de-
vice use Motorola byte ordering. That is, data of compound types
such as Word (2 bytes) and DWord (4 bytes), as well as their integral
counterparts, are packaged with the most-signiÞcant byte at the
lowest address. This contrasts with Intel byte ordering.
Developing Palm OS 2.0 Applications, Part III 137

Palm OS Communications
Communications Architecture Hierarchy
Communications Architecture Hierarchy
The communications software has multiple layers. Higher layers de-
pend on more primitive functionality provided by lower layers. Ap-
plications can use functionality of all layers. The software consists of
the following layers, described in more detail below:

¥ The serial manager, at the lowest layer, deals with the Palm
OS serial port and control of the RS232 signals, providing
byte-level serial I/O. See The Serial Manager.

¥ The modem manager provides modem dialing capabilities.
¥ The Serial Link Protocol (SLP) provides best-effort packet

send and receive capabilities with CRC-16. Packet delivery is
left to the higher-level protocols; SLP does not guarantee it.
See The Serial Link Protocol.

¥ The Packet Assembly/Disassembly Protocol (PADP) sends
and receives buffered data. PADP is an efÞcient protocol fea-
turing variable-size block transfers with robust error check-
ing and automatic retries. Applications donÕt need access to
that part of the system.

¥ The Connection Management Protocol (CMP) provides
connection-establishment capabilities featuring baud rate ar-
bitration and exchange of communications software version
numbers.

¥ The Desktop Link Protocol (DLP) provides remote access to
Palm OS data storage and other subsystems.

DLP facilitates efÞcient data synchronization between desk-
top (PC, Macintosh, etc.) and Palm OS applications, database
backup, installation of code patches, extensions, applications,
and other databases, as well as Remote Interapplication
Communication (RIAC) and Remote Procedure Calls (RPC).

Figure 3.1 illustrates the communications layers.
138 Developing Palm OS 2.0 Applications, Part III

Palm OS Communications
Communications Architecture Hierarchy
Figure 3.1 Palm OS Communications Architecture

Modem Manager
Connection

Management
Protocol (CMP)

Desktop Link
Protocol (DLP)

Packet Assembly/Disassembly
Protocol (PAD)

Serial Link
Protocol (SLP)

Serial Manager

Serial Port

Modem
(optional)

Hardware
Developing Palm OS 2.0 Applications, Part III 139

Palm OS Communications
The Serial Manager
The Serial Manager
The Palm OS serial manager is responsible for byte-level serial I/O
and control of the RS232 signals.

In order to prolong battery life, the serial manager must be very efÞ-
cient in its use of processing power. To reach this goal, the serial
manager receiver is interrupt-driven. In the present implementa-
tion, the serial manager uses the polling mode to send data.

Using the Serial Manager

Before using the serial manager, call SysLibFind, passing Serial
Library for the library name to get the serial library reference
number. This reference number is used with all subsequent serial
manager calls. To obtain the number, call SysLibFind with ÒSerial
LibraryÓ as the library name. The system software automatically in-
stalls the serial library during system initialization.

To open the serial port, call SerOpen, passing the serial library ref-
erence number (returned by SysLibFind), 0 (zero) for the port
number, and the desired baud rate. An error code of 0 (zero) or
serErrAlreadyOpen indicates that the port was successfully
opened.

If the serial port is already open when SerOpen is called, the portÕs
open count is incremented and an error code of
serErrAlreadyOpen is returned. This ability to open the serial
port multiple times allows cooperating tasks to share the serial port.

All other applications must refrain from sharing the serial port and
close it by calling SerClose when serErrAlreadyOpen is re-
turned. Error codes other than 0 (zero) or serErrAlreadyOpen in-
dicate failure. The application must open the serial port before mak-
ing other serial manager calls.

To close the serial port, call SerClose. Every successful call to
SerOpen must eventually be paired with a call to SerClose. Be-
cause an open serial port consumes more energy from the deviceÕs
140 Developing Palm OS 2.0 Applications, Part III

Palm OS Communications
The Serial Manager
batteries, it is essential not to keep the port open any longer than
necessary.

To change serial port settings, such as the baud rate, CTS timeout,
number of data and stop bits, parity options, and handshaking op-
tions, call SerSetSettings. For baud rates above 19200, use of
hardware handshaking is advised.

To retrieve the current serial port settings, call SerGetStatus.

To retrieve the current line error status, call SerGetStatus, which
returns the cumulative status of all line errors being monitored. This
includes parity, hardware and software overrun, framing, break de-
tection, and handshake errors.

To reset the serial port error status, call SerClearErr, which resets
the serial portÕs line error status. Other serial manager functions,
such as SerReceive, immediately return with the error code
serErrLineErr if any line errors are pending. Applications should
therefore check the result of serial manager function calls and call
SerClearErr if line error(s) occurred.

To send a stream of bytes, call SerSend. In the present implementa-
tion, SerSend blocks until all data are transferred to the UART or a
timeout error (if CTS handshaking is enabled) occurs. If your soft-
ware needs to detect when all data has been transmitted, consider
calling SerSendWait.

2.0 Note Both SerSend and SerReceive have been enhanced in this ver-
sion of the system. See the function descriptions for more informa-
tion.

To wait until all data queued up for transmission has been transmit-
ted, call SerSendWait. SerSendWait blocks until all pending data
is transmitted or a CTS timeout error occurs (if CTS handshaking is
enabled).

To ßush all bytes from the transmission queue, call SerSendWait.
This routine discards any data not yet transferred to the UART for
transmission.
Developing Palm OS 2.0 Applications, Part III 141

Palm OS Communications
The Serial Manager
To receive a stream of bytes from the serial port, call SerReceive,
specifying a buffer, the number of bytes desired, and the interbyte
time out. This call blocks until all the requested data have been re-
ceived or an error occurs.

To read bytes already in the receive queue, call SerReceiveCheck
(see below) to get the number of bytes presently in the receive queue
and then call SerReceive, specifying the number of bytes desired.
Because SerReceive returns immediately without any data if line
errors are pending, it is important to acknowledge the detection of
line errors by calling SerClearErr.

To wait for a speciÞc number of bytes to be queued up in the receive
queue, call SerReceiveWait, passing the desired number of bytes
and an interbyte timeout. This call blocks until the desired number
of bytes have accumulated in the receive queue or an error occurs.
The desired number of bytes must be less than the current receive
queue size. The default queue size is 512 bytes. Because this call re-
turns immediately if line errors are pending, applications have to
call SerClearErr to detect any line errors. See also
SerReceiveCheck and SerSetReceiveBuffer.

To check how many bytes are presently in the receive queue, call
SerReceiveCheck.

To discard all data presently in the receive queue and to ßush bytes
coming into the serial port, call SerReceiveFlush, specifying the
interbyte timeout. This call blocks until a time out occurs waiting for
the next byte to arrive.

To replace the default receive queue, call SerSetReceiveBuffer,
specifying the pointer to the buffer to be used for the receive queue
and its size. The default receive queue must be restored before the
serial port is closed. To restore the default receive queue, call
SerSetReceiveBuffer, passing 0 (zero) for the buffer size. The se-
rial manager does not free the custom receive queue.

To avoid having the system go to sleep while itÕs waiting to receive
data, an application should call EvtResetAutoOffTimer periodi-
cally. For example, the serial link manager automatically calls
EvtResetAutoOffTimer each time a new packet is received. Note
142 Developing Palm OS 2.0 Applications, Part III

Palm OS Communications
The Serial Manager
that this facility is not part of the serial manager but part of the
event manager. See Chapter 12, ÒSystem Manager Functions,Ó of
ÒDeveloping Palm OS Applications, Part II.Ó

To perform a control function, applications can call SerControl.
This Palm OS 2.0 function performs one of the control operations
speciÞed by SerCtlEnum, which has the following elements:

Element Description

serCtlFirstReserved = 0 Reserve 0

serCtlStartBreak Turn RS232 break signal on. Applications have to
make sure that the break is set long enough to gen-
erate a value BREAK!
valueP = 0; valueLenP = 0

serCtlStopBreak Turn RS232 break signal off:
valueP = 0; valueLenP = 0

serCtlBreakStatus Get RS232 break signal status (on or off):
valueP = ptr to Word for returning status

(0 = off, !0 = on)

*valueLenP = sizeof(Word)

serCtlStartLocalLoopback Start local loopback test;
valueP = 0, valueLenP = 0

serCtlStopLocalLoopback Stop local loopback test
valueP = 0, valueLenP = 0

serCtlMaxBaud valueP = ptr to DWord for returned baud
*valueLenP = sizeof(DWord)

serCtlHandshakeThreshold Retrieve HW handshake threshold; this is the maxi-
mum baud rate that does not require hardware
handshaking
valueP = ptr to DWord for returned baud
*valueLenP = sizeof(DWord)
Developing Palm OS 2.0 Applications, Part III 143

Palm OS Communications
The Serial Manager
Calling serControl with serCtlEmuSetBlockingHook replaces
the mandatory need to deÞne a YieldTime function. If the applica-
tion never sets the blocking hook, then no blocking hook calls will
be made.

The prototype for the blocking hook callback function is
SerBlockingHookHandler which is deÞned and described in de-
tail in SerialMgr.h.

Palm OS 1.0 developers that relied on the static YieldTime func-
tion for periodic processing such as draining the event queue and
checking for user cancel action, have to add a parameter to their
YieldTime function and call serCtlEmuSetBlockingHook to set
their YieldTime function as the blocking hook callback function.

When applications no longer want the callback function to be called,
they should call serControl with serCtlEmuSetBlockingHook,
passing NULL for funcP in the SerCallbackEntryType structure.

serCtlEmuSetBlockingHook Set a blocking hook routine.

WARNING: For use with the Simulator only: NOT
SUPPORTED ON THE PILOT.

valueP = ptr to SerCallbackEntryType
*valueLenP=sizeof(SerCallbackEntryType)
Returns the old settings in the Þrst argument.

serCtlLAST Add new address entries before this one.

Element Description
144 Developing Palm OS 2.0 Applications, Part III

Palm OS Communications
The Serial Manager
Serial Manager Function Summary

The following functions are available for application use:

¥ SerClearErr

¥ SerClose

¥ SerControl

¥ SerGetSettings

¥ SerGetStatus

¥ SerOpen

¥ SerReceive

¥ SerReceiveCheck

¥ SerReceiveFlush

¥ SerReceiveWait

¥ SerSend

¥ SerSendWait

¥ SerSetReceiveBuffer

¥ SerSetSettings
Developing Palm OS 2.0 Applications, Part III 145

Palm OS Communications
The Serial Link Protocol
The Serial Link Protocol
The Serial Link Protocol (SLP) provides an efÞcient packet send and
receive mechanism. SLP provides robust error detection with CRC-
16. SLP is a best-effort protocol; it does not guarantee packet deliv-
ery (packet delivery is left to the higher-level protocols). For en-
hanced error detection and implementation convenience of higher-
level protocols, SLP speciÞes packet type, source, destination, and
transaction ID information as an integral part of its data packet
structure.

SLP Packet Structures

The following sections describe:

¥ SLP Packet Format
¥ Packet Type Assignment
¥ Socket ID Assignment
¥ Transaction ID Assignment.

SLP Packet Format

Each SLP packet consists of a packet header, client data of variable
size, and a packet footer, as shown in Figure 3.2.
146 Developing Palm OS 2.0 Applications, Part III

Palm OS Communications
The Serial Link Protocol
Figure 3.2 Structure of a Serial Link Packet

¥ The packet header contains the packet signature, the destina-
tion socket ID, the source socket ID, packet type, client data
size, transaction ID, and header checksum. The packet signa-
ture is composed of the three bytes 0xBE, 0xEF, 0xED, in that
order. The header checksum is an 8-bit arithmetic checksum
of the entire packet header, not including the checksum Þeld
itself.

¥ The client data is a variable-size block of binary data speci-
Þed by the user and is not interpreted by the Serial Link Pro-
tocol.

Packet header

Client data

signature (3): 0xBE
0xEF
0xED

destination socket (1)
source socket (1)
packet type (1)

transaction ID (1)
client data size (2)

header checksum (1)

Packet footer CRC-16(2)
Developing Palm OS 2.0 Applications, Part III 147

Palm OS Communications
The Serial Link Protocol
¥ The packet footer consists of the CRC-16 value computed
over the packet header and client data.

Packet Type Assignment

Packet type values in the range of 0x00 through 0x7F are reserved
for use by the system software. The following packet type assign-
ments are currently implemented:

Socket ID Assignment

Socket IDs are divided into two categories: static and dynamic. The
static socket IDs are Òwell-knownÓ socket ID values that are re-
served by the components of the system software. The dynamic
socket IDs are assigned at runtime when requested by clients of SLP.
Static socket ID values in the ranges 0x00 through 0x03 and 0xE0
through 0xFF are reserved for use by the system software. The fol-
lowing static socket IDs are currently implemented or reserved:

0x00 Remote Debugger, Remote Console, and System Re-
mote Procedure Call packets.

0x02 PADP packets.

0x03 Loop-back test packets.

0x00 Remote Debugger socket.

0x01 Remote Console socket.

0x02 Remote UI socket.

0x03 Desktop Link Server socket.

0x04 -0xCF Reserved for dynamic assignment.

0xD0 - 0xDF Reserved for testing.
148 Developing Palm OS 2.0 Applications, Part III

Palm OS Communications
The Serial Link Protocol
Transaction ID Assignment

Transaction ID values are not interpreted by the Serial Link Protocol
and are for the sole beneÞt of the higher-level protocols. The follow-
ing transaction ID values are currently reserved:

Transmitting an SLP Packet

This section provides an overview of the steps involved in transmit-
ting an SLP packet. The next section describes the implementation.

Transmission of an SLP packet consists of these steps:

1. Fill in the packet header and compute its checksum.

2. Compute the CRC-16 of the packet header and client data.

3. Transmit the packet header, client data, and packet footer.

4. Return an error code to the client.

Receiving an SLP Packet

Receiving an SLP packet consists of these steps:

1. Scan the serial input until the packet header signature is
matched.

2. Read in the rest of the packet header and validate its check-
sum.

3. Read in the client data.

4. Read in the packet footer and validate the packet CRC.

5. Dispatch/return an error code and the packet (if successful)
to the client.

0x00 and 0xFF Reserved for use by the system software.

0x00 Reserved by the Palm OS implementation of SLP
to request automatic transaction ID generation.

0xFF Reserved for the connection managerÕs WakeUp
packets.
Developing Palm OS 2.0 Applications, Part III 149

Palm OS Communications
The Serial Link Manager
The Serial Link Manager
The serial link manager is the Palm OS implementation of the Palm
OS Serial Link Protocol.

Serial link manager provides the mechanisms for managing multi-
ple client sockets, sending packets, and receiving packets both syn-
chronously and asynchronously. It also provides support for the Re-
mote Debugger and Remote Procedure Calls (RPC).

Using the Serial Link Manager

Before an application can use the services of the serial link manager,
the application must open the manager by calling SlkOpen. Success
is indicated by error codes of 0 (zero) or slkErrAlreadyOpen. The
return value slkErrAlreadyOpen indicates that the serial link
manager has already been opened (most likely by another task).
Other error codes indicate failure.

When you Þnish using the serial link manager, call SlkClose.
SlkClose may be called only if SlkOpen returned 0 (zero) or
slkErrAlreadyOpen. When open count reaches zero, SlkClose
frees resources allocated by SlkOpen.

To use the serial link manager socket services, open a Serial Link
socket by calling SlkOpenSocket. Pass a reference number of an
opened and initialized communications library (see SlkClose), a
pointer to a memory location for returning the socket ID, and a
Boolean indicating whether the socket is static or dynamic. If a static
socket is being opened, the memory location for the socket ID must
contain the desired socket number. If opening a dynamic socket, the
new socket ID is returned in the passed memory location. Sharing of
sockets is not supported. Success is indicated by an error code of 0
(zero). For information about static and dynamic socket IDs, see
Socket ID Assignment.

When you have Þnished using a Serial Link socket, close it by call-
ing SlkCloseSocket. This releases system resources allocated for
this socket by the serial link manager.
150 Developing Palm OS 2.0 Applications, Part III

Palm OS Communications
The Serial Link Manager
To obtain the communications library reference number for a partic-
ular socket, call SlkSocketRefNum. The socket must already be
open.

To set the interbyte packet receive timeout for a particular socket,
call SlkSocketSetTimeout.

To ßush the receive stream for a particular socket, call
SlkFlushSocket, passing the socket number and the interbyte
timeout.

To register a socket listener for a particular socket, call
SlkSetSocketListener, passing the socket number of an open
socket and a pointer to the SlkSocketListenType structure. Be-
cause the serial link manager does not make a copy of the
SlkSocketListenType structure but instead saves the pointer
passed to it, the structure may not be an automatic variable (that is,
allocated on the stack). The SlkSocketListenType structure may
be a global variable in an application or a locked chunk allocated
from the dynamic heap. The SlkSocketListenType structure
speciÞes pointers to the socket listener procedure and the data
buffers for dispatching packets destined for this socket. Pointers to
two buffers must be speciÞed:

¥ Packet header buffer (size of SlkPktHeaderType).

¥ Packet body buffer, which must be large enough for the larg-
est expected client data size.

Both buffers can be application global variables or locked chunks al-
located from the dynamic heap.

The socket listener procedure is called when a valid packet is re-
ceived for the socket. Pointers to the packet header buffer and the
packet body buffer are passed as parameters to the socket listener
procedure. The serial link manager does not free the
SlkSocketListenType structure or the buffers when the socket is
closed; freeing them is the responsibility of the application. For this
mechanism to function, some task needs to assume the responsibil-
ity to ÒdriveÓ the serial link manager receiver by periodically calling
SlkReceivePacket.
Developing Palm OS 2.0 Applications, Part III 151

Palm OS Communications
The Serial Link Manager
To send a packet, call SlkSendPacket, passing a pointer to the
packet header (SlkPktHeaderType) and a pointer to an array of
SlkWriteDataType structures. SlkSendPacket stuffs the signa-
ture, client data size, and the checksum Þelds of the packet header.
The caller must Þll in all other packet header Þelds. If the transac-
tion ID Þeld is set to 0 (zero), the serial link manager automatically
generates and stuffs a new non-zero transaction ID. The array of
SlkWriteDataType structures enables the caller to specify the cli-
ent data part of the packet as a list of noncontiguous blocks. The end
of list is indicated by an array element with the size Þeld set to 0
(zero). Listing 3.1 incorporates the processes described in this sec-
tion.

Listing 3.1 Sending a Serial Link Packet

Err err;
SlkPktHeaderType sendHdr;

//serial link packet header
SlkWriteDataType writeList[2];

//serial link write data segments
Byte body[20];

//packet body(example packet body)

// Initialize packet body
...

// Compose the packet header
sendHdr.dest = slkSocketDLP;
sendHdr.src = slkSocketDLP;
sendHdr.type = slkPktTypeSystem;
sendHdr.transId = 0;

// let Serial Link Manager set the transId
// Specify packet body
writeList[0].size = sizeof(body);

// first data block size
writeList[0].dataP = body;

// first data block pointer
writeList[1].size = 0;

// no more data blocks
152 Developing Palm OS 2.0 Applications, Part III

Palm OS Communications
The Serial Link Manager
// Send the packet
err = SlkSendPacket(&sendHdr, writeList);

...
}

Listing 3.2 Generating a New Transaction ID

//
// Example: Generating a new transaction ID given the previous
// transaction ID. Can start with any seed value.
//

Byte NextTransactionID (Byte previousTransactionID)
{

Byte nextTransactionID;

// Generate a new transaction id, avoid the
// reserved values (0x00 and 0xFF)
if (previousTransactionID >= (Byte)0xFE)

nextTransactionID = 1; // wrap around
else

nextTransactionID = previousTransactionID + 1;
// increment

return nextTransactionID;
}

To receive a packet, call SlkReceivePacket. You may request a
packet for the passed socket ID only or for any open socket that
does not have a socket listener. The parameters also specify buffers
for the packet header and client data, and a timeout. The timeout in-
dicates how long the receiver should wait for a packet to begin ar-
riving before timing out. A timeout value of (-1) means Òwait for-
ever.Ó If a packet is received for a socket with a registered socket
listener, the packet is dispatched via its socket listener procedure.
Developing Palm OS 2.0 Applications, Part III 153

Palm OS Communications
The Serial Link Manager
Serial Link Manager Function Summary

The following functions are available for application use:

¥ SlkClose

¥ SlkCloseSocket

¥ SlkFlushSocket

¥ SlkOpen

¥ SlkOpenSocket

¥ SlkReceivePacket

¥ SlkSendPacket

¥ SlkSetSocketListener

¥ SlkSocketRefNum

¥ SlkSocketSetTimeout
154 Developing Palm OS 2.0 Applications, Part III

4
Communications
Functions

Serial Manager Functions

SerClearErr

Purpose Reset the serial portÕs line error status.

Prototype Err SerClearErr (UInt refNum)

Parameters -> refNum The serial library reference number.

Result 0 No error.

Caveats Call SerClearErr only after a serial manager function
(SerReceive, SerReceiveCheck, SerSend, etc.) returns with the
error code serErrLineErr.

The reason for this is that SerClearErr resets the serial port. So, if
SerClearErr is called unconditionally while a byte is coming into
the serial port, that byte is guaranteed to become corrupted.

The right strategy is to always check the error code returned by a se-
rial manager function. If it Ôs serErrLineErr, call SerClearErr
immediately. However, donÕt make unsolicited calls to
SerClearErr.

When you get serErrLineErr, consider ßushing the receive queue
for a fraction of a second by calling SerReceiveFlush.
SerReceiveFlush calls SerClearErr for you.
Developing Palm OS 2.0 Applications, Part III 155

Communications Functions
Serial Manager Functions
SerClose

Purpose Release the serial port previously acquired by SerOpen.

Prototype Err SerClose (UInt refNum)

Parameters -> refNum Serial library reference number.

Result 0 No error.
serErrNotOpen Port wasnÕt open.
serErrStillOpen Port still held open by another process.

Comments Releases the serial port and shuts down serial port hardware if the
open count has reached 0. Open serial ports consume more energy
from the deviceÕs batteries; itÕs therefore essential to keep a port
open only as long as necessary.

Caveat DonÕt callSerClose unless the return value from SerOpen was 0
(zero) or serErrAlreadyOpen.

See Also SerOpen
156 Developing Palm OS 2.0 Applications, Part III

Communications Functions
Serial Manager Functions
SerControl

Purpose Perform a control function.

Prototype Err SerControl(UInt refNum,
Word op,
VoidPtr valueP,
WordPtr valueLenP)

Parameters ->refNum Reference number of library.

->op Control operation to perform(SerCtlEnum).

<->valueP Pointer to value for operation.

<->valueLenP Pointer to size of value.

Result 0 No error.
serErrBadParam Invalid parameter (unknown).
serErrNotOpen Library not open.

Comments This function provides extensible control features for the serial man-
ager. You can

¥ Turn on/off the RS232 break signal and check its status.

¥ Perform a local loopback test.

¥ Get the maximum supported baud rate.

¥ Get the hardware handshake threshold baud rate.

There is one emulator-only control, serCtlEmuSetBlockingHook.
See Using the Serial Manager for more information
Developing Palm OS 2.0 Applications, Part III 157

Communications Functions
Serial Manager Functions
SerGetSettings

Purpose Fill in SerSettingsType structure with current serial port at-
tributes.

Prototype Err SerGetSettings (UInt refNum,
SerSettingsPtr settingsP)

Parameters -> refNum Serial library reference number.

<-> settingsP Pointer to SerSettingsType structure
to be Þlled in.

Result 0 No error.
serErrNotOpen The port wasnÕt open.

Comments The information returned by this call includes the current baud rate,
CTS timeout, handshaking options, and data format options.

See the SerSettingsType structure for more details.

See Also SerSend
158 Developing Palm OS 2.0 Applications, Part III

Communications Functions
Serial Manager Functions
SerGetStatus

Purpose Return the pending line error status for errors that have been detect-
ed since the last time SerClearErr was called.

Prototype Word SerGetStatus (UInt refNum,
BooleanPtr ctsOnP,
BooleanPtr dsrOnP)

Parameters -> refNum Serial library reference number.

-> ctsOnP Pointer to location for storing a Boolean value.

-> dsrOnP Pointer to location for storing a Boolean value.

Result Returns any combination of the following constants, bitwise ORed
together:

serLineErrorParity Parity error.

serLineErrorHWOverrun Hardware overrun.

serLineErrorFraming Framing error.

serLineErrorBreak Break signal detected.

serLineErrorHShake Line handshake error.

serLineErrorSWOverrun Software overrun.

Comments When another serial manager function returns an error code of
serErrLineErr, SerGetStatus can be used to find out the specif-
ic nature of the line error(s).

The values returned via ctsOnP and dsrOnP are not meaningful in
the present version of the software

See Also SerClearErr
Developing Palm OS 2.0 Applications, Part III 159

Communications Functions
Serial Manager Functions
SerOpen

Purpose Acquire and open a serial port with given baud rate and default set-
tings.

Prototype Err SerOpen (UInt refNum, UInt port, ULong baud)

Parameters -> refNum Serial library reference number.

-> port Port number.

-> baud Baud rate.

Result 0 No error.

serErrAlreadyOpen Port was open. Enables port sharing by
ÒfriendlyÓ clients (not recommended).

serErrBadParam Invalid parameter.

memErrNotEnoughSpace InsufÞcient memory.

Comments Acquires the serial port, powers it up, and prepares it for operation.
To obtain the serial library reference number, call SysLibFind with
ÒSerial LibraryÓ as the library name. This reference number must be
passed as a parameter to all serial manager functions. The device
currently contains only one serial port with port number 0 (zero).

The baud rate is an integral baud value (for example - 300, 1200,
2400, 9600, 19200, 38400, 57600, etc.). The Palm OS device has been
tested at the standard baud rates in the range of 300 - 57600 baud.
Baud rates through 1 Mbit are theoretically possible. Use CTS hand-
shaking at baud rates above 19200 (see SerSetSettings).

An error code of 0 (zero) or serErrAlreadyOpen indicates that the
port was successfully opened. If the port is already open when
SerOpen is called, the portÕs open count is incremented and an
error code of serErrAlreadyOpen is returned. This ability to open
the serial port multiple times allows cooperating tasks to share the
serial port. Other tasks must refrain from using the port if
serErrAlreadyOpen is returned and close it by calling SerClose.
160 Developing Palm OS 2.0 Applications, Part III

Communications Functions
Serial Manager Functions
SerReceive

Purpose Receives size bytes worth of data or returns with error if a line
error or timeout is encountered.

Prototype ULong SerReceive(UInt refNum,
VoidPtr rcvBufP,
ULong count,
Long timeout,
Err* errP)

Parameters refNum Serial library reference number.

rcvBufP <-> Buffer for receiving data.

count -> Number of bytes to receive.

timeout -> Interbyte timeout in ticks, 0 for none,
-1 forever

Result Number of bytes received:

*errP =0 No error.

serErrLineErr RS232 line error.

serErrTimeOut Interbyte timeout.

See Also SerReceive
Developing Palm OS 2.0 Applications, Part III 161

Communications Functions
Serial Manager Functions
SerReceive10

Purpose Receive a stream of bytes.

Prototype Err SerReceive (UInt refNum, VoidPtr bufP,
ULong bytes, Long timeout)

Parameters -> refNum The serial library reference number.

-> bufP Pointer to the buffer for receiving data.

-> bytes Number of bytes desired.

-> timeout Interbyte time out in system ticks (-1 = forever).

Result 0 No error. Requested number of bytes
was received.

serErrTimeOut Interbyte time out exceeded while waiting for
the next byte to arrive.

serErrLineErr Line error occurred (see SerClearErr
and SerGetStatus).

Comments SerReceive blocks until all the requested data has been received or
an error occurs. Because this call returns immediately without any
data if line errors are pending, it is important to acknowledge the
detection of line errors by calling SerClearErr. If you just need to
retrieve all or some of the bytes which are already in the receive
queue, call SerReceiveCheck Þrst to get the count of bytes pres-
ently in the receive queue.
162 Developing Palm OS 2.0 Applications, Part III

Communications Functions
Serial Manager Functions
SerReceiveCheck

Purpose Return the count of bytes presently in the receive queue.

Prototype Err SerReceiveCheck(UInt refNum,
ULongPtr numBytesP)

Parameters -> refNum Serial library reference number.

<-> numBytesP Pointer to location for returning the byte count.

Result 0 No error.

serErrLineErr Line error pending (see SerClearErr and
SerGetStatus).

Comments Because this call does not return the byte count if line errors are
pending, it is important to acknowledge the detection of line errors
by calling SerClearErr.

See also SerReceiveWait

SerReceiveFlush

Purpose Discard all data presently in the receive queue and ßush bytes com-
ing into the serial port. Clear the saved error status.

Prototype void SerReceiveFlush (UInt refNum, Long timeout)

Parameters -> refNum Serial library reference number.

-> timeout Interbyte time out in system ticks (-1 = forever).

Result Returns nothing.

Comments SerReceiveFlush blocks until a timeout occurs while waiting for
the next byte to arrive.
Developing Palm OS 2.0 Applications, Part III 163

Communications Functions
Serial Manager Functions
SerReceiveWait

Purpose Wait for at least bytes bytes of data to accumulate in the receive
queue.

Prototype Err SerReceiveWait (UInt refNum,
ULong bytes,
Long timeout)

Parameters -> refNum Serial library reference number.

-> bytes Number of bytes desired.

-> timeout Interbyte timeout in system ticks (-1 = forever).

Result 0 No error.

serErrTimeOut Interbyte timeout exceeded while waiting for
next byte to arrive.

serErrLineErr Line error occurred (see SerClearErrr
and SerGetStatus).

Comments This is the preferred method of waiting for serial input, since it
blocks the current task and allows switching the processor into a
more energy-efÞcient state.

SerReceiveWait blocks until the desired number of bytes accu-
mulate in the receive queue or an error occurs. The desired number
of bytes must be less than the current receive queue size. The default
queue size is 512 bytes. Because this call returns immediately if line
errors are pending, it is important to acknowledge the detection of
line errors by calling SerClearErr.

See also SerReceiveCheck, SerSetReceiveBuffer
164 Developing Palm OS 2.0 Applications, Part III

Communications Functions
Serial Manager Functions
SerSend

Purpose Send one or more bytes of data over the serial port.

Prototype ULong SerSend (UInt refNum,
VoidPtr bufP,
ULong count,
Err* errP

Parameters refNum -> Serial library reference number.

bufP -> Pointer to data to send.

count -> Number of bytes to send.

errP <-> For returning error code.

Result Returns the number of bytes transferred.

Stores in errP:

0 No error.

serErrTimeOut Handshake timeout.

NOTE: The old versions of SerSend and SerReceive are still
available as SerSend10 and SerReceive10 (not V10).

The old calls worked, but they did not return enough info when
they failed. The new calls (available in Palm OS devices >= v2.0)
add more parameters to solve this problem and make serial commu-
nications programming simpler.

DonÕt call the new functions when running on Palm OS 1.0.
Developing Palm OS 2.0 Applications, Part III 165

Communications Functions
Serial Manager Functions
SerSend10

Purpose Send a stream of bytes to the serial port.

Prototype Err SerSend (UInt refNum, VoidPtr bufP, ULong size)

Parameters -> refNum Serial library reference number.

-> bufP Pointer to the data to send.

-> size Size (in number of bytes) of the data to send.

Result 0 No error.

serErrTimeOut Handshake timeout (such as waiting for CTS
to become asserted).

Comments In the present implementation, SerSend blocks until all data is
transferred to the UART or a timeout error (if CTS handshaking is
enabled) occurs. Future implementations may queue up the request
and return immediately, performing transmission in the back-
ground. If your software needs to detect when all data has been
transmitted, see SerSendWait.

This routine observes the current CTS time out setting if CTS hand-
shaking is enabled (see SerGetSettings and SerSend).
166 Developing Palm OS 2.0 Applications, Part III

Communications Functions
Serial Manager Functions
SerSendWait

Purpose Wait until the serial transmit buffer empties.

Prototype Err SerSendWait (UInt refNum, Long timeout)

Parameters -> refNum Serial library reference number.

-> timeout Reserved for future enhancements.
Set to (-1) for compatibility.

Result 0 No error.

serErrTimeOut Handshake timeout (such as waiting for CTS
to become asserted).

Comments SerSendWait blocks until all data is transferred or a timeout error
(if CTS handshaking is enabled) occurs. This routine observes the
current CTS timeout setting if CTS handshaking is enabled (see
SerGetSettings and SerSend).
Developing Palm OS 2.0 Applications, Part III 167

Communications Functions
Serial Manager Functions
SerSetReceiveBuffer

Purpose Replace the default receive queue. To restore the original buffer,
pass bufSize = 0.

Prototype Err SerSetReceiveBuffer(UInt refNum, VoidPtr bufP,
UInt bufSize)

Parameters -> refNum Serial library reference number.

-> bufP Pointer to buffer to be used as the new receive queue.

-> bufSize Size of buffer, or 0 to restore the default receive queue.

Result Returns 0 if successful.

Comments The speciÞed buffer needs to contain 32 extra bytes for serial man-
ager overhead (its size should be your applicationÕs requirement
plus 32 bytes). The default receive queue must be restored before
the serial port is closed. To restore the default receive queue, call
SerSetReceiveBuffer passing 0 (zero) for the buffer size. The se-
rial manager does not free the custom receive queue.
168 Developing Palm OS 2.0 Applications, Part III

Communications Functions
Serial Manager Functions
SerSetSettings

Purpose Set the serial port settings; that is, change its attributes.

Prototype Err SerSetSettings (UInt refNum,
SerSettingsPtr settingsP)

Parameters -> refNum Serial library reference number.

<-> settingsP Pointer to the Þlled in SerSettingsType
structure.

Result 0 No error.

serErrNotOpen The port wasnÕt open.

serErrBadParam Invalid parameter.

Comments The attributes set by this call include the current baud rate, CTS tim-
eout, handshaking options, and data format options. See the deÞni-
tion of the SerSettingsType structure for more details.

To do 7E1 transmission, OR together:

serSettingsFlagBitsPerChar7 |
serSettingsFlagParityOnM |
serSettingsFlagParityEvenM |
serSettingsFlagStopBits1

If youÕre trying to communicate at speeds greater than 19.2 KbPS,
you need to use hardware handshaking:
serSettingsFlagRTSAutoM | serSettingsFlagCTSAutoM.

See Also SerGetSettings
Developing Palm OS 2.0 Applications, Part III 169

Communications Functions
Serial Manager Functions
Functions Used Only by System Software
These routines are for use by the system software only and should
not be called by the applications under any circumstances.

SerReceiveISP

WARNING: This function for use by system software only.

SerReceiveWindowClose

WARNING: This function for System use only.

SerReceiveWindowOpen

WARNING: This function for System use only.

SerSetWakeupHandler

WARNING: This function for System use only.

SerSleep

WARNING: This function for use by system software only.

SerWake

WARNING: This function for use by system software only.
170 Developing Palm OS 2.0 Applications, Part III

Communications Functions
Serial Link Manager Functions
Serial Link Manager Functions

SlkClose

Purpose Close down the serial link manager.

Prototype Err SlkClose (void)

Parameters None.

Result 0 No error.

slkErrNotOpen The serial link manager was not open.

Comments When the open count reaches zero, this routine frees resources allo-
cated by serial link manager.
Developing Palm OS 2.0 Applications, Part III 171

Communications Functions
Serial Link Manager Functions
SlkCloseSocket

Purpose Closes a socket previously opened with SlkOpenSocket.

WARNING: The caller is responsible for closing the
communications library used by this socket, if necessary.

Prototype Err SlkCloseSocket (UInt socket)

Parameters socket The socket ID to close.

Result 0 No error.

slkErrSocketNotOpen The socket was not open.

Comments SlkCloseSocket frees system resources the serial link manager al-
located for the socket. It does not free resources allocated and
passed by the client, such as the buffers passed to
SlkSetSocketListener; this is the clientÕs responsibility. The
caller is also responsible for closing the communications library
used by this socket.

See Also SlkOpenSocket, SlkSocketRefNum
172 Developing Palm OS 2.0 Applications, Part III

Communications Functions
Serial Link Manager Functions
SlkFlushSocket

Purpose Flush the receive queue of the communications library associated
with the given socket.

Prototype Err SlkFlushSocket (UInt socket, Long timeout)

Parameters -> socket Socket ID.

-> timeout Interbyte timeout in system ticks.

Result 0 No error.

slkErrSocketNotOpen The socket wasnÕt open.

SlkOpen

Purpose Initialize the serial link manager.

Prototype Err SlkOpen (void)

Parameters None.

Result 0 No error.

slkErrAlreadyOpen No error.

Comments Initializes the serial link manager, allocating necessary resources.
Return codes of 0 (zero) and slkErrAlreadyOpen both indicate
success. Any other return code indicates failure. The
slkErrAlreadyOpen function informs the client that someone else
is also using the serial link manager. If the serial link manager was
successfully opened by the client, the client needs to call SlkClose
when it Þnishes using the serial link manager.
Developing Palm OS 2.0 Applications, Part III 173

Communications Functions
Serial Link Manager Functions
SlkOpenSocket

Purpose Open a serial link socket and associate it with a communications li-
brary. The socket may be a known static socket or a dynamically as-
signed socket.

Prototype Err SlkOpenSocket (UInt libRefNum,
UIntPtr socketP,
Boolean staticSocket)

Parameters libRefNum Comm library reference number for socket.

socketP Pointer to location for returning the socket ID.

staticSocket If TRUE, *socketP contains the desired static
socket number to open. If FALSE, any free
socket number is assigned dynamically and
opened.

Result 0 No error.

slkErrOutOfSockets No more sockets can be opened.

Comments The communications library must already be initialized and opened
(see SerOpen). When Þnished using the socket, the caller must call
SlkCloseSocket to free system resources allocated for the socket.
For information about well-known static socket IDs, see The Seri-
al Link Protocol.
174 Developing Palm OS 2.0 Applications, Part III

Communications Functions
Serial Link Manager Functions
SlkReceivePacket

Purpose Receive and validate a packet for a particular socket or for any sock-
et. Check for format and checksum errors.

Prototype Err SlkReceivePacket(UInt socket,
Boolean andOtherSockets,
SlkPktHeaderPtr headerP,
void* bodyP,
UInt bodySize,
Long timeout)

Parameters -> socket The socket ID.

-> andOtherSockets
If TRUE, ignore destination in packet header.

<-> headerP Pointer to the packet header buffer (size of
SlkPktHeaderType).

<-> bodyP Pointer to the packet client data buffer.

-> bodySize Size of the client data buffer (maximum
client data size which can be accommodated).

-> timeout Maximum number of system ticks to wait for
beginning of a packet; -1 means wait forever.

Result 0 No error.

slkErrSocketNotOpen The socket was not open.

slkErrTimeOut Timed out waiting for a packet.

slkErrWrongDestSocket
The packet being received had an
unexpected destination.

slkErrChecksum Invalid header checksum or packet
CRC-16.

slkErrBuffer Client data buffer was too small for
packetÕs client data.
Developing Palm OS 2.0 Applications, Part III 175

Communications Functions
Serial Link Manager Functions
If andOtherSockets is FALSE, this routine returns with an error
code unless it gets a packet for the speciÞc socket.

If andOtherSockets is TRUE, this routine returns successfully if it
sees any incoming packet from the communications library used by
socket.

Comments You may request to receive a packet for the passed socket ID only, or
for any open socket which does not have a socket listener. The pa-
rameters also specify buffers for the packet header and client data,
and a timeout. The timeout indicates how long the receiver should
wait for a packet to begin arriving before timing out. If a packet is
received for a socket with a registered socket listener, it will be dis-
patched via its socket listener procedure. On success, the packet
header buffer and packet client data buffer is Þlled in with the actual
size of the packetÕs client data in the packet headerÕs bodySize
Þeld.
176 Developing Palm OS 2.0 Applications, Part III

Communications Functions
Serial Link Manager Functions
SlkSendPacket

Purpose Send a serial link packet via the serial output driver.

Prototype Err SlkSendPacket(SlkPktHeaderPtr headerP,
 SlkWriteDataPtr writeList)

Parameters <-> headerP Pointer to the packet header structure with
client information Þlled in (see Comments).

-> writeList List of packet client data blocks
(see Comments).

Result 0 No error.
slkErrSocketNotOpen The socket was not open.
slkErrTimeOut Handshake timeout.

Comments SlkSendPacket stuffs the signature, client data size, and the
checksum Þelds of the packet header. The caller must Þll in all other
packet header Þelds. If the transaction ID Þeld is set to 0 (zero), the
serial link manager automatically generates and stuffs a new non-
zero transaction ID. The array of SlkWriteDataType structures en-
ables the caller to specify the client data part of the packet as a list of
noncontiguous blocks. The end of list is indicated by an array ele-
ment with the size Þeld set to 0 (zero). This call blocks until the en-
tire packet is sent out or until an error occurs.
Developing Palm OS 2.0 Applications, Part III 177

Communications Functions
Serial Link Manager Functions
SlkSetSocketListener

Purpose Register a socket listener for a particular socket.

Prototype Err SlkSetSocketListener (UInt socket,
 SlkSocketListenPtr socketP)

Parameters ->socket Socket ID.

->socketP Pointer to a SlkSocketListenType structure.

Result 0 No error.

slkErrBadParam Invalid parameter.

slkErrSocketNotOpen The socket was not open.

Comments Called by applications to set up a socket listener.

Since the serial link manager does not make a copy of the
SlkSocketListenType structure, but instead saves the passed
pointer to it, the structure

¥ must not be an automatic variable (that is, local variable allo-
cated on the stack)

¥ may be a global variable in an application

¥ may be a locked chunk allocated from the dynamic heap

The SlkSocketListenType structure speciÞes pointers to the
socket listener procedure and the data buffers for dispatching pack-
ets destined for this socket. Pointers to two buffers must be speci-
Þed: the packet header buffer (size of SlkPktHeaderType), and the
packet body (client data) buffer. The packet body buffer must be
large enough for the largest expected client data size. Both buffers
may be application global variables or locked chunks allocated from
the dynamic heap.

The socket listener procedure is called when a valid packet is re-
ceived for the socket. Pointers to the packet header buffer and the
packet body buffer are passed as parameters to the socket listener
procedure.
178 Developing Palm OS 2.0 Applications, Part III

Communications Functions
Serial Link Manager Functions
Note: The application is responsible for freeing the
SlkSocketListenType structure or the allocated buffers when
the socket is closed. The serial link manager doesnÕt do it.

SlkSocketRefNum

Purpose Get the reference number of the communications library associated
with a particular socket.

Prototype Err SlkSocketRefNum (UInt socket, UIntPtr refNumP)

Parameters ->socket The socket ID.

<->refNumP Pointer to location for returning the
communications library reference number.

Result 0 No error.

slkErrSocketNotOpen The socket was not open.

SlkSocketSetTimeout

Purpose Set the interbyte packet receive-timeout for a particular socket.

Prototype Err SlkSocketSetTimeout (UInt socket,
Long timeout)

Parameters -> socket Socket ID.

-> timeout Interbyte packet receive-timeout in system ticks.

Result 0 No error.

slkErrSocketNotOpen The socket was not open.
Developing Palm OS 2.0 Applications, Part III 179

Communications Functions
Miscellaneous Communications Functions
Functions for Use By System Software Only

SlkSysPktDefaultResponse

Prototype Err SlkSysPktDefaultResponse(
SlkPktHeaderPtr headerP,
void* bodyP)

WARNING: This function for use by system software only.

SlkProcessRPC

Prototype Err SlkProcessRPC(SlkPktHeaderPtr headerP,
void* bodyP)

WARNING: This function for use by system software only.

Miscellaneous Communications Functions

Crc16CalcBlock

Purpose Calculate the 16-bit CRC of a data block using the table lookup
method.

Prototype Word Crc16CalcBlock (VoidPtr bufP,
UInt count,
Word crc)

Parameters bufP Pointer to the data buffer.

count Number of bytes in the buffer.

crc Seed CRC value.

Result A 16-bit CRC for the data buffer.
180 Developing Palm OS 2.0 Applications, Part III

5
Palm OS Net Library
The Palm OS net library provides basic network services to applica-
tions. Using the net library, a Palm OS application can easily estab-
lish a connection with any other machine on the Internet and trans-
fer data to and from that machine using the standard TCP/IP
protocols.

The basic network services provided by the net library include:

¥ Stream-based, guaranteed delivery of data using TCP (Trans-
mission Control Protocol).

¥ Datagram-based, best-effort delivery of data using UDP
(User Datagram Protocol).

All higher-level Internet-based services (Þle transfer, e-mail, web
browsing, etc.) can be implemented by applications on top of these
basic data delivery services.

The application programming interface (API) for the net library is
designed to be general enough to support almost any network pro-
tocol including Novell IPX, AppleTalk. Note, however, that current-
ly only the TCP/IP protocols are implemented.

The API maps almost directly to the Berkeley UNIX sockets API, the
de facto standard API for Internet applications. By including the ap-
propriate header Þles, an application written to use the Berkeley
sockets API can be compiled for the Palm OS with only slight (if
any) changes to the source code.
Developing Palm OS 2.0 Applications, Part III 181

Palm OS Net Library
Overview
Overview
This overview of the net library discusses the following topics:

¥ Structure
¥ System Requirements
¥ Constraints

Structure
The net library is implemented as a system library. System libraries
are dynamically installed at runtime and donÕt always have to be
present in the system. Since it is unclear whether all future plat-
forms will need or want network support (especially devices with
very limited amounts of memory), network support is an optional
part of the operating system. As a result, systems which do not re-
quire network support will not pay any RAM penalty (for added en-
tries in the system dispatch table, etc.).

The net library consists of two parts: a netlib interface and a net pro-
tocol stack. Neither part is actually linked in with an application. As
a result, developers can update them as necessary in the future
without having to recompile the applications that use them.

The netlib interface is the set of routines that an application calls di-
rectly when it makes a net library call. These routines execute in the
callerÕs task like subroutines of the application. They are not linked
in with the application, however, but are called through the library
dispatch mechanism.

The net protocol stack runs as a separate task in the operating sys-
tem. Inside this task, the TCP/IP protocol stack runs, and received
packets are processed from the network device drivers. The netlib
interface communicates with the net protocol stack through an oper-
ating system mailbox queue. It posts requests from applications into
the queue and blocks until the net protocol stack processes the re-
quests.

Having the net protocol stack run as a separate task has two big ad-
vantages:

¥ The operating system can switch in the net protocol stack to pro-
cess incoming packets from the network even if one or more ap-
plications are currently busy.
182 Developing Palm OS 2.0 Applications, Part III

Palm OS Net Library
Overview
¥ Even if an application is blocked waiting for some data to arrive
off the network, the net protocol stack can continue to process re-
quests for other applications.

System Requirements
The net library requires Palm OS 2.0.

When the net library itself is opened, it requires an estimated addi-
tional 32 KB of RAM. This in effect doubles the overall system RAM
requirements, currently 32 KB without the net library. ItÕs therefore
not practical to run the net library on any platform that has 128 KB
or less of total RAM available since the system itself will consume 64
KB of RAM (leaving only 64 KB for user storage in a 128 KB system).

Constraints
Developers must keep in mind that Palm OS is designed for small
devices with limited amounts of memory and other hardware re-
sources. All applications written for Palm OS must pay special at-
tention to memory and CPU usage. Devices that have the net library
installed will most likely have only 64 KB of RAM available for sys-
tem and applications. This does not include user storage RAM.
When the net library is opened and initialized, the total remaining
amount of RAM available to an application is approximately 14 KB.

The net library is built to allow a maximum of four open sockets at
one time to keep the memory requirements of the net library to a
minimum. Network applications have to be designed with this con-
straint in mind.

Network applications should also be careful about the amount of
data they try to send to a remote host at the same time. When using
TCP, the data that an application writes to a remote host is buffered
in the dynamic heap so that control can be returned to the caller be-
fore the data is actually transmitted out over the network. Obvious-
ly, sending a 16 KB block of data to a remote host will severely tax
the small dynamic memory space available to a Palm OS applica-
tion. When an application tries to send a large block of data, the net
libraryÕs send routines automatically buffer only a portion of the
block of data, return the size of that portion to the caller, and rely on
the caller to issue additional send calls to Þnish the transmission.
Developing Palm OS 2.0 Applications, Part III 183

Palm OS Net Library
The ProgrammerÕs Interface
If an application expects to also receive data during a large trans-
mission, it should therefore send a smaller block, then read back
whatever is available to read before sending the next block. In this
way, the amount of memory in the dynamic heap that must be used
to buffer data waiting to send out and data waiting to be read back
in by the application is kept to a minimum.

The ProgrammerÕs Interface
The net library API was designed in such a way that a program
written to use the Berkeley sockets API can be compiled to use the
net library API simply by including the appropriate header Þles. Lit-
tle or no source code modiÞcation should be required. The
sys/socket.h header file provided with the Palm OS SDK in-
cludes a set of macros that map Berkeley sockets calls directly to net
library calls. That information is also included with the reference
page for each function (See Chapter 6, ÒNet Library Functions.Ó)

Net Library and Berkeley Sockets API:
Differences
There are four main reasons why the net library API is slightly dif-
ferent from the sockets API.

¥ Error Codes. The sockets API by convention returns error
codes in the applicationÕs global variable errno. The net API
doesnÕt rely on any application global variables. This allows
system code (which cannot have global variables) to use the
net library API.

¥ RefNum. All library calls in the Palm OS must have the li-
brary reference number (refnum) as their Þrst parameter.

¥ Timeouts. In a consumer system such as the Palm OS device,
inÞnite timeouts donÕt work well because the end user canÕt
ÒkillÓ a process thatÕs stuck. A timeout parameter was there-
fore added to the API to allow the application to gracefully
recover from hung connections.

¥ Naming Conventions. The naming conventions in the sock-
ets API donÕt match the naming conventions of the Palm OS.
184 Developing Palm OS 2.0 Applications, Part III

Palm OS Net Library
The ProgrammerÕs Interface
The main differences between the net library API and the Berkeley
sockets API is that most net library API calls accept additional pa-
rameters for:

¥ A timeout

¥ The refNum of the net library

¥ The address for the return error code

The design of the Palm OS library manager requires that all library
calls have the library refNum as the Þrst parameter.

The macros in sys/socket.h do the following:

Example
The following example illustrates how the API mapping works for
the Berkeley sockets call socket(), which has the calling conven-
tion:

int socket(int domain, int type, int protocol);

The equivalent net library call is NetLibSocketOpen, which has
the calling convention:

NetSocketRef NetLibSocketOpen(
Word libRefnum,
NetSocketAddrEnum domain,
NetSocketTypeEnum type,

 SWord protocol,
SDWord timeout,
Err* errP)

The macro for socket is:
#define socket(domain,type,protocol)\

For... The macros pass...

refNum AppNetRefnum (application global variable).

timeout AppNetTimeout (application global variable).

return
error code

Address of the application global errno.
Developing Palm OS 2.0 Applications, Part III 185

Palm OS Net Library
The ProgrammerÕs Interface
NetLibSocketOpen(AppNetRefnum,
domain,
type,
protocol,
AppNetTimeout,
&errno)

The macro in sys/socket.h for the socket() call passes:

¥ The application global AppNetRefnum as the libRefnum.
¥ The address of the application global errno for errP.
¥ A timeout value from the application global
AppNetTimeout.

All other parameters are passed as is. Consequently, there is no extra
layer of glue code penalty for using the sockets API instead of the
net library API directly. Of course, an application that uses the sock-
ets API with the Palm OS must declare and initialize the global vari-
ables AppNetTimeout, AppNetRefnum, and errno somewhere in
its source code.
186 Developing Palm OS 2.0 Applications, Part III

Palm OS Net Library
Using the Net Library
Using the Net Library
The net library can be thought of as having two groups of API calls:
setup and conÞguration calls, and runtime calls. Normally, applica-
tions only use the runtime calls and leave all setup and conÞgura-
tion up to the net library preference panel.

Applications that need to use the net library should assume that all
setup and conÞguration has occurred and focus on using the
runtime calls.

An exception to this rule is applications that allow the user to select
a particular ÒserviceÓ before trying to establish a connection. These
kinds of applications present a pick list of service names and allow
the user to select a service name. This functionality is provided via
the net library preference panel. The panel provides action codes
that allow an application to present a list of possible service names
to let the end user pick one. The preference panel then makes the
necessary net library setup and conÞguration calls to set up for that
particular service.

This section Þrst discusses Setup and ConÞguration Calls, then pro-
vides some detail on Runtime Calls.

Setup and ConÞguration Calls
The setup and conÞguration API calls of the net library are normally
only used by the net library preference panel. This includes calls to
set IP addresses, host name, domain name, login script, interface
settings, and so on. Each setup and conÞguration call saves its set-
tings in the net library preferences database in nonvolatile storage
for later retrieval by the runtime calls.

Usually, the setup and conÞguration calls are made while the library
is closed. A subset of the calls can also be issued while the library is
open and will have real-time effects on the behavior of the library.
Chapter 6, ÒNet Library Functions.Ó describes the behavior of each
call in more detail.
Developing Palm OS 2.0 Applications, Part III 187

Palm OS Net Library
Using the Net Library
Interface SpeciÞc Settings

The net library conÞguration is structured so that network interface-
speciÞc settings can be speciÞed for each network interface indepen-
dently. These interface speciÞc settings are called IF settings and are
set and retrieved through the NetLibIFSettingGet and
NetLibIFSettingSet calls.

¥ The NetLibIFSettingGet call takes a setting ID as a parame-
ter along with a buffer pointer and buffer size for the return
value of the setting. Some settings, like login script, are of vari-
able size so the caller must be prepared to allocate a buffer large
enough to retrieve the entire setting.

¥ The NetLibIFSettingSet call also takes a setting ID as a pa-
rameter along with a pointer to the new setting value and the
size of the new setting.

General Settings

In addition to the interface-speciÞc settings, thereÕs a class of set-
tings that donÕt apply to any one particular interface. These general
settings are set and retrieved through the NetLibSettingGet and
NetLibSettingSet calls. These calls take setting ID, buffer point-
er, and buffer size parameters.

Settings for Interface Selection

Finally, there is a set of calls for specifying which interface(s) should
be used by the net library. The NetLibIFGet call can be used to
Þnd out which interfaces are currently set up to be used by the li-
brary. The NetLibIFAttach and NetLibIFDetach can be used to
attach and detach speciÞc interfaces from the library.

These calls in particular can be called while the library is open or
closed. If the library is open, the speciÞc interface is attached or de-
tached in real time. If the library is closed, the information is saved
in preferences and used the next time the library is opened.

Summary

In summary, the preference panel needs to

¥ Set the general settings.

¥ Attach the appropriate network interfaces.
188 Developing Palm OS 2.0 Applications, Part III

Palm OS Net Library
Using the Net Library
¥ Set the network speciÞc settings for each interface.

The order in which this is done is not important since nothing is
done with the settings until the library is opened. The API descrip-
tion for each of the conÞguration calls lists in detail the possible set-
ting values for each call, which are required or optional, and the de-
fault values for each setting.

Runtime Calls
Most applications will use only the net library runtime calls. Most of
these calls have an equivalent function in the Berkeley sockets API.
The sys/socket.h header Þle allows source code written to the
Berkeley sockets API to be compiled directly for the Palm OS.

There is, however, some additional setup and shutdown code that
every Palm OS application must have in order to use the net library.
Because of the limited resources in the Palm OS environment, the
net library was designed so that it only takes up extra memory from
the system when an application is running that actually needs to use
its services. An Internet application must therefore inform the sys-
tem when it needs to use the net library by opening the net library
when it starts up and by closing it when it exits.
Developing Palm OS 2.0 Applications, Part III 189

Palm OS Net Library
Using the Net Library
Initialization and Shutdown

The following calls are available to open and close the net library:

¥ Calls Made Before Opening the Net Library

¥ Opening the Net Library

¥ Closing the Net Library

Calls Made Before Opening the Net Library

Most net library calls donÕt work before the library is opened. An ex-
ception to this rule are calls that specify which network interface(s)
to use, and the calls for setting the net library settings and the set-
tings for the network interfaces. These calls are NetLibIFGet,
NetLibIFAttach, NetLibIFDetach, NetLibIFSetting-
Get, NetLibIFSettingSet, NetLibSettingGet, and
NetLibSettingSet (see also Setup and Configuration Calls). All
of these calls save the settings in the net library Preferences database
used by NetLibOpen to initialize the library and establish the con-
nection.

ItÕs expected that most applications wonÕt need to use these calls be-
cause the network preferences panel is responsible for conÞguring
the net library.

Opening the Net Library

An application can call NetLibOpen to open the net library. Before
the net library is opened, most calls issued to it fail with a
netErrNotOpen error code.

If the net library is not already open for another application,
NetLibOpen starts up the net protocol stack task, allocates memory
for internal use by the net library, and brings up the network con-
nection. Most likely, the user has conÞgured the Palm OS device to
establish a SLIP or PPP connection through a modem and in this
type of setup, NetLibOpen dials up the modem and establishes the
connection before returning.

If the net library is already open when NetLibOpen is called, it sim-
ply increments the open count and returns immediately.
190 Developing Palm OS 2.0 Applications, Part III

Palm OS Net Library
Using the Net Library
Note that the NetLibOpen call may bring up UI elements to display
connection progress information, depending on which network in-
terfaces it is using. Because of this, the caller must call NetLibOpen
from the main UI task (that is, the main event loop of an application)
and not from a background task.

Closing the Net Library

Before an application quits, or if it no longer needs to do network
I/O, it should call NetLibClose.

NetLibClose decrements the open count. If the open count has
reached 0, NetLibClose schedules a timer to shut down the net li-
brary unless another NetLibOpen is issued before the timer expires.
The close timer allows the user to quit from one network application
and launch another application within a certain time period without
having to wait for another network connection establishment.

If NetLibOpen is called before the close timer expires, it simply can-
cels the timer and marks the library as fully open with an open
count of 1 before returning. If the timer expires before another
NetLibOpen is issued, all existing network connections are brought
down, the net protocol stack task is terminated, and all memory al-
located for internal use by the net library is freed.

Summary of Initialization

In summary, any application that needs to do network I/O should
always call NetLibOpen Þrst and NetLibClose before it quits. The
details of whether or not a connection needs to be established or
brought down are automatically handled by the library.

Note that all net library calls, including NetLibOpen and NetLib-
Close require the refNum of the net library as their first parameter.
To Þnd this refNum, call SysLibFind, passing the name of the net
library, "Net.lib". In addition, if the application is using the sock-
ets API macros, it must save this refnum in the application global
variable AppNetRefnum.
Developing Palm OS 2.0 Applications, Part III 191

Palm OS Net Library
Using the Net Library
Initialization Example

The following example code fragment illustrates how to Þnd the net
libraryÕs refnum and then open the library. Note that if the net li-
brary is not installed on the Palm OS device (on a pre-2.0 ROM, or a
128Kb machine for example), SysLibFind returns an error code.

#include <sys/socket.h>
....
err = SysLibFind("Net.lib", &AppNetRefnum);
if (err) {/* error handling here */}
err = NetLibOpen(AppNetRefnum, &ifErrs);
if (err || ifErrs) {/* error handling here */}

Once the net library has been opened, sockets can be opened and
data sent to and received from remote hosts using either the Berke-
ley sockets API, or the native net library API. The following example
code fragment shows how to close down the net library when an ap-
plication exits or no longer needs network support:

err = NetLibClose(AppNetRefnum, false);
192 Developing Palm OS 2.0 Applications, Part III

Palm OS Net Library
Using the Net Library
Version Checking
Besides using SysLibFind to determine if the net library is in-
stalled, an application can also look for the net library version fea-
ture. This feature is only present if the net library is installed. This
feature can be used to get the version number of the net library as
follows:

DWord version;
err = FtrGet(netFtrCreator, netFtrNumVersion,

&version);

If the net library is not installed, FtrGet returns a non-zero result
code.

The version number is encoded in the format 0xMMmfsbbb, where:

For example:

V1.1.2b3 would be encoded as 0x01122003

V2.0a2 would be encoded as 0x02001002

V1.0.1 would be encoded as 0x01013000

This document describes version 1.0 of the net library (0x01003000).

MM major version

m minor version

 f bug Þx level

 s stage: 3-release, 2-beta, 1-alpha, 0-development

bbb build number for non-releases
Developing Palm OS 2.0 Applications, Part III 193

Palm OS Net Library
Using the Net Library
Network I/O and Utility Calls
Because of the close correlation with the Berkeley sockets API, the
reader is referred to one of the many books written on network com-
munications for an explanation of how to use the remaining calls in
the net library. Where applicable, the detailed function explanations
in Net Library Functions provide the equivalent sockets API call for
each native net library call.

Note that because the Berkeley sockets API requires some applica-
tion global variables and glue code, an application written for this
API must link with the module "NetSocket.c", which is included
as part of the Palm OS SDK. The following is a summary of the
mappings from the Berkeley sockets API to the native net library
API.

Berkeley
Sockets API

Net Library

accept NetLibSocketAccept

bcopy MemMove

bzero MemSet

bcmp MemCmp

bind NetLibSocketBind

close NetLibSocketClose

connect NetLibSocketConnect

fcntl NetLibSocketOptionSet/NetLibSocketOptionGet
(...,netSocketOptSockNonBlocking,...)

getdomainname NetLibSocketOptionGet(..,netSettingDomain-
Name,...)

gethostbyaddr NetLibGetHostByAddr

gethostbyname NetLibGetHostByName
194 Developing Palm OS 2.0 Applications, Part III

Palm OS Net Library
Using the Net Library
gethostname NetLibSettingGet(..,netSettingHostName,...)

getpeername NetLibSocketAddr

getservbyname NetLibGetServByName

getsockname NetLibSocketAddr

getsockopt NetLibSocketOptionGet

gettimeofday glue code using TimGetSeconds() (see Part II)

htonl macro

htons macro

inet_addr NetLibAddrAToIN

inet_lnaof glue code

inet_makeaddr glue code

inet_netof glue code

inet_network glue code

inet_ntoa NetLibAddrINToA

listen NetLibSocketListen

ntohl macro

ntohs macro

read NetLibReceive

recv NetLibReceive

recvfrom NetLibReceive

Berkeley
Sockets API

Net Library
Developing Palm OS 2.0 Applications, Part III 195

Palm OS Net Library
Using the Net Library
recvmsg NetLibReceivePB

send NetLibSend

sendmsg NetLibSendPB

sendto NetLibSend

setsockopt NetLibSocketOptionSet

shutdown NetLibSocketShutdown

sleep SysTaskDelay

socket NetLibSocketOpen

select NetLibSelect

setdomainname NetLibSettingSet(..,netSettingDomainName,...)

sethostname NetLibSettingSet(..,netSettingHostName,...)

settimeofday glue code using TimSetSeconds() (see Part II)

write NetLibSend

Berkeley
Sockets API

Net Library
196 Developing Palm OS 2.0 Applications, Part III

6
Net Library
Functions
This chapter lists the calls available in the net library and their Ber-
keley sockets equivalents. Each call has a purpose section which
gives a short description of what the call does; a prototype section
identiÞes the parameters to the call and their types; a parameters sec-
tion lists detailed information about each of the parameters; a result
section identiÞes the possible return codes; a sockets API equivalent
section gives the name of the corresponding sockets API call; and a
comments section gives a more detailed description of the call.

The functions are grouped as follows:

¥ Library Open and Close

¥ Socket Creation and Deletion

¥ Socket Options

¥ Socket Connections

¥ Send and Receive Routines

¥ Utilities

¥ ConÞguration

¥ Berkeley Sockets API Calls

¥ Supported Socket Functions

¥ Supported Network Utility Functions

¥ Supported Byte Ordering Functions

¥ Supported Network Address Conversion Functions

¥ Supported System Utility Functions
Developing Palm OS 2.0 Applications, Part III 197

Net Library Functions
Library Open and Close
Library Open and Close

NetLibOpen

Purpose Opens and initializes the net library.

Prototype Err NetLibOpen(Word libRefnum,
WordPtr netIFErrP)

Parameters -> libRefnum Reference number of the net library.

-> netIFErrP Pointer to return error code for interfaces.

Result 0 No error.

netErrAlreadyOpen
Not really an error; returned if library was already
 open and the open count was simply incremented.

netErrOutOfMemory
Not enough memory available to open the library.

netErrNoInterfaces
Incorrect setup.

netErrPrefNotFound
Incorrect setup.

See Also SysLibFind, NetLibClose, NetLibOpenCount

Comments Applications must call this function before using the net library. If
the net library was already open, NetLibOpen increments its open
count. Otherwise, it opens the library, initializes it, starts up the net
protocol stack component of the library as a separate task, and
brings up all attached network interfaces.

NetLibOpen uses settings saved in the net libraryÕs preferences da-
tabase during initialization. These settings include the interfaces to
attach, the IP addresses, etc. ItÕs assumed that these settings have
been previously set up by a preference panel or equivalent so an ap-
198 Developing Palm OS 2.0 Applications, Part III

Net Library Functions
Library Open and Close
plication doesnÕt normally have to set them up before calling
NetLibOpen.

If the end user has conÞgured the Palm OS device to connect
through a dialup interface, thereÕs a good chance that the interface
will display a progress dialog as it establishes a connection. For this
reason, NetLibOpen must be called from the main UI task (an ap-
plicationÕs main event loop), and not from a separate background
task.

If any of the attached interfaces fails to come up, *netIFErrP will
contain the error number of the Þrst interface that encountered a
problem.

ItÕs possible, and quite likely, that the net library will be able to open
even though one or more interfaces failed to come up (due to bad
modem settings, service down, etc). Some applications may there-
fore wish to close the net library using NetLibClose if
*netIFErrP is non-zero and display an appropriate message for the
user. If an application needs more detailed information, e.g. which
interface(s) in particular failed to come up, it can loop through each
of the attached interfaces and ask each one if it is up or not. Use the
following calls to accomplish this:

¥ NetLibIFGet(...),

¥ NetLibIFSettingGet(..., netIFSettingUp, ...)

¥ NetLibIFSettingGet(..., netIFSettingName,...)
Developing Palm OS 2.0 Applications, Part III 199

Net Library Functions
Library Open and Close
NetLibClose

Purpose Closes the net library.

Prototype Err NetLibClose(Word libRefnum, Word immediate)

Parameters -> libRefnum Reference number of the net library.

-> immediate If TRUE, library will shut down immediately.
If FALSE, library will shut down only if close

 timer expires before another NetLibOpen is
issued.

Result Codes 0 No error.

netErrNotOpen Library was not open.

netErrStillOpen Not really an error; returned if library is still
 in use by another application.

Sockets
Equivalent

None.

See Also NetLibOpen, NetLibOpenCount

Comments Applications must call this function when they no longer need the
net library. If the net library open count is greater than 1 before this
call is made, the count is decremented and netErrStillOpen is re-
turned. If the open count was 1, the library takes the following ac-
tion:

¥ If immediate is TRUE, the library shuts down immediately.
All network interfaces are brought down, the net protocol
stack task is terminated, and all memory used by the net
library is freed.

¥ If immediate is FALSE, a close timer is created and this call
returns immediately without actually bringing the net
library down. Instead it leaves it up and running but marks
it as in the Òclose-waitÓ state. It remains in this state until
either the timer expires or another NetLibOpen is issued. If
200 Developing Palm OS 2.0 Applications, Part III

Net Library Functions
Library Open and Close
the timer expires, the library is shut down. If another
NetLibOpen call is issued before the timer expires (possibly
by another application), the timer is cancelled and the
library is marked as fully open.

It is expected that most applications will pass FALSE for immedi-
ate. This allows the user to quit one Internet application and launch
another within a short period of time without having to wait
through the process of closing down and then re-establishing dial-
up network connections.

NetLibOpenCount

Purpose Retrieves the open count of the net library.

Prototype Err NetLibOpenCount(Word libRefnum, WordPtr countP)

Parameters -> libRefnum Reference number of the net library.

<- countP Pointer to return count variable.

Result Codes 0 No error.

Sockets
Equivalent

None.

See Also NetLibOpen, NetLibClose

Comments This call will most likely only be used by the Network preference
panel. Most applications will simply call NetLibOpen uncondition-
ally during startup and NetLibClose when they exit.
Developing Palm OS 2.0 Applications, Part III 201

Net Library Functions
Library Open and Close
NetLibConnectionRefresh

Purpose This routine is a convenience call for applications. It checks the sta-
tus of all connections and optionally tries to open any that were
closed.

Prototype Err NetLibConnectionRefresh (Word refNum,
Boolean refresh,
BooleanPtr allInterfacesUpP,
WordPtr netIFErrP)

Parameters refnum Reference number of the net library.

refresh If TRUE, any connections that arenÕt
currently open are opened.

allInterfacesUpP Set to TRUE if all connections are open.

netIFErrP First error encountered when reopening
 connections that were closed.

Result Codes 0 No error.

Sockets
Equivalent

None.

Comments This function determines whether a connection is up based on the
internal status of the TCP/IP stack. To test the presence of a Òphysi-
cal connectionÓ (phone line, modem, serial cable), a command
should be sent once itÕs been determined that the logical connection
is up. If the physical connection is broken, nothing returns, and a
timeout error eventually occurs.
202 Developing Palm OS 2.0 Applications, Part III

Net Library Functions
Library Open and Close
NetLibFinishCloseWait

Purpose Forces the net library to do a complete close if itÕs currently in the
close-wait state.

Prototype Err NetLibFinishCloseWait(Word libRefnum)

Parameters -> libRefnum Reference number of the net library.

Result Codes 0 No error.

Sockets
Equivalent

None.

Comments This call checks the current open state of the net library. If itÕs in the
close-wait state (see NetLibClose), it forces the library to perform
an immediate, complete close operation.

This call will most likely only be used by the preferences panel that
conÞgures the net library.
Developing Palm OS 2.0 Applications, Part III 203

Net Library Functions
Socket Creation and Deletion
Socket Creation and Deletion

NetLibSocketOpen

Purpose Open a new socket.

Prototype NetSocketRff NetLibSocketOpen(
Word libRefnum,
NetSocketAddrEnum domain,
NetSocketTypeEnum type,
SWord protocol,
Long timeout, Err* errP)

Parameters -> libRefNum
Reference number of the net library.

-> domain Address domain. Only netSocketAddrINET
is currently supported.

-> type Desired type of connection, either
netSocketTypeStream or
netSocketTypeDatagram.
netSocketTypeRaw is not currently supported.

-> protocolProtocol to use. Currently ignored for the
netSocketAddrINET domain.

-> timeout Maximum timeout in system ticks,
-1 means wait forever.

<- errP Address of variable used to return error code.

Result Codes >= 0 Socket refNum of open socket.

-1 Error occurred, error code in *errP.
204 Developing Palm OS 2.0 Applications, Part III

Net Library Functions
Socket Creation and Deletion
Errors 0 No error.

netErrTimeout

netErrNotOpen

netErrParamErr

netErrNoMoreSockets

Sockets
Equivalent

int socket(int domain, int type, int protocol);

See Also NetLibSocketClose

Comments Allocates memory for a new socket and opens it.

Note that only stream-based and datagram-based sockets are sup-
ported. Raw sockets, in particular, are not currently supported.
Developing Palm OS 2.0 Applications, Part III 205

Net Library Functions
Socket Creation and Deletion
NetLibSocketClose

Purpose Close a socket.

Prototype SWord NetLibSocketClose (Word libRefnum,
NetSocketRef socketRef,
SDWord timeout,
Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> socketRef SocketRef of the open socket.

-> timeout Maximum timeout in system ticks,
-1 means wait forever.

<- errP Address of variable used to return error code.

Result Codes 0 No error.

-1 Error occurred. Error code in *errP.

Errors 0 No error.

netErrTimeout Call timed out.

netErrNotOpen

netErrParamErr

netErrSocketNotOpen

Sockets
Equivalent

int close(int socket);

See Also NetLibSocketOpen, NetLibSocketShutdown

Comments Closes down a socket and frees all memory associated with it.
206 Developing Palm OS 2.0 Applications, Part III

Net Library Functions
Socket Options
Socket Options

NetLibSocketOptionSet

Purpose Set a socket option.

Prototype SWord NetLibSocketOptionSet(
Word libRefnum,
NetSocketRef socketRef,
Word level,
Word option,
VoidPtr optValueP,
Word optValueLen,
SDWord timeout,
Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> socketRef SocketRef of the open socket.

-> level Level of the option, one of the
netSocketOptLevelXXX enum constants.

-> option One of the netSocketOptXXX enum constants.

-> optValueP Pointer to the variable holding the new value of
the option.

-> optValueLen Size of variable pointed to by optValueP.

-> timeout Maximum timeout in system ticks;
-1 means wait forever.

<- errP Address of variable used to return error code.

Result Codes 0 No error.

-1 Error occurred, error code in *errP.

Errors 0 No error.

netErrTimeout Call timed out.
Developing Palm OS 2.0 Applications, Part III 207

Net Library Functions
Socket Options
netErrNotOpen

netErrParamErr

netErrSocketNotOpen

netErrUnimplemented

netErrWrongSocketType

Sockets
Equivalent

int setsockopt (int socketRef,
int level, int option,
const void* optValueP,
int optValueLen);

See Also NetLibSocketOptionGet

Comments Sets various options associated with a socket. The caller passes a
pointer to the new option value in optValueP and the size of the
option in optValueLen.

The following table lists the available options.

¥ The Level column speciÞes the option level, which is one of
the netSocketOptLevelXXX constants.

¥ The Option column lists the option, which is one of the net-
SocketOptXXX constants.

¥ The G/S column lists whether this option can be fetched with
the NetLibSocketOptionGet call (G) and/or set (S) with
this call.

¥ The type column lists the type of the option.

¥ The I column speciÞes whether or not this option is currently
implemented.

Level Option G/S Type I Description

IP IPOptions GS Byte[] N Options in IP Header

TCP TCPNoDelay GS FLAG Y DonÕt delay send to coalesce
packets
208 Developing Palm OS 2.0 Applications, Part III

Net Library Functions
Socket Options
TCP TCPMaxSeg G int Y Get TCP maximum segment
size

Socket SockDebug GS FLAG N Turn on recording of debug
info

Socket SockAcceptConn G FLAG N Socket has had listen

Socket SockReuseAddr GS FLAG N Allow local address reuse

Socket SockKeepAlive GS FLAG Y Keep connections alive

Socket SockDontRoute GS FLAG N Just use interface addresses

Socket SockBroadcast GS FLAG N Permit sending of broadcast
messages

Socket SockUseLoopback GS FLAG N Bypass hardware when possi-
ble

Socket SockLinger GS NetSock-
etLinger

Y Linger on close if data present

Socket SockOOBInLine GS FLAG N Leave received OOB data in-
line

Socket SockSndBufSize GS int N Send buffer size

Socket SockRcvBufSize GS int N Receive buffer size

Socket SockSndLowWater GS int N Send low-water mark

Socket SockRcvLowWater GS int Receive low-water mark

Socket SockSndTimeout GS int N Send timeout

Socket SockRcvTimeout GS int N Receive timeout

Socket SockErrorStatus G int Y Get error status and clear

Level Option G/S Type I Description
Developing Palm OS 2.0 Applications, Part III 209

Net Library Functions
Socket Options
For compatibility with existing Internet applications, this call is
quite ßexible on the optValueLen parameter. If the desired type for
an option is FLAG, this call accepts an optValueLen of 1, 2, or 4. If
the desired type for an option is int, it accepts an optValueLen of
2 or 4.

Except for the NetSockOptSockNonBlocking option, all options
listed above have equivalents in the sockets API. The
NetSockOptSockNonBlocking option was added to this call in
the net library in order to implement the functionality of the UNIX
fcntl() control call, which can be used to turn nonblocking mode
on and off for sockets.

NetLibSocketOptionGet

Purpose Retrieves the current value of a socket option.

Prototype SWord NetLibSocketOptionGet
(Word libRefnum, NetSocketRef socket,
Word level, Word option,
VoidPtr optValueP, WordPtr optValueLenP,
SDWord timeout, Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> socket SocketRef of the open socket.

-> level Level of the option, one of the
netSocketOptLevelXXX enum constants.

-> option One of the netSocketOptXXX enum constants.

-> optValueP Pointer to variable holding new value of
option.

Socket SockSocketType G int Y Get socket type

Socket SockNonBlocking GS FLAG Y Set non-blocking mode on/off

Level Option G/S Type I Description
210 Developing Palm OS 2.0 Applications, Part III

Net Library Functions
Socket Options
<-> optValueLenP
Size of variable pointed to by optValueP on

 entry. Actual size of return value on exit.

-> timeout Maximum timeout in system ticks;
-1 means wait forever.

<- errP Address of variable used to return error code.

Result Codes 0 No error.

-1 Error occurred, error code in *errP.

Errors 0 No error.

netErrTimeout

netErrNotOpen

netErrParamErr

netErrSocketNotOpen

netErrUnimplemented

netErrWrongSocketType

Sockets
Equivalent

int getsockopt (int socket, int level,
int option, const void*
optValueP, int* optValueLenP);

See Also NetLibSocketOptionSet

Comments Returns the current value of a socket option. The caller passes a
pointer to a variable to hold the returned value (in optValueP)
and the size of this variable (in *optValueLenP). On exit,
*optValueP is updated with the actual size of the return value.

For all of the Þxed size options (every option except
netSockOptIPOptions), *optValueLenP is unmodiÞed on exit
and this call does its best to return the value in the callerÕs desired
type size.

For compatibility with existing Internet applications, this call is
quite ßexible on the *optValueLenP parameter. If the desired type
Developing Palm OS 2.0 Applications, Part III 211

Net Library Functions
Socket Connections
for an option is FLAG, this call supports an *optValueLenP of 1, 2,
or 4. If the desired type for an option is int, it supports an
*optValueLenP of 2 or 4.

See NetLibSocketOptionSet for a list of available options.

Socket Connections

NetLibSocketBind

Purpose Assign a local address to a socket.

Prototype SWord NetLibSocketBind
(Word libRefnum, NetSocketRef socketRef,

 NetSocketAddrType* socketAddrP,
SWord addrLen, Long timeout, Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> socketRef SocketRef of the open socket.

-> sockAddrP Pointer to address.

-> addrLen Length of address in *sockAddrP.

-> timeout Maximum timeout in system ticks;
-1 means wait forever.

<- errP Address of variable used to return error code.

Result Codes 0 No error.

-1 Error occurred, error code in *errP.

Errors 0 No error.

netErrTimeout Call timed out.

netErrNotOpen

netErrParamErr

netErrSocketNotOpen
212 Developing Palm OS 2.0 Applications, Part III

Net Library Functions
Socket Connections
netErrAlreadyConnected

netErrClosedByRemote

Sockets
Equivalent

int bind (int socket,
const void* sockAddrP,
int addrLen);

See Also NetLibSocketConnect, NetLibSocketListen,
NetLibSocketAccept

Comments Applications that want to wait for an incoming connection request
from a remote host must call this function. After calling
NetLibSocketBind, applications can call NetLibSocketListen
and then NetLibSocketAccept to make the socked ready to ac-
cept connection requests.

NetLibSocketConnect

Purpose Assign a destination address to a socket and initiate three-way
handshake if itÕs stream based.

Prototype SWord NetLibSocketConnect
(Word libRefnum,
NetSocketRef socketRef,

 NetSocketAddrType* socketAddrP,
SWord addrLen,
Long timeout,
Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> socketRef SocketRef of the open socket.

-> sockAddrP Pointer to address.

-> addrLen Length of address in *sockAddrP.

-> timeout Maximum timeout in system ticks;
-1 means wait forever.
Developing Palm OS 2.0 Applications, Part III 213

Net Library Functions
Socket Connections
<- errP Address of variable used to return error code.

Result Codes 0 No error.

-1 Error occurred, error code in *errP.

Errors 0 No error.

netErrTimeout Call timed out.

netErrNotOpen

netErrParamErr

netErrSocketNotOpen

netErrSocketBusy

netErrNoInterfaces

netErrPortInUse

netErrQuietTimeNotElapsed

netErrInternal

netErrAlreadyConnected

netErrClosedByRemote

netErrTooManyTCPConnections

Sockets
Equivalent

int connect (int socket,
const void* sockAddrP,
int addrLen);

See Also NetLibSocketBind
214 Developing Palm OS 2.0 Applications, Part III

Net Library Functions
Socket Connections
NetLibSocketListen

Purpose Put a stream-based socket into passive listen mode.

Prototype SWord NetLibSocketListen(
Word libRefnum,
NetSocketRef socketRef,
Word queueLen,
Long timeout,
Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> socketRef SocketRef of the open socket.

-> queueLen Maximum number of pending connections
allowed.

-> timeout Maximum timeout in system ticks,
-1 means wait forever.

<- errP Address of variable used to return error code.

Result Codes 0 No error.

-1 Error occurred, error code in *errP.

Errors 0 No error.

netErrTimeout Call timed out.

netErrNotOpen

netErrParamErr

netErrOutOfResources

netErrSocketNotOpen

netErrSocketBusy

netErrNoInterfaces

netErrPortInUse

netErrInternal
Developing Palm OS 2.0 Applications, Part III 215

Net Library Functions
Socket Connections
netErrAlreadyConnected

netErrClosedByRemote

netErrWrongSocketType

Sockets
Equivalent

int listen (int socket, int queueLen);

See Also NetLibSocketBind, NetLibSocketAccept

Comments Sets the maximum allowable length of the queue for pending con-
nections. This call is only applicable to NetLibSocketAccept
sockets.

After a socket is created and bound to a local address using
NetLibSocketBind, a server application can call
NetLibSocketListen and then NetLibSocketAccept to accept
connections from remote clients.

The queueLen is currently quietly limited to 1 (higher values are ig-
nored).
216 Developing Palm OS 2.0 Applications, Part III

Net Library Functions
Socket Connections
NetLibSocketAccept

Purpose Accept a connection from a stream-based socket.

Prototype SWord NetLibSocketAccept(
Word libRefnum,
NetSocketRef socketRef,
NetSocketAddrType* remAddrP,
SWord* remAddrLenP,
Long timeout,
Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> socketRef SocketRef of the open socket.

<- remAddrP Address of remote host is returned here.

<->remAddrLenP On entry, length of remAddrP buffer in bytes.
 On exit, length of returned address stored

in *remAddrP.

-> timeout Maximum timeout in system ticks,
-1 means wait forever.

<- errP Address of variable used to return error code.

Result Codes >=0 NetSocketRef of new socket.

-1 Error occurred, error code in *errP.

Errors 0 No error.

netErrTimeout Call timed out.

netErrNotOpen

netErrParamErr

netErrSocketNotOpen

netErrNotConnected

netErrClosedByRemote

netErrWrongSocketType
Developing Palm OS 2.0 Applications, Part III 217

Net Library Functions
Socket Connections
netErrSocketNotListening

Sockets
Equivalent

int accept (int socket,
void* sockAddrP,
int* addrLenP);

See Also NetLibSocketBind, NetLibSocketListen

Comments Accepts the next connection request from a remote client. This call is
only applicable to stream-based sockets. Before calling
NetLibSocketAccept on a socket, a server application needs to:

¥ Open the socket (NetLibSocketOpen).

¥ Bind the socket to a local address (NetLibSocketBind).

¥ Set the maximum pending connection-request queue length
(NetLibSocketListen).

NetLibSocketAccept will block until a successful connection re-
quest is obtained from a remote client. After a successful connection
is made, this call returns with the address of the remote host in
*remAddrP and the socketRef of a new socket as the return value.
218 Developing Palm OS 2.0 Applications, Part III

Net Library Functions
Socket Connections
NetLibSocketAddr

Purpose Returns the local and remote addresses currently associated with a
socket.

Prototype SWord NetLibSocketAddr(
Word libRefnum,

 NetSocketRef socketRef,
NetSocketAddrType* locAddrP,
SWord* locAddrLenP,
NetSocketAddrType* remAddrP,
SWord* remAddrLenP,
SDWord timeout,
Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> socketRef SocketRef of the open socket.

<- locAddrP Local address of socket is returned here.

<->locAddrLenP On entry, length of locAddrPbuffer in bytes.
 On exit, length of returned address stored in

 *locAddrP.

<- remAddrP Address of remote host is returned here.

<->remAddrLenP On entry, length of remAddrP buffer in bytes.
On exit, length of returned address stored in
*remAddrP.

-> timeout Maximum timeout in system ticks,
-1 means wait forever.

<- errP Address of variable used to return error code.

Result Codes 0 No error.

-1 Error occurred, error code in *errP.

Errors 0 No error.

netErrTimeout Call timed out.
Developing Palm OS 2.0 Applications, Part III 219

Net Library Functions
Socket Connections
netErrNotOpen

netErrParamErr

netErrSocketNotOpen

netErrClosedByRemote

Sockets
Equivalent

int getpeername(int s,
struct sockaddr* name,
int* namelen);

int getsockname(int s,
struct sockaddr* name,
int* namelen);

See Also NetLibSocketBind, NetLibSocketConnect, NetLibSocket-
Accept

Comments This call is mainly useful for stream-based sockets. It allows the call-
er to Þnd out what address was bound to a connected socket and the
address of the remote host that itÕs connected to.
220 Developing Palm OS 2.0 Applications, Part III

Net Library Functions
Socket Connections
NetLibSocketShutdown

Purpose Shut down a socket in one or both directions.

Prototype SWord NetLibSocketShutdown(
Word libRefnum,
NetSocketRef socketRef,

 SWord direction,
SDWord timeout,
Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> socketRef SocketRef of the open socket.

-> direction Direction to shut down. One of the
NetSocketDirXXX enum constants.

-> timeout Maximum timeout in system ticks;
-1 means wait forever.

<- errP Address of variable used to return error code.

Result Codes 0 No error.

-1 Error occurred, error code in *errP.

Errors 0 No error.

netErrTimeout Call timed out.

netErrNotOpen

netErrParamErr

netErrSocketNotOpen

Sockets
Equivalent

int shutdown (int socket, int direction);

Comments Shuts down communication in one or both directions on a socket.
Direction can be netSocketDirInput, netSocketDirOutput, or
netSocketDirBoth.
Developing Palm OS 2.0 Applications, Part III 221

Net Library Functions
Send and Receive Routines
If direction is netSocketDirInput, the socket is marked as down
in the receive direction and further read operations from it return a
netErrSocketInputShutdown error.

Send and Receive Routines

NetLibSendPB

Purpose Send data to a socket from a scatter-write array.

Prototype SWord NetLibSendPB(Word libRefnum,
NetSocketRef socket,

 NetIOParamType* pbP,
Word flags,
Long timeout,
Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> socket SocketRef of the open socket.

-> pbP Pointer to parameter block containing
 buffer info.

-> flags One or more netMsgFlagXXX ßag.

-> timeout Maximum timeout in system ticks;
-1 means wait forever.

<- errP Address of variable used to return error code.

Result Codes 0 Socket has been shut down by remote host.

>0 Number of bytes successfully sent

-1 Error occurred, error code in *errP.

Errors 0 No error.

netErrTimeout Call timed out.

netErrNotOpen
222 Developing Palm OS 2.0 Applications, Part III

Net Library Functions
Send and Receive Routines
netErrParamErr

netErrSocketNotOpen

netErrMessageTooBig

netErrSocketNotConnected

netErrClosedByRemote

netErrIPCantFragment

netErrIPNoRoute

netErrIPNoSrc

netErrIPNoDst

netErrIPPktOverflow

Sockets
Equivalent

int sendmsg (int socket,
const struct msghdr* pbP,
int flags);

See Also NetLibSend, NetLibReceive, NetLibReceivePB,
NetLibDmReceive

Comments This call attempts to write data to the given socket and returns the
number of bytes actually sent, which may be less than or equal to
the requested number of bytes. The data is passed in the scatter-
write array speciÞed in the pbP parameter block.

If the socket is a datagram socket and the data is too large to Þt in a
single UDP packet, no data will be sent and -1 will be returned.

For stream-based sockets, pbP->addrP is always ignored since by
deÞnition a NetLibSocketAccept socket must have a connection
established with a remote host before data can be written. For data-
gram sockets, an error will be returned if the socket was previously
connected and pbP->addrP is speciÞed.

If there isnÕt enough buffer space to send any data, this call will
block until there is space, or until a timeout.

Note: For stream-based sockets, this call may write only a
portion of the desired data. It always returns the number of bytes
Developing Palm OS 2.0 Applications, Part III 223

Net Library Functions
Send and Receive Routines
actually written. Consequently, the caller should be prepared to
call this routine repeatedly until the desired number of bytes have
been written, or until it returns 0 or -1.

NetLibSend

Purpose Send data to a socket from a single buffer.

Prototype SWord NetLibSend(Word libRefNum,
NetSocketRef socket,
const VoidPtr bufP,
Word bufLen,
Word flags,
VoidPtr toAddrP,
Word toLen,
Long timeout,
Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> socket SocketRef of the open socket.

-> bufP Pointer to data to write.

-> bufLen Length of data to write

-> flags One or more of netMsgFlagXXX ßags.

-> toAddrP Address to send to (NetSocketAddrType*),
or 0

-> toLen Size of addrP buffer.

-> timeout Maximum timeout in system ticks,
-1 means wait forever.

<- errP Address of variable used to return error code.

Result Codes 0 Socket has been shut down by remote host.

>0 Number of bytes successfully sent.

-1 Error occurred, error code in *errP.
224 Developing Palm OS 2.0 Applications, Part III

Net Library Functions
Send and Receive Routines
Errors 0 No error.

netErrTimeout Call timed out.

netErrNotOpen

netErrParamErr

netErrSocketNotOpen

netErrMessageTooBig

netErrSocketNotConnected

netErrClosedByRemote

netErrIPCantFragment

netErrIPNoRoute

netErrIPNoSrc

netErrIPNoDst

netErrIPPktOverflow

Sockets
Equivalent

int sendto (int socket, const void* bufP,
int bufLen, int flags,
const void* toAddrP, int toLen);

int send (int socket, const void* bufP,
int bufLen, int flags);

int write (int socket, const void* bufP,
int bufLen,);

See Also NetLibSendPB, NetLibReceive, NetLibReceivePB,
NetLibDmReceive

Comments This call attempts to write data to the speciÞed socket and returns
the number of bytes actually sent, which may be less than or equal
to the requested number of bytes. The data is passed in a single buff-
er that bufP points to.

If the socket is a datagram socket and the data is too large to Þt in a
single UDP packet, no data is sent and -1 is returned.
Developing Palm OS 2.0 Applications, Part III 225

Net Library Functions
Send and Receive Routines
For stream-based sockets, toAddrP is always ignored, since by deÞ-
nition a NetLibSocketAccept socket must have a connection es-
tablished with a remote host before data can be written. For data-
gram sockets, an error is returned if the socket was previously
connected and toAddrP is speciÞed.

If there isnÕt enough buffer space to send any data, this call will
block until there is enough buffer space, or until a timeout.

Note: For stream-based sockets, this call may write only a portion
of the desired data. It always returns the number of bytes actually
written. Consequently, the caller should be prepared to call this
routine repeatedly until the desired number of bytes have been
written, or until it returns 0 or -1.

NetLibReceivePB

Purpose Receive data from a socket into a gather-read array.

Prototype SWord NetLibReceivePB(
Word libRefnum, NetSocketRef socket,
NetIOParamType* pbP, Word flags,
Long timeout, Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> socketRef SocketRef of the open socket.

-> pbP Pointer to parameter block containing buffer
info.

-> flags One or more netMsgFlagXXX ßag.

-> timeout Maximum timeout in system ticks,
-1 means wait forever.

<- errP Address of variable used to return error code.

Result Codes 0 Socket has been shut down by remote host.

>0 Number of bytes successfully received.
226 Developing Palm OS 2.0 Applications, Part III

Net Library Functions
Send and Receive Routines
-1 Error occurred, error code in *errP.

Errors 0 No error.

netErrTimeout Call timed out.

netErrNotOpen

netErrParamErr

netErrSocketNotOpen

netErrWouldBlock

Sockets
Equivalent

int recvmsg (int socket,
const struct msghdr* pbP,
int flags);

See Also NetLibReceive, NetLibDmReceive, NetLibSend,
NetLibSendPB

Comments For stream-based sockets, this call reads whatever bytes are avail-
able and returns the number of bytes actually read into the callerÕs
buffer. If no data is available, this call will block until at least 1 byte
arrives, until the socket is shut down by the remote host, or until a
timeout occurs.

For datagram-based sockets, this call reads a complete datagram
and returns the number of bytes in the datagram. If the callerÕs buff-
er is not large enough to hold the entire datagram, the end of the da-
tagram is discarded. If a datagram is not available, this call will
block until one arrives, or until the call times out.

The data is read into the gather-read array speciÞed by the
pbP->iov array.
Developing Palm OS 2.0 Applications, Part III 227

Net Library Functions
Send and Receive Routines
NetLibReceive

Purpose Receive data from a socket into a single buffer.

Prototype SWord NetLibReceive(
Word libRefNum, NetSocketRef socket,
VoidPtr bufP, Word bufLen,
Word flags, VoidPtr fromAddrP,
WordPtr fromLenP, Long timeout,
Err* errP);

Parameters -> libRefNum Reference number of the net library.

-> socket SocketRef of the open socket.

-> bufP Pointer to buffer to hold received data.

-> bufLen Length of bufP buffer.

-> flags One or more netMsgFlagXXX ßag.

-> fromAddrP Pointer to buffer to hold address of sender
(NetSocketAddrType).

<-> fromLenP On entry, size of fromAddrP buffer. On exit,
actual size of returned address in fromAddrP.

-> timeout Maximum timeout in system ticks;
-1 means wait forever.

<- errP Address of variable used to return error code.

Result Codes 0 Socket has been shut down by remote host.

>0 Number of bytes successfully received,

-1 Error occurred, error code in *errP.

Errors 0 No error.

netErrTimeout Call timed out.

netErrNotOpen

netErrParamErr
228 Developing Palm OS 2.0 Applications, Part III

Net Library Functions
Send and Receive Routines
netErrSocketNotOpen

netErrWouldBlock

Sockets
Equivalent

int recvfrom (int socket, const void* bufP,
int bufLen, int flags,
const void* fromAddrP,
int* fromLenP);

int recv (int socket, const void* bufP,
int bufLen, int flags);

int read (int socket, const void* bufP,
int bufLen);

See Also NetLibReceive, NetLibDmReceive, NetLibSend,
NetLibSendPB

Comments For stream-based sockets, this call reads whatever bytes are avail-
able and returns the number of bytes actually read into the callerÕs
buffer. If there is no data available, this call will block until at least 1
byte arrives, until the socket is shut down by the remote host, or
until a timeout occurs.

For datagram-based sockets, this call reads a complete datagram
and returns the number of bytes in the datagram. If the callerÕs buff-
er is not large enough to hold the entire datagram, the end of the da-
tagram is discarded. If a datagram is not available, this call will
block until one arrives, or until the call times out.

The data is read into a single buffer pointed to by bufP.
Developing Palm OS 2.0 Applications, Part III 229

Net Library Functions
Send and Receive Routines
NetLibDmReceive

Purpose Receive data from a socket directly into a database record.

Prototype SWord NetLibDmReceive(
Word libRefNum,
NetSocketRef socket,
VoidPtr recordP,
ULong recordOffset,
Word rcvLen,
Word flags,
VoidPtr fromAddrP,
WordPtr fromLenP,
Long timeout, Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> socket SocketRef of the open socket.

-> recordP Pointer to beginning of record.

-> recordOffset Offset from beginning of record to
read data into.

-> rcvLen Maximum number of bytes to read.

-> flags One or more netMsgFlagXXX ßag.

-> fromAddrP Pointer to buffer to hold address of sender
(NetSocketAddrType).

<-> fromLenP On entry, size of fromAddrP buffer. On exit,
actual size of returned address in fromAddrP.

-> timeout Maximum timeout in system ticks,
-1 means wait forever.

<- errP Address of variable used to return error code.

Result Codes 0 Socket has been shut down by remote host.

>0 Number of bytes successfully received.

-1 Error occurred, error code in *errP.
230 Developing Palm OS 2.0 Applications, Part III

Net Library Functions
Send and Receive Routines
Errors 0 No error.

netErrTimeout Call timed out.

netErrNotOpen

netErrParamErr

netErrSocketNotOpen

netErrWouldBlock

Comments This call behaves similarly to NetLibReceive but reads the data
directly into a database record, which is normally write-protected.
The caller must pass a pointer to the start of the record and an offset
into the record of where to start the read.
Developing Palm OS 2.0 Applications, Part III 231

Net Library Functions
Send and Receive Routines
232 Developing Palm OS 2.0 Applications, Part III

Utilities

NetHToNS

Purpose Converts a 16-bit value from host to network byte order.

Prototype Word NetHToNS(Word x)

Parameters -> x 16-bit value to convert.

Result Returns x in network byte order.

Errors None

Sockets
Equivalent

htons()

See Also NetNToHS, NetNToHL, NetHToNL

NetHToNL

Purpose Converts a 32-bit value from host to network byte order.

Prototype DWord NetHToNL(DWord x)

Parameters -> x 32-bit value to convert.

Result Returns x in network byte order.

Errors None

Sockets
Equivalent

htonl()

See Also NetNToHS, NetNToHL, NetHToNS
Developing Palm OS 2.0 Applications, Part III 233

Utilities
NetNToHS

Purpose Converts a 16-bit value from network to host byte order.

Prototype Word NetNToHS(Word x)

Parameters -> x 16-bit value to convert.

Result Returns x in host byte order.

Errors None

Sockets
Equivalent

ntohs()

See Also NetHToNL, NetNToHL, NetHToNS

NetNToHL

Purpose Converts a 32-bit value from network to host byte order.

Prototype DWord NetNToHL(DWord x)

Parameters -> x 32-bit value to convert.

Result Returns x in host byte order.

Errors none

Sockets
Equivalent

ntohl()

See Also NetNToHS, NetHToNL, NetHToNS
234 Developing Palm OS 2.0 Applications, Part III

Utilities
NetLibAddrAToIN

Purpose Converts an ASCII string representing a dotted decimal IP address
into a 32 IP address in network byte order.

Prototype NetIPAddr NetLibAddrAToIN(Word libRefnum,
CharPtr nameP)

Parameters -> libRefNum Reference number of the net library.

-> nameP Pointer to ASCII dotted decimal string.

Result -1 Invalid nameP, nameP doesnÕt represent a dotted
decimal IP address

!= -1 32-bit network byte order IP address

Sockets
Equivalent

unsigned long inet_addr(char* cp)

See Also NetLibAddrINToA
Developing Palm OS 2.0 Applications, Part III 235

Utilities
NetLibAddrINToA

Purpose Converts an IP address from 32-bit network byte order into a dotted
decimal ASCII string.

Prototype CharPtr NetLibAddrINToA(Word libRefnum,
NetIPAddr inet,
CharPtr spaceP)

Parameters -> libRefNum Reference number of the net library.

-> inet 32-bit IP address in network byte order.

-> spaceP Buffer used for holding return name.

Result spaceP Dotted decimal ASCII string representation
of IP address.

Sockets
Equivalent

char* inet_ntoa(struct in_addr in)

See Also NetLibAddrAToIN
236 Developing Palm OS 2.0 Applications, Part III

Utilities
NetLibSelect

Purpose Blocks until I/O is ready on one or more descriptors, where a de-
scriptor can represent socket input, socket output, or a user input
event like a pen tap or key press.

Prototype SWord NetLibSelect(Word libRefnum,
Word width

 NetFDSetType* readFDs,
NetFDSetType* writeFDs,
NetFDSetType* exceptFDs,
Long timeout,
Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> width Number of descriptor bits to check in the
readFDs, writeFDs, and exceptFDs
descriptor sets.

<-> readFDs Pointer to NetFDSetType containing set of bits
representing descriptors to check for input.

<-> writeFDs Pointer to NetFDSetType containing set of bits
representing descriptors to check for output.

<-> exceptFDs Pointer to NetFDSetType containing set of bits
representing descriptors to check for exception
conditions.

-> timeout Maximum timeout in system ticks;
-1 means wait forever.

<- errP Address of variable used to return error code.

Result Codes >0 Sum total number of ready Þle descriptors in
 *readFDs, *writeFDs, and *exceptFDs.

0 Timeout.

-1 Error occurred, error code in *errP.

Errors 0 No Error
Developing Palm OS 2.0 Applications, Part III 237

Utilities
netErrTimeout Call timed out.

netErrNotOpen

Sockets
Equivalent

int select(int width, fd_set* readfds,
fd_set* writefds, fd_set* exceptfds,
struct timeval* timeout);

See Also NetLibSocketOptionSet

Comments This call blocks until one or more descriptors are ready for I/O. In
the Palm OS environment, a descriptor is either a NetSocketRef or
the ÒstdinÓ descriptor, sysFileDescStdIn. The
sysFileDescStdIn descriptor will be ready for input whenever a
user event is available like a pen tap or key press.

The caller should set which bits in each descriptor set need to be
checked by using the netFDZero and netFDSet macros. After this
call returns, the macro netFDIsSet can be used to determine which
descriptors in each set are actually ready.

On exit, the total number of ready descriptors is returned and each
descriptor set is updated with the appropriate bits set for each ready
descriptor in that set.

The following example illustrates how to use this call to check for
input on a socket or a user event:

Err err;
NetSocketRef socketRef;
NetFDSetType readFDs,writeFDs,exceptFDs;
SWord numFDs;
Word width;

// Create the descriptor sets
netFDZero(&readFDs);
netFDZero(&writeFDs);
netFDZero(&exceptFDs);
netFDSet(sysFileDescStdIn, &readFDs);
netFDSet(socketRef, &readFDs);
238 Developing Palm OS 2.0 Applications, Part III

Utilities
// Calculate the max descriptor number and use
// that +1 as the max width.
// Alternatively, we could simply use the
// constant netFDSetSize as the width which is
// simpler but makes the NetLibSelect call
// slightly slower.
width = sysFileDescStdIn;
if (socketRef > width) width = socketRef;

// Wait for any one of the descriptors to be
// ready.
numFDs = NetLibSelect(AppNetRefnum, width+1,

&readFDs, &writeFDs, &exceptFDs,
AppNetTimeout, &err);

NetLibGetHostByName

Purpose Looks up a host IP address given a host name.

Prototype NetHostInfoPtr NetLibGetHostByName(
Word libRefnum,
CharPtr nameP,
NetHostInfoBufPtr bufP,
Long timeout,
Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> nameP Name of host to look up.

-> bufP Pointer to buffer to hold results of look up.

-> timeout Maximum timeout in system ticks,
-1 means wait forever.

<- errP Address of variable used to return error code.

Result 0 Name not found, *errP contains error code.
Developing Palm OS 2.0 Applications, Part III 239

Utilities
!=0 Pointer to NetHostInfoType portion of bufP
which contains results of the lookup.

Errors 0 No Error

netErrTimeout Call timed out.

netErrNotOpen

netErrDNSNameTooLong

netErrDNSBadName

netErrDNSLabelTooLong

netErrDNSAllocationFailure

netErrDNSTimeout

netErrDNSUnreachable

netErrDNSFormat

netErrDNSServerFailure

netErrDNSNonexistantName

netErrDNSNIY

netErrDNSRefused

netErrDNSImpossible

netErrDNSNoRRS

netErrDNSAborted

netErrDNSBadProtocol

netErrDNSTruncated

netErrDNSNoRecursion

netErrDNSIrrelevant

netErrDNSNotInLocalCache

netErrDNSNoPort

Sockets
Equivalent

struct hostent *gethostbyname(char* name);
240 Developing Palm OS 2.0 Applications, Part III

Utilities
See Also NetLibGetHostByAddr, NetLibGetMailExchangeByName

Comments This call Þrst checks the local name -> IP address host table in the
net library preferences. If the entry is not found, it then queries the
domain name server(s).

BufP must point to a structure of type NetHostInfoBufType,
which is used to store the results of the lookup. When this call re-
turns, it returns with a pointer to a structure of type
NetHostInfoType which is actually part of the
NetHostInfoBufType pointed to bufP.

NetLibGetMailExchangeByName

Purpose Looks up the name of a host to use for a given mail exchange.

Prototype SWord NetLibGetMailExchangeByName(
Word libRefNum,
CharPtr mailNameP,
Word maxEntries,
Char hostNames[][netDNSMaxDomainName+1],
Word priorities[],
Long timeout,
Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> mailNameP Name of the mail exchange to look up.

-> maxEntries Maximum number of hostnames to return.

<- hostNames Array of character strings of length
netDNSMaxDomainName+1. The host name
results are stored in this array. This array must
be able to hold at least maxEntries
hostnames.

<- priorities Array of Words. The priorities of each host
name found are stored in this array. This array
must be at least maxEntries in length.
Developing Palm OS 2.0 Applications, Part III 241

Utilities
-> timeout Maximum timeout in system ticks;
-1 means wait forever.

<- errP Address of variable used to return error code.

Result >=0 Number of entries successfully found.

<0 Error occurred, error code is in *errP.

Errors 0 No Error

netErrTimeout Call timed out.

netErrNotOpen

netErrDNSNameTooLong

netErrDNSBadName

netErrDNSLabelTooLong

netErrDNSAllocationFailure

netErrDNSTimeout

netErrDNSUnreachable

netErrDNSFormat

netErrDNSServerFailure

netErrDNSNonexistantName

netErrDNSNIY

netErrDNSRefused

netErrDNSImpossible

netErrDNSNoRRS

netErrDNSAborted

netErrDNSBadProtocol

netErrDNSTruncated

netErrDNSNoRecursion

netErrDNSIrrelevant

netErrDNSNotInLocalCache
242 Developing Palm OS 2.0 Applications, Part III

Utilities
netErrDNSNoPort

Sockets
Equivalent

None

See Also NetLibGetHostByAddr, NetLibGetHostByName

Comments This call looks up the name(s) of host(s) to use for sending an e-mail.
The caller passes the name of the mail exchange in mailNameP and
gets back a list of host names to which the mail message can be sent.

NetLibGetHostByAddr

Purpose Looks up a host name given its IP address.

Prototype NetHostInfoPtr NetLibGetHostByAddr(
Word libRefnum,
BytePtr addrP,
Word len,
Word type,
NetHostInfoBufPtr bufP,
Long timeout,
Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> addrP IP address of host to lookup.

-> len Length, in bytes, of *addrP.

-> type Type of addrP. netSocketAddrINET
is currently the only supported type.

-> bufP Pointer to buffer to hold results of lookup.

-> timeout Maximum timeout in system ticks,
-1 means wait forever.

<- errP Address of variable used to return error code.

Result 0 Name not found, *errP contains error code.
Developing Palm OS 2.0 Applications, Part III 243

Utilities
!=0 Pointer to NetHostInfoType portion of bufP
that contains results of the lookup.

Errors 0 No Error

netErrTimeout Call timed out.

netErrNotOpen

netErrDNSNameTooLong

netErrDNSBadName

netErrDNSLabelTooLong

netErrDNSAllocationFailure

netErrDNSTimeout

netErrDNSUnreachable

netErrDNSFormat

netErrDNSServerFailure

netErrDNSNonexistantName

netErrDNSNIY

netErrDNSRefused

netErrDNSImpossible

netErrDNSNoRRS

netErrDNSAborted

netErrDNSBadProtocol

netErrDNSTruncated

netErrDNSNoRecursion

netErrDNSIrrelevant

netErrDNSNotInLocalCache

netErrDNSNoPort

Sockets
Equivalent

struct hostent* gethostbyaddr(
char* addr, int len, int type);
244 Developing Palm OS 2.0 Applications, Part III

Utilities
See Also NetLibGetHostByName

Comments This call queries the domain name server(s) to look up a host name
given its IP address.

BufP must point to a structure of type NetHostInfoBufType that
will be used to store the results of the lookup. When this call returns,
it returns with a pointer to a structure of type NetHostInfoType
which is actually part of the NetHostInfoBufType that bufP
points to.
Developing Palm OS 2.0 Applications, Part III 245

Utilities
NetLibGetServByName

Purpose Looks up the port number for a standard TCP/IP service, given the
desired protocol.

Prototype NetServInfoPtr NetLibGetServByName(
Word libRefnum, CharPtr servNameP,
CharPtr protoNameP, NetServInfoBufPtr bufP,
Long timeout, Err* errP)

Parameters -> libRefNum Reference number of the net library.

-> servNameP Name of the service to look up.

-> protoNameP Desired protocol to use.

-> bufP Buffer to store results in.

-> timeout Maximum timeout in system ticks,
-1 means wait forever.

<- errP Address of variable used to return error code.

Result 0 Service not found, *errP contains error code.

!=0 Pointer to NetServInfoType portion of bufP that
contains results of the lookup.

Errors 0 No Error

netErrTimeout Call timed out.

netErrNotOpen

netErrUnknownProtocol

netErrUnknownService

Sockets
Equivalent

struct servent* getservbyname(
char* addr, char* proto);

See Also NetLibGetHostByName
246 Developing Palm OS 2.0 Applications, Part III

Utilities
Comments This call is a convenience call for looking up a standard port number
given the name of a service and the protocol to use (either ÒudpÓ or
ÒtcpÓ). It currently supports looking up the port number for the fol-
lowing services: ÒechoÓ, ÒdiscardÓ, ÒdaytimeÓ, ÒqotdÓ, ÒchargenÓ,
Òftp-dataÓ, ÒftpÓ, ÒtelnetÓ, ÒsmtpÓ, ÒtimeÓ, ÒnameÓ, ÒÞngerÓ,
Òpop2Ó, Òpop3Ó, ÒnntpÓ, Òimap2Ó.

BufP must point to a structure of type NetServInfoBufPtr thatÕs
used to store the results of the lookup. When this call returns, it re-
turns with a pointer to a structure of type NetServInfoType which
is actually part of the NetServInfoBufType pointed to bufP.

NetLibTracePrintF

Purpose Can be used by applications to store debugging information in the
net libraryÕs trace buffer.

Prototype Err NetLibTracePrintF(Word libRefnum,
CharPtr formatStr, ...)

Parameters -> libRefNum Reference number of the net library.

-> formatStr A printf style format string.

-> ... Arguments to the format string.

Result 0 No error.

netErrNotOpen

Sockets
Equivalent

None

See Also NetLibTracePutS, NetLibMaster, NetLibSettingSet

Comments This call is a convenient debugging tool for developing Internet ap-
plications. It will store a message into the net libraryÕs trace buffer,
which can later be dumped using the NetLibMaster call. The net
libraryÕs trace buffer is used to store run-time errors that the net li-
Developing Palm OS 2.0 Applications, Part III 247

Utilities
brary encounters as well as errors and messages from network inter-
faces and from applications that use this call.

The formatStr parameter is a printf style format string which
supports the following format speciÞers:

%d, %i, %u, %x, %s, %c but it does NOT support Þeld widths, lead-
ing 0Õs etc.

Note that the netTracingAppMsgs bit of the netSettingTrace-
Bits setting must be set using the call
NetLibSettingSet(...netSettingTraceBits...). Other-
wise, this routine will do nothing.

NetLibTracePutS

Purpose Can be used by applications to store debugging information in the
net libraryÕs trace buffer.

Prototype Err NetLibTracePutS(Word libRefnum, CharPtr strP)

Parameters -> libRefNum Reference number of the net library.

-> strP String to store in the trace buffer.

Result 0 No error

netErrNotOpen

Sockets
Equivalent

none

See Also NetLibTracePrintF, NetLibMaster, NetLibSettingSet.

Comments This call is a convenient debugging tool for developing internet ap-
plications. It will store a message into the net libraryÕs trace buffer
which can later be dumped using the NetLibMaster call. The net
libraryÕs trace buffer is used to store run-time errors that the net li-
brary encounters as well as errors and messages from network inter-
faces and from applications that use this call.
248 Developing Palm OS 2.0 Applications, Part III

Utilities
Note the netTracingAppMsgs bit of the netSettingTraceBits
setting must be set using the
NetLibSettingSet(...netSettingTraceBits...) call or
this routine will do nothing.

NetLibMaster

Purpose Retrieves the network statistics, interface statistics, and the contents
of the trace buffer.

Prototype Err NetLibMaster(Word libRefnum,
Word cmd,
NetMasterPBPtr pbP,
Long timeout)

Parameters -> libRefNum Reference number of the net library.

-> cmd Function to perform (NetMasterEnum type).

-> pbP Command parameter block.

-> timeout Timeout in ticks, -1 means wait forever.

Result 0 No error

netErrNotOpen

netErrParamErr

netErrUnimplemented

Sockets
Equivalent

none

See Also NetLibSettingSet

Comments This call allows applications to can get detailed information about
the net library. This information is usually helpful in debugging net-
work conÞguration problems.
Developing Palm OS 2.0 Applications, Part III 249

Utilities
This function takes a command word (cmd) and parameter block
pointer as arguments and returns its results in the parameter block
on exit.

The following commands are supported:

netMasterInterfaceInfo

pbP.interfaceInfo:

index -> Index of interface to fetch info about.

creator <- Creator of interface.

instance <- Instance of interface.

netIFP <- Private interface info pointer.

drvrName <- Driver type that interface uses (ÒPPPÓ,
ÒSLIPÓ, etc.).

hwName <- Hardware driver name (ÒSerial Li-
braryÓ, etc.).

localNetHdrLen <- Number of bytes in local net header.

localNetTrailerLen <- Number of bytes in local net trailer.

localNetMaxFrame <- Local net maximum frame size.

ifName <- Interface name with instance number
concatenated.

driverUp <- True if interface driver is up.

ifUp <- True if interface media layer is up.

hwAddrLen <- Length of interfaceÕs hardware address.
250 Developing Palm OS 2.0 Applications, Part III

Utilities
netMasterInterfaceStats

pbP.interfaceStats:

hwAddr <- InterfaceÕs hardware address.

mtu <- Maximum transfer unit of interface.

speed <- Speed in bits/sec.

lastStateChange <- Time in milliseconds of last state
change.

ipAddr <- IP address of interface.

subnetMask <- Subnet mask of local network.

broadcast <- Broadcast address of local network.

index -> Index of interface to fetch info about.

inOctets <- Number of octets received.

inUcastPkts <- Number of packets received.

inNUcastPkts <- Number of broadcast packets received.

inDiscards <- Number of incoming packets that were
discarded.

inErrors <- Number of packet errors encountered.

inUnknownProtos <- Number of unknown protocols encoun-
tered.

outOctets <- Number octets sent.

outUcastPkts <- Number of packets sent.
Developing Palm OS 2.0 Applications, Part III 251

Utilities
netMasterIPStats

pbP.ipStats:

netMasterICMPStats

pbP.icmpStats:

netMasterUDPStats

pbP.udpStats

netMasterTCPStats

pbP.tcpStats:

netMasterTraceEventGet

pbP.traceEventGet

outNUcastPkts <- Number of broadcast packets sent.

outDiscards <- Number of packets discarded.

outErrors <- Number of outbound packet errors.

ipXXX <- see NetMgr.h for complete list of stats returned

icmpXXX <- see NetMgr.h for complete list of stats returned

updXXX <- see NetMgr.h for complete list of stats returned

tcpXXX <- see NetMgr.h for complete list of stats returned

index -> Index of event to fetch.

textP -> Pointer to text string to return event in. Should be
at least 256 bytes long.
252 Developing Palm OS 2.0 Applications, Part III

ConÞguration
ConÞguration

NetLibSettingGet

Purpose Retrieves a general setting.

Prototype Err NetLibSettingGet(Word libRefnum,
Word setting,
VoidPtr bufP,
WordPtr bufLenP)

Parameters -> libRefNum Reference number of the net library.

-> setting Setting to retrieve, one of the netSettingXXX
enum constants.

-> bufP Space for return value of setting.

<-> bufLenP On entry, size of bufP. On exit, actual size
of setting.

Result 0 Success

netErrUnknownSetting Invalid setting constant

netErrPrefNotFound No current value for setting

netErrBufTooSmall bufP was too small to hold entire
setting. Setting value was truncated to
Þt in bufP.

netErrBufWrongSize

Sockets
Equivalent

none

See Also NetLibSettingSet, NetLibIFSettingSet,
NetLibIFSettingGet, NetLibMaster

Comments This call retrieves the current value of any general setting. The caller
must pass a pointer to a buffer to hold the return value (bufP), the
Developing Palm OS 2.0 Applications, Part III 253

ConÞguration
size of the buffer (*bufLenP), and the setting ID (setting). The set-
ting ID is one of the netSettingXXX constants in the netSettin-
gEnum type.

Some settings are variable size, like the host table for example. For
these types of settings, the caller can pass 0 for *bufLenP, ignore the
return error code of netErrBufTooSmall, and get the actual size
from the *bufLenP variable after the call returns. The buffer can
then be allocated and the setting retrieved by passing the actual
buffer size in *bufLenP and calling NetLibSettingGet again.

The following table lists the general settings and the type of each
setting.

Setting Type Description

ResetAll void Used for NetLibSettingSet only. This will clear all
other settings to their default values.

PrimaryDNS DWord IP address of primary DNS server. This setting MUST
be set to a non-zero IP address in order to support any
of the name lookup calls.

SecondayDNS DWord IP address of primary DNS server. Set to 0 to have
stack ignore this setting.

DefaultRouter DWord IP address of default router. Default value is 0 which is
appropriate for most implementations with only 1 at-
tached interface (besides loopback). Packets with desti-
nation IP addresses that donÕt lie in the subnet of an at-
tached interface will be sent to this router through the
default interface speciÞed by the DefaultIFCre-
ator/DefaultIFInstance pair.

DefaultIFCreator DWord Creator of the default network interface. Default value
is 0, which is appropriate for most implementations.
Packets with destination IP addresses that donÕt lie in
the subnet of a directly attached interface are sent
through this interface. If this setting is 0, the stack auto-
matically makes the Þrst non-loopback interface the
default interface.
254 Developing Palm OS 2.0 Applications, Part III

ConÞguration
DefaultIFInstance Word Instance number of the default network interface.
Packets with destination IP addresses that donÕt lie in
the subnet of an attached interface are sent through the
default interface. Default value is 0.

HostName Char[] A zero-terminated character string of 64 bytes or less
containing the host name of this machine. This setting
is not actually used by the stack. ItÕs present mainly for
informative purposes and to support the gethost-
name/sethostname sockets API calls. To clear the
host name, call NetLibIFSettingSet with a bufLen
of 0.

DomainName Char[] A zero-terminated character string of 256 bytes or less
containing the default domain. This default domain
name is appended to all host names before name look-
ups are performed. If the name is not found, the host
name is looked up again without appending the do-
main name to it. To have the stack not use the domain
name, call NetLibIFSettingSet with a bufLen of 0.

HostTbl Char[] A zero-terminated character string containing the host
table. This table is consulted Þrst before sending a DNS
query to the DNS server(s). To have the stack not use a
host table, call NetLibIFSettingSet with a bufLen
of 0. The format of a host table is a series of lines sepa-
rated by Õ\nÕ in the following format:host.compa-
ny.com A 111.222.333.444

CloseWaitTime DWord The close-wait time in milliseconds. This setting MUST
be speciÞed. See the discussion of the NetLibOpen
and NetLibClose calls for an explanation of the close-
wait time.

Setting Type Description
Developing Palm OS 2.0 Applications, Part III 255

ConÞguration
NetLibSettingSet

Purpose Sets a general setting.

Prototype Err NetLibSettingSet(Word libRefnum,
Word setting,
VoidPtr bufP,
Word bufLen)

Parameters -> libRefNum Reference number of the net library.

-> setting Setting to retrieve; one of the
netSettingXXX enum constants.

-> bufP Space for return value of setting.

-> bufLen Size of new setting.

Result 0 success

netErrUnknownSetting Invalid setting constant.

netErrInvalidSettingSize bufLen was invalid for the given
setting.

TraceBits DWord A bitÞeld of various trace bits (netTracingXXX). De-
fault value is (netTracingErrors | netTracin-
gAppMsgs) which tells the net library to record only
run-time errors and application trace messages in its
trace buffer. An application can get a list of events in
the trace buffer using the NetLibMaster call.

TraceSize DWord Maximum trace buffer size in bytes. Setting this setting
always clears the existing trace buffer. Default is 2 KB.

TraceRoll Byte Boolean value, default is true (non-zero). If true, trace
buffer will roll over when it Þlls. If false, tracing will
stop as soon as trace buffer Þlls.

Setting Type Description
256 Developing Palm OS 2.0 Applications, Part III

ConÞguration
netErrBufTooSmall bufP was too small to hold entire
setting. Setting value was truncated to
Þt in bufP.

netErrBufWrongSize

netErrReadOnlySetting

Sockets
Equivalent

none

See Also NetLibSettingGet, NetLibSettingSet,
NetLibIFSettingSet, NetLibMaster

Comments This call can be used to set the current value of any general setting.
The caller must pass a pointer to a buffer which holds the new value
(bufP), the size of the buffer (bufLen), and the setting ID (set-
ting). The setting ID is one of the netSettingXXX constants in
the netSettingEnum type.

See NetLibSettingGet for an explanation of each of the settings.

Of particular interest is the netSettingResetAll setting, which, if
used, will reset all general settings to their default values. When
using this setting, bufP and bufLen are ignored.
Developing Palm OS 2.0 Applications, Part III 257

ConÞguration
NetLibIFGet

Purpose Get the creator and instance number of an installed interface by in-
dex.

Prototype Err NetLibIFGet(Word libRefnum,
Word index,
DWordPtr ifCreatorP,
WordPtr ifInstanceP)

Parameters -> libRefNum Reference number of the net library.

-> index Index of the interface to get. Indices start at 0.

<- ifCreatorP Creator of interface is returned here.

<- ifInstanceP Instance number of interface is returned here.

Result 0 Success

netErrInvalidInterface Index too high

netErrPrefNotFound

Sockets
Equivalent

none

See Also NetLibIFAttach, NetLibIFDetach

Comments To get a list of all installed interfaces, call this function with succes-
sively increasing indices starting from 0 until the error
netErrInvalidInterface is returned.

The ifCreator and ifInstance values returned from this call can
then be used with the NetLibSettingGet call to get more infor-
mation about that particular interface.
258 Developing Palm OS 2.0 Applications, Part III

ConÞguration
NetLibIFAttach

Purpose Attach a new network interface.

Prototype Err NetLibIFAttach(Word libRefnum,
DWord ifCreator,
Word ifInstance,
SDWord timeout)

Parameters -> libRefNum Reference number of the net library.

-> ifCreator Creator of interface to attach.

-> ifInstance Instance number of interface to attach.

-> timeout Timeout in ticks; -1 means inÞnite timeout.

Result 0 Success

netErrInterfaceNotFound

netErrTooManyInterfaces

Sockets
Equivalent

None

See Also NetLibIFGet, NetLibIFDetach

Comments This call can be used to attach a new network interface to the net li-
brary. Network interfaces are self-contained databases of type ÕnetiÕ.
The ifCreator parameter to this function is used to locate the net-
work interface database of the given creator.

If the net library is already open when this call is made, the network
interfaceÕs database will be located and then called to initialize itself
and attach itself to the protocol stack in real-time. If the net library is
not open when this call is made, the creator and instance number of
the interface are stored in the Net Prefs database and the interface is
initialized and attached to the stack the next time the net library is
opened.
Developing Palm OS 2.0 Applications, Part III 259

ConÞguration
NetLibIFDetach

Purpose Detach a network interface from the protocol stack.

Prototype Err NetLibIFDetach(Word libRefnum,
DWord ifCreator,
Word ifInstance,
SDWord timeout)

Parameters -> libRefNum Reference number of the net library.

-> ifCreator Creator of interface to detach.

-> ifInstance Instance number of interface to detach.

-> timeout Timeout in ticks; -1 means inÞnite timeout.

Result 0 success

netErrInterfaceNotFound

Sockets
Equivalent

None

See Also NetLibIFGet, NetLibIFAttach

Comments This call can be used to detach a network interface from the net li-
brary. If the net library is already open when this call is made, the in-
terface is brought down and detached from the protocol stack in
real-time. If the net library is not open when this call is made, the
creator and instance number of the interface are removed in the Net
Prefs database and the interface is not attached the next time the li-
brary is opened.
260 Developing Palm OS 2.0 Applications, Part III

ConÞguration
NetLibIFUp

Purpose Bring an interface up and establish a connection.

Prototype Err NetLibIFUp (Word libRefnum,
DWord ifCreator,
Word ifInstance)

Parameters -> libRefNum Reference number of the net library.

-> ifCreator Creator of interface to attach.

-> ifInstance Instance number of interface to attach.

Result 0 success

netErrNotOpen

netErrInterfaceNotFound

netErrUserCancel

netErrBadScript

netErrPPPTimeout

netErrAuthFailure

netErrPPPAddressRefused

Sockets
Equivalent

None

See Also NetLibIFGet, NetLibIFAttach, NetLibIFDetach,
NetLibIFDown

Comments The net library must be open before this call can be made. For dial-
up interfaces, this call will dial up the modem if necessary and run
through the connect script to establish the connection.
Developing Palm OS 2.0 Applications, Part III 261

ConÞguration
Important: Some interfaces need or want to display UI to show
progress information as the connection is established so. THIS
ROUTINE MUST BE CALLED FROM THE UI TASK!

NetLibOpen calls this routine for every interface that was specified
as attached in its preferences. NetLibOpen must therefore be called
from the UI task as well.

If the interface is already up, this routine returns immediately with
no error. This call doesnÕt take a timeout parameter because it relies
on each interface to have its own established timeout setting.

NetLibIFDown

Purpose Bring an interface down and hang up a connection.

Prototype Err NetLibIFDown (Word libRefnum,
DWord ifCreator,
Word ifInstance,
SDWord timeout)

Parameters -> libRefNum Reference number of the net library.

-> ifCreator Creator of interface to attach.

-> ifInstance Instance number of interface to attach.

-> timeout Timeout in ticks. -1means wait forever.

Result 0 success

netErrNotOpen

netErrInterfaceNotFound

Sockets
Equivalent

None

See Also NetLibIFGet, NetLibIFAttach, NetLibIFDetach,
NetLibIFUp
262 Developing Palm OS 2.0 Applications, Part III

ConÞguration
Comments The net library must be open before this call can be made. For dial-
up interfaces, this call terminates a connection and hangs up the
modem if necessary.

NetLibClose automatically brings down any attached interfaces,
so this routine doesnÕt normally have to be called.

If the interface is already down, this routine returns immediately
with no error.

NetLibIFSettingGet

Purpose Retrieves a network interface speciÞc setting.

Prototype Err NetLibIFSettingGet(Word libRefnum,
DWord ifCreator,
Word ifInstance,
Word setting,
VoidPtr bufP,
WordPtr bufLenP)

Parameters -> libRefNum Reference number of the net library.

-> ifCreator Creator of the network interface.

-> ifInstance Instance number of the network interface.

-> setting Setting to retrieve; one of the
netIFSettingXXX enum constant.s

-> bufP Space for return value of setting.

<-> bufLenP On entry, size of bufP.
On exit, actual size of setting.

Result 0 success

netErrUnknownSetting Invalid setting constant.

netErrPrefNotFound No current value for setting.

netErrBufTooSmall bufP was too small to hold entire
setting. Setting value was truncated to

 Þt in bufP.
Developing Palm OS 2.0 Applications, Part III 263

ConÞguration
netErrUnimplemented

netErrInterfaceNotFound

netErrBufWrongSize

Sockets
Equivalent

None

See Also NetLibIFSettingSet, NetLibSettingGet,
NetLibSettingSet

Comments This call can be used to retrieve the current value of any network in-
terface setting. The caller must pass a pointer to a buffer to hold the
return value (bufP), the size of the buffer (*bufLenP), and the set-
ting ID (setting). The setting ID is one of the netIFSettingXXX
constants in the netSettingEnum type.

Some settings, such as the login script, are variable size. For these
types of settings, the caller can pass 0 for *bufLenP, ignore the re-
turn error code of netErrBufTooSmall, and get the actual size
from the *bufLenP variable after the call returns. The buffer can
then be allocated and the setting retrieved by passing the actual
buffer size in *bufLenP and calling NetLibSettingGet again.

The following table lists the network interface settings and the size
of each setting. Some are only applicable to certain types of interfac-
es. Settings not applicable to a speciÞc interface can be safely ig-
nored and not set to any particular value.

Setting Type Description

ResetAll void Used for NetLibIFSettingSet only. This clears all
other settings for the interface to their default values.

Up Byte True if interface is currently up - Read-only

Name Char[32] Name of this interface - Read-only.

IPAddr DWord IP address of interface.
264 Developing Palm OS 2.0 Applications, Part III

ConÞguration
SubnetMask DWord Subnet mask for interface. DoesnÕt need to be speciÞed
for PPP or SLIP type connections.

Broadcast DWord Broadcast address for interface. DoesnÕt need to be spec-
iÞed for PPP or SLIP type connections.

Username Char[32] Username. Only required if the login script uses the
username substitution escape sequence in it. Call
NetLibIFSettingSet with a bufLen of 0 to remove
this setting.

Password Char[32] Password. Optionally required if the login script uses
the password substitution escape sequence in it. Call
NetLibIFSettingSet with a bufLen of 0 to remove
this setting. If the login script uses password substitu-
tion and no password setting is set, the user will be
prompted for a password at connect time.

Dialback
Username

Char[32] Dialback Username. Only required if the login script
uses the dialback username substitution escape se-
quence in it. Call NetLibIFSettingSet with a bufLen
of 0 to remove this setting.

Dialback
Password

Char[32] Dialback Password. Optionally required if the login
script uses the dialback password substitution escape se-
quence in it. Call NetLibIFSettingSet with a bufLen
of 0 to remove this setting. If the login script uses pass-
word substitution and no password setting is set, the
user will be prompted for a password at connect time.

AuthUsername Char[32] Authentication Username. Only required if the authenti-
cation protocol uses a different username than the
whatÕs in the Username setting. If this setting is empty
(bufLen of 0), the Username setting will be used instead.
Call NetLibIFSettingSet with a bufLen of 0 to re-
move this setting.

Setting Type Description
Developing Palm OS 2.0 Applications, Part III 265

ConÞguration
AuthPassword Char[32] Authentication Password. If Ò$Ó then the user will be
prompted for the authentication password at connect
time. Else, if 0 length, then the Password setting or the
result of its prompt will be used instead. Call
NetLibIFSettingSet with a bufLen of 0 to remove
this setting.

ServiceName Char[] Service Name. Used for display purposes while showing
the connection progress dialog box. Call NetLibIFSet-
tingSet with a bufLen of 0 to remove this setting.

LoginScript Char[] Login script. Only required if the particular service re-
quires a login sequence. Call NetLibIFSettingSet
with a bufLen of 0 to remove this setting. See below for a
description of the login script format.

ConnectLog Char[] Connect log. Generally, this setting is just retrieved, not
set. It contains a log of events from the most recent login.
To clear this setting, call NetLibIFSettingSet with a
bufLen of 0.

InactivityTimer Word Maximum number of seconds of inactivity allowed. Set
to 0 to ignore.

Establishment-
Timeout

Word Maximum delay, in seconds, allowed between each
stage of connection establishment or login script line.
Must be non-zero.

DynamicIP Byte If non-zero, negotiate for an IP address. If false, the IP
address speciÞed in the IPAddr setting will be used. De-
fault is 0.

VJCompEnable Byte If non-zero, enable JV header compression. Default is
true for PPP and false for SLIP.

VJCompSlots Byte Number of slots to use for VJ compression. Default is 4
for PPP and 16 for SLIP. More slots require more memo-
ry so it is best to keep this number to a minimum.

Setting Type Description
266 Developing Palm OS 2.0 Applications, Part III

ConÞguration
MTU Word Maximum transmission unit in octets. Currently not im-
plemented in SLIP or PPP.

 AsyncCtlMap DWord Bitmask of characters to escape for PPP. Default is 0.

PortNum Word Which serial communication port to use. Port 0 is the
only port available on the device. Ports 0 (modem) and 1
(printer) are available on the Macintosh. Default is port
0.

BaudRate DWord Serial port baud rate to use in bits/sec. MUST be speci-
Þed.

FlowControl Byte If bit 0 is 1, use hardware handshaking on the serial port.
Default is no hardware handshaking.

StopBits Byte Number of stop bits. Default is 1.

ParityOn Byte True if parity detection enabled. Default is false.

ParityEven Byte True for even parity detection. Default is true.

UseModem Byte If true, dial-up through modem. If false, go direct over
serial port

PulseDial Byte If true, pulse dial modem. Else, tone dial. Default is tone
dial.

ModemInit Char[] Zero-terminated modem initialization string, not includ-
ing the ÒATÓ. If not speciÞed (bufLen of 0), the modem
init string from system preferences are used.

ModemPhone Char[] Zero-terminated modem phone number string. Only re-
quired if UseModem is true.

RedialCount Word Number of times to redial modem when trying to estab-
lish a connection. Only required if UseModem is true.

Setting Type Description
Developing Palm OS 2.0 Applications, Part III 267

ConÞguration
As noted above, the netIFSettingLoginScript setting is used to
store the login script for an interface. The login script format is a rig-
idly formatted text string designed to be generated programmatical-
ly from user input. If a syntactically incorrect login script is present-
ed to the net library, the results will be unpredictable. The basic
format is a series of null terminated command lines followed by a
null byte at the end of the script. Each command line has the format:

<command-byte> [<parameter>]

where the command byte is the Þrst character in the line and there is
1 and only 1 space between the command byte and the parameter
string. Following is a list of possible commands:

TraceBits DWord A bitÞeld of various trace bits (netTracingXXX). De-
fault value is netTracingErrors which tells the inter-
face to record only run-time errors in the trace buffer. An
application can get a list of events in the trace buffer
using the NetLibMaster call. Each interface has its own
trace bits setting so that trace event recording in each in-
terface can be selectively enabled or disabled.

GlobalsPtr DWord Read-only. Interfaces pointer to its global variables.

ActualIPAddr DWord Read-only. The actual IP address that the interface ends
up using. The login script execution engine stores the re-
sult of the ÒgÓ (get IP address) command here as does
the PPP negotiation logic.

Setting Type Description

 Function Command Parameter Example

send s <string> Õs go PPPÕ

wait w <string> Õw password:Õ

delay d <seconds> Õd 1Õ

parity p e|o|n Õp nÕ
268 Developing Palm OS 2.0 Applications, Part III

ConÞguration
The parameter string to the send (ÕsÕ) command can contain the fol-
lowing escape sequences:

data bits b 7|8 Õb 8Õ

getIPAddr g Õg Õ

ask a <string> Õa Enter Name:Õ

callback c <seconds> Õc 30Õ
// hang up and wait
30 sec.s for callback

 Function Command Parameter Example

$USERID substitutes user name

$PASSWORD substitutes password

$DBUSERID substitutes dialback user name

$DBPASSWORD substitutes dialback password

 ^c if c is Õ@Õ -> Õ_Õ, then byte value 0 -> 31
else if c is ÕaÕ -> ÕzÕ, then byte value 1 -> 26
else c

<cr> carriage return (0x0D)

<lf> line feed (0x0A)

\" "

 \^ ^

 \< <

 \\ \
Developing Palm OS 2.0 Applications, Part III 269

ConÞguration
NetLibIFSettingSet

Purpose Sets a network interface speciÞc setting.

Prototype Err NetLibIFSettingSet(Word libRefnum,
DWord ifCreator,
Word ifInstance,
Word setting,
VoidPtr bufP,
Word bufLen)

Parameters -> libRefNum Reference number of the net library.

-> ifCreator Creator of the network interface.

-> ifInstance Instance number of the network interface.

-> setting The setting to retrieve, one of the
netSettingXXX enum constants.

-> bufP Space for return value of setting.

-> bufLen Size of new setting.

Result 0 Success.

netErrUnknownSetting Invalid setting constant.

netErrPrefNotFound No current value for setting.

netErrBufTooSmall bufP was too small to hold entire
setting. Setting value was truncated to
Þt in bufP.

netErrUnimplemented

netErrInterfaceNotFound

netErrBufWrongSize

netErrReadOnlySetting

Sockets
Equivalent

None
270 Developing Palm OS 2.0 Applications, Part III

ConÞguration
See Also NetLibIFSettingGet, NetLibSettingGet,
NetLibSettingSet

Comments This call can be used to set the current value of any network inter-
face setting. The caller must pass a pointer to a buffer which holds
the new value (bufP), the size of the buffer (bufLen), and the set-
ting ID (setting). The setting ID is one of the netIFSettingXXX
constants in the netSettingEnum type.

See NetLibIFSettingGet for an explanation of each of the set-
tings.

Of particular interest is the netIFSettingResetAll setting,
which, if used, resets all settings for the interface to their default val-
ues. When using this setting, bufP and bufLen are ignored.
Developing Palm OS 2.0 Applications, Part III 271

ConÞguration
272 Developing Palm OS 2.0 Applications, Part III

Berkeley Sockets API Calls
When the <sys/socket.h> header Þle is included, code written to
the Berkeley sockets API can be compiled for the Palm OS environ-
ment with little or no source code modiÞcations. The <sys/sock-
et.h> header file contains a set of macros which map Berkeley
sockets API calls into net library and Palm OS calls. In addition, a
Palm OS application using the sockets API must link with the mod-
ule NetSocket.c which contains glue code and global variables
used by the sockets API.

Before an application can use any sockets API calls, it must open the
net library as described in Initialization and Shutdown. The code
fragment in that section correctly sets up the application global vari-
able AppNetRefnum with the refnum of the net library which is
used by the sockets API macros.

Another important global declared in ÒNetSocket.cÓ is AppNet-
Timeout. This global gets passed as the timeout parameter to the
native net library call by sockets API macros. This timeout variable
is a 32-bit value representing the maximum number system ticks to
wait. Most applications will probably want to adjust this timeout
value and possibly adjust it for different sections of code.

Finally, the global errno must be declared in the applicationÕs own
source code UNLESS the application is linked with the standard C
library which also declares it.

The following code fragment illustrates the above steps:

#include <sys/socket.h>
....
// Declare errno global; we donÕt link with stdlib
Err errno;
...
// Open up the net library
err = SysLibFind("Net.lib", &AppNetRefnum);
if (err) {/* error handling here */}
err = NetLibOpen(AppNetRefnum, &ifErrs);
if (err || ifErrs) {/* error handling here */}

// Change the default timeout
AppNetTimeout = SysTicksPerSecond() * 10;

// 10 seconds.
Developing Palm OS 2.0 Applications, Part III 273

Supported Socket Functions
The following section list the calls in the Berkeley sockets API which
are supported by the net library. In some cases, the calls have limit-
ed functionality from whatÕs found in a full implementation of the
sockets API and these limitations are described here.

Supported Socket Functions

Function Description

bind() This function binds a socket to a local address

close() This function closes a socket

connect() This function connects a socket to a remote endpoint to establish
a connection.

fcntl() This function is supported only for socket refnums and the only
commands it supports are F_SETFL and F_GETFL. The
commands can be used to put a socket into non-blocking mode
by setting the FNDELAY flag in the argument parameter
appropriately - all other flags are ignored. The F_SETFL,
F_GETFL, and FNDELAY constants are defined in <unix/fcntl.h>.

getpeername() This function gets the remote socket address for a connection.

getsockname() This function gets the local socket address of a connection.

getsockopt() This function gets control options of a socket. Only the following
options are implemented:

TCP_NODELAY This option returns the current state of the TCP_NODELAY
option. This option allows the application to disable the TCP
output buffering algorithm so that TCP sends small packets as
soon as possible. This constant is defined in <netinet/tcp.h>.

TCP_MAXSEG This option allows the application to get the TCP maximum
segment size. This constant is defined in <netinet/tcp.h>.
274 Developing Palm OS 2.0 Applications, Part III

Supported Socket Functions
SO_KEEPALIVE This option returns the keep-alive state. Keep-alive enables
periodic transmission of probe segments when there is no data
exchanged on a connection. If the remote endpoint doesnÕt
respond, the connection is considered broken, and so_error is
set to ETIMEOUT.

SO_LINGER This option specifies what to do with the unsent data when a
socket is closed. It uses the linger structure defined in sys/
socket.h.

SO_ERROR This option returns the current value of the variable so_error,
defined in sys/socketvar.h.

SO_TYPE This option returns the socket type to the caller.

listen() Sets up the socket to listen for incoming connection requests. The
queue size is quietly limited to 1.

read(), recv(),
recvmsg(),
recvfrom()

These functions read data from a socket. The recv, recvmsg, and
recvfrom calls support the MSG_PEEK flag but NOT the
MSG_OOB or MSG_DONTROUTE flags.

select() This function allows the application to block on multiple I/O
events. The system will wake up the application process when any
of the multiple I/O events occurs.
This function uses the timeval structure deÞned in <sys/time.h>
and the fd_set structure deÞned in sys/types.h.
Also associated with this function are the following four macros
deÞned in sys/types.h
FD_ZERO()
FD_SET()
FD_CLR()
FD_ISSET()
Besides socket descriptors, this function also works with the "st-
din" descriptor, sysFileDescStdIn. This descriptor is marked as
ready for input whenever a user or system event is available in the
event queue. This includes any event that would be returned by
EvtGetEvent(). No other descriptors besides sysFileDescSt-
dIn and socket refnums are allowed.

Function Description
Developing Palm OS 2.0 Applications, Part III 275

Supported Socket Functions
send(),
sendmsg(),
sendto()

These functions write data to a socket. These calls, unlike the recv
calls, do support the MSG_OOB flag. The MSG_PEEK flag is not
applicable and the MSG_DONTROUTE flag is not supported.

setsockopt() This function sets control options of a socket. Only the following
options are allowed:

TCP_NODELAY This option allows the application to disable the TCP output
buffering algorithm so that TCP sends small packets as soon as
possible. This constant is defined in netinet/tcp.h.

SO_KEEPALIVE This option enables periodic transmission of probe segments
when there is no data exchanged on a connection. If the remote
endpoint doesnÕt respond, the connection is considered broken,
and so_error is set to ETIMEOUT.

SO_LINGER This option specifies what to do with the unsent data when a
socket is closed. It uses the linger structure defined in sys/
socket.h.

shutdown() This function is similar to close(); however, it gives the caller
more control over a full-duplex connection.

socket() This function creates a socket for communication.The only valid
address family is AF_INET. The only valid socket types are
SOCK_STREAM and SOCK_DGRAM; SOCK_RAW is not
supported. The protocol parameter should be set to 0.

write() This function writes data to a socket.

Function Description
276 Developing Palm OS 2.0 Applications, Part III

Supported Network Utility Functions
Supported Network Utility Functions

Supported Byte Ordering Functions
The byte ordering functions are deÞned in <netinet/in.h>. They
convert and integer between network byte order and the host byte
order.

Function Description

getdomainname() This function returns the domain name of the local host

gethostbyaddr() This function looks up host information given the hostÕs IP
address. It returns a hostent structure, is defined in <netdb.h>.

gethostbyname() This function looks up host information given the hostÕs name. It
returns a hostent structure which is defined in <netdb.h>.

gethostname() This function returns the name of the local host

getservbyname() This function returns a servent structure, defined in <netdb.h>
given a service name.

gettimeofday() This function returns the current date and time.

setdomainname() This function sets the domain name of the local host

sethostname() This function sets the name of the local host

settimeofday() This function sets the current date and time.

Function Description

htonl() Converts a 32-bit integer from host byte order to network byte order.

htons() Converts a 16-bit integer from host byte order to network byte order.

ntohl() Converts a 32-bit integer from network byte order to host byte order.

ntohs() Converts a 16-bit integer from network byte order to host byte order.
Developing Palm OS 2.0 Applications, Part III 277

Supported Network Address Conversion Functions
Supported Network Address Conversion
Functions

The network address conversion functions are declared in the
<arpa/inet.h> header Þle. They convert a network address from one
format to another, or manipulate parts of a network address.

Supported System Utility Functions
The following byte operation functions are not related to network
API per se. However, they are almost always used in BSD network
application source.

Function Description

inet_addr() Converts an IP address from dotted decimal format to 32-bit
binary format.

inet_network() Converts an IP network number from a dotted decimal format to a
32-bit binary format

inet_makeaddr() Returns an IP address in an in_addr structure given an IP network
number and an IP host number in 32-bit binary format.

inet_lnaof() Returns the host number part of an IP address.

inet_netof() Returns the network number part of an IP address.

inet_ntoa() Converts an IP address from 32-bit format to dotted decimal
format.

bcopy() This function copies a block of data from one memory location to another.

bzero() This function sets a buffer to all zeros.

bcmp() This function compares data stored in two buffers.

sleep() This function causes the current task to sleep for a given period of time.
278 Developing Palm OS 2.0 Applications, Part III

Index
Numerics
2.0 heaps 27
2.0 Note 94, 141
68328 processor 21

A
accessing data 24
allocating chunks on dynamic heap 67
architecture of memory 21
archiving

marking record as archived 77

B
back-up of data to PC 21
battery life 140
baud rate, parity options 141
bcmp (Berkeley Sockets API) 278
bcopy (Berkeley Sockets API) 278
Berkeley Sockets API

and net library functions 194
differences from net library 184
mapping example 185

Berkeley Sockets API calls 273Ð278
Berkeley UNIX sockets API 181
bind (Berkeley Sockets API) 274
boot

and heap compacting 56
busy bit 116
byte ordering 137
bzero (Berkeley Sockets API) 278

C
card number 50
category

DmSeekRecordInCategory 128
moving records 104

changing serial port settings 141
chunks 28

accessing data 24
card number 50
disposing of chunk 51
freeing 48

heap ID 51, 66
locking 52
resizing 31
size 31, 54
unlocking 55, 70

chunks of data 23
close (Berkeley Sockets API) 274
closing net library 191, 198
closing serial link manager 150
closing serial port 140
CMP 138
compacting heaps 56
comparing memory blocks 49
configuration, net library 187
connect (Berkeley Sockets API) 274
connection management protocol 138
CRC-16 146
Crc16CalcBlock 180
creating a chunk 31
creating database 38
creating resources 45
CTS timeout 141

D
data

chunks 23
memory residence 23

data manager 34
error codes 96
using 38

data storage 22
data storage heap 65
data storage heap handles 50
database headers 35

fields 36
database ID 89
databases 24, 35

closing 80
creating 80
cutting and pasting 78
deleting See Also DmDatabaseProtect 83
getting and setting information 39

debugging and MemHeapScramble 59
Developing Palm OS 2.0 Applications, Part III 279

debugging mode 49, 69
default receive queue, restoring 142
delete bit 86
deleting database 38
deleting databases See Also

DmDatabaseProtect 83
deleting records 86
desktop link protocol 138
Desktop Link Server 148
disk storage 22
DLP 138
DmArchiveRecord 77
DmAttachRecord 78
DmAttachResource 79
DmCloseDatabase 80
DmComparF 94, 103
DmCreateDatabase 38, 44, 80
DmCreateDatabaseFromImage 81
DmDatabaseInfo 39, 44, 82
DmDatabaseProtect 83
DmDatabaseSize 39, 84
DmDeleteCategory 85
DmDeleteDatabase 38, 44, 85
DmDeleteRecord 86
DmDetachRecord 87
DmDetachResource 88
dmErrAlreadyExists 81
dmErrCantFind 85
dmErrCantOpen 85
dmErrCorruptDatabase 88, 122
dmErrDatabaseOpen 85
dmErrIndexOutOfRange 77, 78, 79, 86, 87, 88, 105,

119, 120, 122, 123, 131, 132
dmErrInvalidDatabaseName 81
dmErrInvalidParam 80, 82
dmErrMemError 78, 79, 81, 84
dmErrNotValidRecord 129, 133, 134, 135
dmErrReadOnly 77, 78, 79, 86, 87, 88, 102, 105, 122,

123, 131, 132
dmErrRecordInWrongCard 78, 79
dmErrROMBased 85, 124
dmErrUniqueIDNotFound 89
dmErrWriteOutOfBounds 129, 133, 134, 135
DmFindDatabase 39, 81, 85, 89

DmFindRecordByID 89
DmFindResource 90
DmFindResourceType 91
DmFindSortPosition 92
DmGet1Resource 101, 107
DmGetAppInfoID 95
DmGetDatabase 39, 85, 95
DmGetLastErr 96
DmGetNextDatabaseByTypeCreator 97
DmGetRecord 39, 99
DmGetResource 100
DmGetResourceIndex 100
DmInsertionSort 102
DmMoveCategory 104
DmMoveRecord 105
DmNewHandle 106
DmNewRecord 108
DmNewResource 45, 109
DmNextOpenDatabase 106
DmNextOpenResDatabase 107
DmNumDatabases 110
DmNumRecords 110
DmNumRecordsInCategory 111
DmNumResources 111
DmOpenDatabase 112
DmOpenDatabaseByTypeCreator 113
DmOpenDatabaseInfo 114
DmPositionInCategory 115
DmQueryNextInCategory 116
DmQueryRecord 39, 117
DmQuickSort 118
DmRecordInfo 119
DmReleaseRecord 39, 99, 121
DmReleaseResource 44, 45, 109, 121
DmRemoveRecord 122
DmRemoveResource 123
DmRemoveSecretRecords 123
DmResetRecordStates 124
DmResizeRecord 39, 125
DmResizeResource 126
DmResourceInfo 120
DmSearchRecord 126
DmSearchResource 127
DmSeekRecordInCategory 128
280 Developing Palm OS 2.0 Applications, Part III

DmSet 129
DmSetDatabaseInfo 39, 129
DmSetRecordInfo 131
DmSetResourceInfo 132
DmStrCopy 133
DmWrite 134
DmWriteCheck 135
dynamic heap 151

adding chunk 52
allocating chunk 67
moving memory 62
test 56

dynamic heap handles 50
dynamic RAM 22

E
error code from datamanager call 96
error codes 184
EvtResetAutoOffTimer 142

F
finding database 39
flushing serial port 142

G
getdomainname (Berkeley Sockets API) 277
gethostbyaddr (Berkeley Sockets API) 277
gethostbyname (Berkeley Sockets API) 277
gethostname (Berkeley Sockets API) 277
getpeername (Berkeley Sockets API) 274
getservbyname (Berkeley Sockets API) 277
getsockname (Berkeley Sockets API) 274
getsockopt (Berkeley Sockets API) 274
gettimeofday() (Berkeley Sockets API) 277
global variables 151

H
handles 24
handshaking options 141
heap header 28
heap ID 59, 66
heap ID of chunk 51
heaps

and soft reset 27

compacting 56
free bytes 58
in Palm OS 2.0 27
overview 27
RAM and ROM based 26
ROM based 57
structure 28

htonl (Berkeley Sockets API) 277
htons (Berkeley Sockets API) 277

I
ID

databases 89
heap ID 59

IDs, local IDs 24
inet_addr (Berkeley Sockets API) 278
inet_lnaof (Berkeley Sockets API) 278
inet_makeaddr (Berkeley Sockets API) 278
inet_netof (Berkeley Sockets API) 278
inet_network (Berkeley Sockets API) 278
inet_ntoa (Berkeley Sockets API) 278
initialization 190
interface(s) used by net library 188
Internet 189
Internet applications 181
IPOptions 208

L
library reference number 184
listen (Berkeley Sockets API) 275
local ID 61, 66

from chunk handle 54
local IDs 24, 35
locking a chunk 31
locking chunk 52
Loop-back Test 148

M
mailbox queue 182
master pointer table 28
MemCardInfo 47
MemChunkFree 48
MemCmp 49
MemDebugMode 49
Developing Palm OS 2.0 Applications, Part III 281

memErrCardNotPresent 81
memErrChunkLocked 53, 78, 79, 81, 85, 87, 88, 105,

122, 123
memErrInvalidParam 53, 55, 65, 78, 79, 81, 85, 86,

87, 88, 105, 122, 123
memErrInvalidStoreHeader 81
memErrNotEnoughSpace 53, 78, 79, 81, 85, 87, 88,

105, 122, 123
memErrRAMOnlyCard 81
MemHandleCardNo 50
MemHandleDataStorage 50
MemHandleFree 31, 51
MemHandleHeapID 51
MemHandleLock 31, 52
MemHandleNew 31, 52
MemHandleResize 31, 53
MemHandleSize 31, 54
MemHandleToLocalID 54
MemHandleUnlock 31, 55
MemHeapCheck 55
MemHeapCompact 56
MemHeapDynamic 56
memHeapFlagReadOnly 57
MemHeapFlags 57
MemHeapFreeBytes 58
MemHeapID 59
MemHeapScramble 59
MemHeapSize 60
MemLocalIDKind 60
MemLocalIDToGlobal 61
MemLocalIDToGlobalNear 61
MemLocalIDToLockedPtr 61
MemLocalIDToPtr 62
MemMove 32, 62
MemNumCards 63
MemNumHeaps 59, 63
MemNumRAMHeaps 64
memory architecture 21
memory blocks, comparing 49
memory card information 47
memory functions for system use only 71
memory management

architecture 21
Introduction 20

memory manager
chunks 23
debugging mode 49, 69

memory manager See Also data manager 34
memory manager See Also resource manager

$<nopage> 42
memory-residence of data 23
MemPtrCardNo 64
MemPtrDataStorage 65
MemPtrFree 65
MemPtrHeapID 66
MemPtrNew 31, 67
MemPtrRecoverHandle 31, 67
MemPtrResize 68
MemPtrSize 69
MemPtrToLocalID 66
MemPtrUnlock 70
MemSet 32, 68
MemSetDebugMode 69
MemStoreInfo 70
Modem Manager 138
Motorola byte ordering 137
moving memory 32

N
net library

closing 191
differences from Berkeley Sockets API 184
implementation as system library 182
open count 201
open sockets maximum 183
opening 190
opening and closing 198
OS requirement 183
preferences 187, 190
RAM requirement 183
runtime calls 189
setup and configuration 187
using 187
version checking 193

net protocol stack 182
as separate task 182

netErrAlreadyConnected 213, 214, 216
netErrAlreadyOpen 198
netErrAuthFailure 261
282 Developing Palm OS 2.0 Applications, Part III

netErrBadScript 261
netErrBufTooSmall 253, 257, 263, 270
netErrBufWrongSize 253, 257, 264, 270
netErrClosedByRemote 213, 214, 216, 217, 220,

223, 225
netErrDNSAborted 240, 242, 244
netErrDNSAllocationFailure 240, 242, 244
netErrDNSBadName 240, 242, 244
netErrDNSBadProtocol 240, 242, 244
netErrDNSFormat 240, 242, 244
netErrDNSImpossible 240, 242, 244
netErrDNSIrrelevant 240, 242, 244
netErrDNSLabelTooLong 240, 242, 244
netErrDNSNameTooLong 240, 242, 244
netErrDNSNIY 240, 242, 244
netErrDNSNonexistantName 240, 242, 244
netErrDNSNoPort 240, 243, 244
netErrDNSNoRecursion 240, 242, 244
netErrDNSNoRRS 240, 242, 244
netErrDNSNotInLocalCache 240, 242, 244
netErrDNSRefused 240, 242, 244
netErrDNSServerFailure 240, 242, 244
netErrDNSTimeout 240, 242, 244
netErrDNSTruncated 240, 242, 244
netErrDNSUnreachable 240, 242, 244
netErrInterfaceNotFound 259, 260, 261, 262, 264,

270
netErrInternal 214, 215
netErrInvalidInterface 258
netErrInvalidSettingSize 256
netErrIPCantFragment 223, 225
netErrIPNoDst 223, 225
netErrIPNoRoute 223, 225
netErrIPNoSrc 223, 225
netErrIPPktOverflow 223, 225
netErrMessageTooBig 223, 225
netErrNoInterfaces 198, 214, 215
netErrNoMoreSockets 205
netErrNotConnected 217
netErrNotOpen 200, 205, 206, 208, 211, 212, 214,

215, 217, 220, 221, 222, 225, 227, 228, 231, 240, 242,
244, 246, 247, 248, 249, 261, 262

netErrOutOfMemory 198
netErrOutOfResources 215

netErrParamErr 205, 206, 208, 211, 212, 214, 215,
217, 220, 221, 223, 225, 227, 228, 231, 249

netErrPortInUse 214, 215
netErrPPPAddressRefused 261
netErrPPPTimeout 261
netErrPrefNotFound 198, 253, 258, 263, 270
netErrQuietTimeNotElapsed 214
netErrReadOnlySetting 257, 270
netErrSocketBusy 214, 215
netErrSocketNotConnected 223, 225
netErrSocketNotListening 218
netErrSocketNotOpen 206, 208, 211, 212, 214, 215,

217, 220, 221, 223, 225, 227, 229, 231
netErrStillOpen 200
netErrTimeout 205, 206, 207, 211, 212, 214, 215,

217, 219, 221, 222, 225, 227, 228, 231, 240, 242, 244,
246

netErrTooManyInterfaces 259
netErrTooManyTCPConnections 214
netErrUnimplemented 208, 211, 249, 264, 270
netErrUnknownProtocol 246
netErrUnknownService 246
netErrUnknownSettin 270
netErrUnknownSetting 253, 256, 263
netErrUserCancel 261
netErrWouldBlock 227, 229, 231
netErrWrongSocketType 208, 211, 216, 217
NetHToNL 233
NetHToNS 233
netlib interface introduction 182
NetLibAddrAToIN 235
NetLibAddrINToA 236
NetLibClose 200
NetLibConnectionRefresh 202
NetLibDmReceive 230
NetLibFinishCloseWait 203
NetLibGetHostByAddr 243
NetLibGetHostByName 239
NetLibGetMailExchangeByName 241
NetLibGetServByName 246
NetLibIFAttach 188, 259
NetLibIFDetach 188, 260
NetLibIFDown 262
NetLibIFGet 188, 258
Developing Palm OS 2.0 Applications, Part III 283

NetLibIFSettingGet 188, 263
NetLibIFSettingSet 188, 270
NetLibIFUp 261
NetLibMaster 249
NetLibOpen 198
NetLibOpenCount 201
NetLibReceive 228
NetLibReceivePB 226
NetLibSelect 237
NetLibSend 224
NetLibSendPB 222
NetLibSettingGet 188, 253
NetLibSettingSet 188, 256
NetLibSocketAccept 217, 218, 223, 226
NetLibSocketAddr 219
NetLibSocketBind 212, 216
NetLibSocketClose 206
NetLibSocketConnect 213
NetLibSocketListen 215, 216
NetLibSocketOpen 204
NetLibSocketOptionGet 210
NetLibSocketOptionSet 207
NetLibSocketShutdown 221
NetLibTracePrintF 247
NetLibTracePutS 248
NetNToHL 234
NetNToHS 234
NetSocketRef 204
NetSockOptSockNonBlocking 210
network device drivers 182
network services 181
ntohl (Berkeley Sockets API) 277
ntohs (Berkeley Sockets API) 277

O
open count of net library 201
open sockets maximum (net library) 183
opening net library 190, 198
opening serial link manager 150
opening serial port 140

P
packet assembly/disassembly protocol 138
packet footer, SLP 148

packet header, SLP 147
packet receive timeout 151
PADP 138, 148
PC connectivity 21
preferences database

net library 187, 190

R
RAM store 26
RAM use 20
RAM-based heaps 63
read (Berkeley Sockets API) 275
receiving SLP packet 149
records 22, 34

deleting 86
detaching 87
ID 89
retrieving information 119

recv (Berkeley Sockets API) 275
recvfrom (Berkeley Sockets API) 275
recvmsg (Berkeley Sockets API) 275
reference number for socket 151
refnum 184
Remote Console 148
Remote Console packets 148
Remote Debugger 148, 150
remote inter-application communication 138
Remote Procedure Call packets 148
remote procedure calls 138, 150
Remote UI 148
resource database header 43
resource manager 42

using 44
resource type 91
resources

retrieving 100
retrieving information 120
searching for 127
storing 42

restoring default receive queue 142
RIAC 138
ROM store 26
ROM use 20
ROM-based heaps 57, 63
ROM-based records 115, 117
284 Developing Palm OS 2.0 Applications, Part III

RPC 138, 150
RS232 signals 140
runtime calls 189

S
secret records, removing 123
select (Berkeley Sockets API) 275
send (Berkeley Sockets API) 276
sending stream of bytes 141
sendmsg (Berkeley Sockets API) 276
sendto (Berkeley Sockets API) 276
SerBlockingHookHandler 144
SerClearErr 141, 155, 159
serCtlBreakStatus (in SerCtlEnum) 143
serCtlEmuSetBlockingHook (in SerCtlEnum) 144
SerCtlEnum 143
serCtlFirstReserved (in SerCtlEnum) 143
serCtlHandshakeThreshold (in SerCtlEnum) 143
serCtlLAST (in SerCtlEnum) 144
serCtlMaxBaud (in SerCtlEnum) 143
serCtlStartBreak (in SerCtlEnum) 143
serCtlStartLocalLoopback (in SerCtlEnum) 143
serCtlStopBreak (in SerCtlEnum) 143
serCtlStopLocalLoopback (in SerCtlEnum) 143
serErrAlreadyOpen 140, 156, 160
serErrLineErr 141
SerGetStatus 159
Serial Library 160
serial library 140
serial link manager 150
serial link protocol 138, 146, 147, 150
Serial Manager 138
serial manager 140

function summary 145
prolonging battery life 140

serial port
changing settings 141
closing 140
flushing 142
opening 140

SerOpen 140, 160
SerReceive 141, 162
SerReceive10 162
SerReceiveCheck 142, 163

SerReceiveFlush 142, 163
SerReceiveWait 142, 163, 164
SerSend 141, 165, 166
SerSendFlush 167
SerSendWait 141, 167
SerSetReceiveBuffer 142, 168
SerSetSettings 141, 166, 169
SerSettingsPtr 169
SerSettingsType 158, 169
setdomainname (Berkeley Sockets API) 277
sethostname (Berkeley Sockets API) 277
setsockopt (Berkeley Sockets API) 276
settimeofday (Berkeley Sockets API) 277
setup, net library 187
shutdown (Berkeley Sockets API) 276
sleep (Berkeley Sockets API) 278
SlkClose 150, 171
SlkCloseSocket 150, 172
slkErrAlreadyOpen 150, 173
SlkFlushSocket 173
SlkOpen 150, 173
SlkOpenSocket 150, 174
SlkPktHeaderType 151, 152, 178
SlkReceivePacket 151, 153, 175
SlkSendPacket 152, 177
SlkSetSocketListener 178
SlkSocketListenType 151
SlkSocketRefNum 151, 179
SlkSocketSetTimeout 151, 179
SlkSysPktDefaultResponse 180
SlkWriteDataType 152
SLP 138, 146
SLP packet

transmitting 149
SLP packet footer 148
SLP packet header 147
SLP packet, receiving 149
SLP packets 146
SO_ERROR (Berkeley Sockets API) 275
SO_KEEPALIVE (Berkeley Sockets API) 275, 276
SO_LINGER (Berkeley Sockets API) 275, 276
SO_TYPE (Berkeley Sockets API) 275
SockAcceptConn 209
SockBroadcast 209
Developing Palm OS 2.0 Applications, Part III 285

SockDebug 209
SockDontRoute 209
SockErrorStatus 209
socket (Berkeley Sockets API) 276
Socket Listener 176
socket listener 151, 153, 176
Socket Listener Procedure 178
socket listener procedure 151, 153, 176, 178
sockets, opening serial link socket 150
SockKeepAlive 209
SockLinger 209
SockNonBlocking 210
SockOOBInLine 209
SockRcvBufSize 209
SockRcvLowWater 209
SockRcvTimeout 209
SockReuseAddr 209
SockSndBufSize 209
SockSndLowWater 209
SockSndTimeout 209
SockSocketType 210
SockUseLoopback 209
soft reset 27
storage RAM 22

SysLibFind 140

T
TCP/IP 181
TCP_MAXSEG (Berkeley Sockets API) 274
TCP_NODELAY (Berkeley Sockets API) 274, 276
TCPMaxSeg 209
TCPNoDelay 208
timeout 151
transmitting SLP packet 149

U
UDP 181
UI resources, storing 42
unlocking a chunk 31
user interface elements

storing (resource manager) 42
using the data manager 38

V
version checking 193

W
write (Berkeley Sockets API) 276
286 Developing Palm OS 2.0 Applications, Part III

	Table of Contents
	About This Document
	Palm OS SDK Documentation
	What This Guide Contains
	Conventions Used in This Guide

	Palm OS Memory Management
	Introduction to Memory Use on Palm OS
	RAM and ROM Use
	PC Connectivity

	Memory Architecture
	Data Storage
	Accessing Data
	Memory Structure Overview
	How Applications Access Data

	Locating Storage Data With Local IDs

	The Memory Manager
	Memory Hierarchy: RAM Store and ROM Store
	Heap Overview
	Memory Manager Structures
	Heap Structures
	Chunk Structures
	Local ID Structures

	Using the Memory Manager
	Memory Manager Function Summary

	The Data Manager
	Records and Databases
	Accessing Data With Local IDs

	Structure of a Database Header
	Database Header Fields
	Structure of a Record Entry in a Database Header

	Using the Data Manager
	Data Manager Function Summary

	The Resource Manager
	Structure of a Resource Database Header
	Using the Resource Manager
	Resource Manager Functions

	Memory Management Functions
	Memory Manager Functions
	MemCardInfo
	MemChunkFree
	MemDebugMode
	MemHandleDataStorage
	MemHandleCardNo
	MemHandleFree
	MemHandleHeapID
	MemHandleLock
	MemHandleNew
	MemHandleResize
	MemHandleSize
	MemHandleToLocalID
	MemHandleUnlock
	MemHeapCheck
	MemHeapCompact
	MemHeapDynamic
	MemHeapFlags
	MemHeapFreeBytes
	MemHeapID
	MemHeapScramble
	MemHeapSize
	MemLocalIDKind
	MemLocalIDToGlobal
	MemLocalIDToLockedPtr
	MemLocalIDToPtr
	MemMove
	MemNumCards
	MemNumHeaps
	MemNumRAMHeaps
	MemPtrCardNo
	MemPtrDataStorage
	MemPtrFree
	MemPtrHeapID
	MemPtrToLocalID
	MemPtrNew
	MemPtrRecoverHandle
	MemPtrResize
	MemSet
	MemSetDebugMode
	MemPtrSiz
	MemPtrUnlock
	MemStoreInfo
	Functions for System Use Only
	MemCardFormat
	MemChunkNew
	MemHandleFlags
	MemHandleLockCount
	MemHandleOwner
	MemHandleResetLock
	MemHandleSetOwner
	MemHeapFreeByOwnerID
	MemHeapInit
	MemInit
	MemInitHeapTable
	MemKernelInit
	MemPtrFlags
	MemPtrOwner
	MemPtrResetLock
	MemPtrSetOwner
	MemSemaphoreRelease
	MemSemaphoreReserve
	MemStoreSetInfo

	Data and Resource Manager Functions
	DmArchiveRecord
	DmAttachRecord
	DmAttachResource
	DmCloseDatabase
	DmCreateDatabase
	DmCreateDatabaseFromImage
	DmDatabaseInfo
	DmDatabaseSize
	DmDeleteDatabase
	DmDeleteRecord
	DmDetachRecord
	DmDetachResource
	DmFindDatabase
	DmFindRecordByID
	DmFindResource
	DmFindResourceType
	DmGetAppInfoID
	DmGetDatabase
	DmGetLastErr
	DmGetNextDatabaseByTypeCreator
	DmGetRecord
	DmGetResource
	DmGetResourceIndex
	DmGet1Resource
	DmInsertionSort
	DmMoveCategory
	DmMoveRecord
	DmNewHandle
	DmNextOpenDatabase
	DmNextOpenResDatabase
	DmNewRecord
	DmNewResource
	DmNumDatabases
	DmNumRecords
	DmNumRecordsInCategory
	DmNumResources
	DmOpenDatabase
	DmOpenDatabaseByTypeCreator
	DmOpenDatabaseInfo
	DmPositionInCategory
	DmQueryNextInCategory
	DmQueryRecord
	DmQuickSort
	DmRecordInfo
	DmResourceInfo
	DmReleaseRecord
	DmReleaseResource
	DmRemoveRecord
	DmRemoveResource
	DmRemoveSecretRecords
	DmResetRecordStates
	DmResizeRecord
	DmResizeResource
	DmSearchRecord
	DmSearchResource
	DmSeekRecordInCategory
	DmSet
	DmSetDatabaseInfo
	DmSetRecordInfo
	DmSetResourceInfo
	DmStrCopy
	DmWrite
	DmWriteCheck
	System Use Only
	DmMoveOpenDBContext

	Palm OS Communications
	Byte Ordering
	Communications Architecture Hierarchy
	The Serial Manager
	Using the Serial Manager
	Serial Manager Function Summary

	The Serial Link Protocol
	SLP Packet Structures
	SLP Packet Format
	Packet Type Assignment
	Socket ID Assignment
	Transaction ID Assignment

	Transmitting an SLP Packet
	Receiving an SLP Packet

	The Serial Link Manager
	Using the Serial Link Manager
	Serial Link Manager Function Summary

	Communications Functions
	Serial Manager Functions
	SerClearErr
	SerClose
	SerGetSettings
	SerGetStatus
	SerOpen
	SerReceive10
	SerReceiveCheck
	SerReceiveFlush
	SerReceiveWait
	SerSend10
	SerSendWait
	SerSetReceiveBuffer
	SerSetSettings
	Functions Used Only by System Software
	SerReceiveISP
	SerReceiveWindowClose
	SerReceiveWindowOpen
	SerSetWakeupHandler
	SerSleep
	SerWake

	Serial Link Manager Functions
	SlkClose
	SlkCloseSocket
	SlkFlushSocket
	SlkOpen
	SlkOpenSocket
	SlkReceivePacket
	SlkSendPacket
	SlkSetSocketListener
	SlkSocketRefNum
	SlkSocketSetTimeout
	Functions for Use By System Software Only
	SlkSysPktDefaultResponse
	SlkProcessRPC

	Miscellaneous Communications Functions
	Crc16CalcBlock

	Palm OS Net Library
	Overview
	Structure
	System Requirements
	Constraints

	The Programmer’s Interface
	Net Library and Berkeley Sockets API: Differences
	Example

	Using the Net Library
	Setup and Configuration Calls
	Interface Specific Settings
	General Settings
	Settings for Interface Selection
	Summary

	Runtime Calls
	Initialization and Shutdown
	Calls Made Before Opening the Net Library
	Opening the Net Library
	Closing the Net Library
	Summary of Initialization
	Initialization Example

	Version Checking
	Network I/O and Utility Calls

	Net Library Functions
	Library Open and Close
	NetLibConnectionRefresh

	Socket Creation and Deletion
	Socket Options
	Socket Connections
	Send and Receive Routines
	Utilities
	NetLibSelect
	netMasterInterfaceInfo
	netMasterInterfaceStats
	netMasterIPStats
	netMasterICMPStats
	netMasterUDPStats
	netMasterTCPStats
	netMasterTraceEventGet

	Configuration
	Berkeley Sockets API Calls
	Supported Socket Functions
	Supported Network Utility Functions
	Supported Byte Ordering Functions
	Supported Network Address Conversion Functions
	Supported System Utility Functions

	Index

