
palmOne™ Fall ’04
Developer Guide

Copyright
© 2004 palmOne, Inc. All rights reserved.

palmOne, Zire, Tungsten, Treo, Blazer, Graffiti, HotSync, VersaMail, Palm Powered, and Palm OS are
among the trademarks or registered trademarks owned by or licensed to palmOne, Inc. All other brand and
product names are or may be trademarks of, and are used to identify products or services of, their respective
owners.

Disclaimer and Limitation of Liability
palmOne, Inc. assumes no responsibility for any damage or loss resulting from the use of this guide.

palmOne, Inc. assumes no responsibility for any loss or claims by third parties which may arise through the
use of this software. palmOne, Inc. assumes no responsibility for any damage or loss caused by deletion of
data as a result of malfunction, dead battery, or repairs. Be sure to make backup copies of all important data
on other media to protect against data loss.

IMPORTANT Please read the End User Software License Agreement with this product before using the
accompanying software program(s). Using any part of the software indicates that you accept the terms of the
End User Software License Agreement.

iii

Overview . 1

How this guide is organized . 1
Where the APIs are described . 1
Installing the SDK . 1

Product Line Overview . 3

Treo™ smartphone product line . 3
What’s not supported by Treo smartphones . 4

Tungsten product line . 4
What’s not supported by Tungsten handhelds . 4

Zire product line . 5
What’s not supported by Zire handhelds . 5

Hardware features . 6
Software compatibility specifications (palmOne libraries) 8

PART I: Features and Libraries

Multimedia . 13

Ring tones library . 13
Ring tone database . 13

Voice Recording and Sound API . 14
Camera Manager API . 21

Using the Camera Manager API . 21
Overview of the camera feature . 22
Handheld resources required for camera functionality 22

palmOne Photos API . 23
Codec Plug-in Manager API . 23

Codec Plug-in Manager API Overview . 23
Codec Plug-in Manager process . 24
Codec media formats . 25

Data Communications . 27

NetPref library API . 27

Contents

Contents

iv

Loading the library . 27
NetPref library Information . 28
NetPref panel . 29

HTTP library . 31
Architecture . 31
Functional highlights . 32
HTTP library interface to SSL . 32
HTTP library use of Certificates/Public Key Infrastructure 34
HTTP library implementation . 34
General HTTP program information . 35

Net Services API . 39
Overview of the Net Services feature . 39

 . 40

Telephony . 41

Overview of the Telephony API libraries . 41
CDMA and GSM library differences . 43
GSM Connected indicator . 43
Operator’s Name indicator . 44
Voicemail indicator . 44
Launching the Phone application in a specific view . 44

Required headers . 44
Launching the Phone application in Call Log view 44
Launching the Phone application in Dial Pad view 45
Launching the Phone application in the Favorites view 47

Launching the Contacts application with the New Contact window open . . 47
Required headers . 47

SMS . 49

What is the difference between SMS and NBS? . 49
SMS library . 49
What is SMS? . 50
Why use the SMS library? . 50
Understanding the SMS library . 50

Incoming messages and message events . 51
Outgoing messages . 52
Handling the GSM alphabet and Palm OS alphabet 53
Message segmentation . 53
Message database . 55

Contents

v

Launching SMS from the New SMS screen . 56

System Extensions . 59

Transparency API . 59
File Browser API . 60
Smart Text Engine API . 65

STE Architecture . 67
REM Sleep API . 69

Normal sleep deferral . 69
REM sleep mode . 69
Detecting REM sleep mode . 70
Waking up from REM sleep mode . 72

Keyguard API . 72
MMS helper functions API . 73

MMS Usage Model . 74
MMS Sample Code . 74

NVFS API . 75
Differences between NOR and NAND flash memory 77
Programming on devices that have NVFS . 78

5-Way Navigation and Keyboard API . 81
5-way navigation terminology . 82
Overview of 5-way navigation . 82
Navigation events . 83
Including objects as skipped objects . 83
Default navigation . 84
Custom navigation . 86
Focus treatment . 89
Navigational API and behavioral differences between Treo™ 600 smart-
phones, Treo 650 smartphones, and Tungsten™ T5 handhelds 90
Tips and pitfalls . 94

Handspring extensions . 97
Tips and Tutorials . 97

Terminology . 97
Content . 98
Tips and Tutorial structure . 98
Converting Tips and Tutorial content in a PRC file 108
Displaying Tips and Tutorial content . 109
Graphic Element Design Guidelines . 111

Full-Screen Writing API . 113

Contents

vi

Overview of the full-screen writing feature . 113

Applications . 115

Web Browser API . 115
How the web browser works . 116
Web Browser Feature Overview . 116
Download manager . 118
Launching the web browser on Treo smartphones 120
Launching the web browser in minimal mode . 120

VersaMail® application API . 122
Prerequisite knowledge required for using the VersaMail Device APIs . 122
Overview of the VersaMail Device APIs . 122
Adding Outgoing E-mail to VersaMail Folders . 125
VersaMail Font library . 127
VersaMail Attachment Plug-ins API . 128

PART II: Hardware Developers Kit

Multi-connector Specifications . 133

Overview . 133
Pinout of the multi-connector . 134

Shielding . 135
USB . 135
Serial interface hardware . 136
Serial interface software . 137
HotSync interrupt hardware . 137
HotSync interrupt software . 137
Power output . 138
Audio detection . 138
Audio output . 138

Peripheral requirements . 139
Audio peripherals . 139
General serial peripherals . 140

Peripheral detection . 140
Class-level detection . 141
Audio peripheral detection timing diagrams . 142
Peripheral detection timing specifications . 143

Interfacing with an audio peripheral . 144

Contents

vii

PART III: Debugging

Debugging . 149

Debugging on Treo™ smartphones . 149
Handling of fatal errors . 151
DebugPref for Treo smartphones . 151
How to connect to a Treo smartphone for debugging 153
Treo smartphone version of the Palm OS® simulator 154
Source Level Debugging . 155

PART IV: Style Guide

Style Guide . 161

Designing pages for the Blazer® web browser . 162
General rules for web page design . 162
Screen resolution . 163
Connection speed . 163
Content . 163
Working with the Blazer web browser . 171
Testing your web site . 172
International support . 173
List of Acronyms . 174
Palm OS Integration Tags . 176

Gadgets . 178
Required headers and libraries . 178
How to include the Battery gadget . 178
How to include the Signal gadget . 179
How to include the Bluetooth® gadget . 179

Contents

viii

1

CHAPTER 1

Overview

This chapter introduces you to the palmOne™ Product Line Software
Development Kit (SDK). This chapter also discusses how this guide is organized
and how to use the SDK.

How this guide is organized
This guide contains an overview of the Treo™ smartphones, the Tungsten™
handhelds, and the Zire™ handhelds as well as hardware specifications for each
product and a feature matrix that shows which features are available on each
product.

The libraries discussed in this guide are organized by general category, such as
Multimedia Libraries and Application Libraries. Some of these libraries are
completely new, and others are improvements over the previous generation of
libraries.

In addition to the discussion of the libraries, this guide contains some debugging
information for troubleshooting problems on the various products, as well as style
conventions for how certain features should be used.

Where the APIs are described
In the past, documentation on API functions and structures has been included in
the SDK guides. The complete API documentation is now generated directly from
palmOne source code. Refer to the separate palmOne API guide either in
compressed HTML format (.chm) or HTML format available directly from http://
pluggedin.palmone.com.

Installing the SDK
The latest SDK is available for download from http://pluggedin.palmone.com. It
contains all of the released libraries described in this guide, as well as sample code
and examples.

http://pluggedin.palmone.com/
http://pluggedin.palmone.com/

Chapter 1 Overview

2

3

CHAPTER 2

Product Line Overview

This chapter provides an overview of the Treo™ smartphones, the Tungsten™
handhelds, and the Zire™ handhelds as well as a high-level description of the
features available in each product line. Also included are a hardware features table
that shows the hardware and electrical specifications of each model, and a software
specifications table that shows which specific features and APIs apply to each
model.

Treo™ smartphone product line
The Treo smartphone by palmOne™ is the fifth generation of truly compact
smartphone to integrate in one product a mobile phone, wireless data applications
such as messaging and web browsing, and a Palm OS® organizer. Treo
smartphones are available in two radio versions: one with quad-band GSM/
GPRS/EDGE radio (with operating frequencies of 850, 900, 1800, and 1900MHz)
and one with dual-band CDMA/1xRTT radio (with operating frequencies of
800MHz and 1900MHz).

One of the key differentiators of the Treo smartphone is the tight integration of the
main applications and the user interface, which makes all Treo smartphone
applications easy to use. Most applications are common to both versions of the
Treo (CDMA & GPRS) smartphone and they include:

■ Phone application.

■ Short Messaging Service (SMS) messaging.

On a GSM network, SMS messages can be received and sent. On a CDMA
network, SMS services may or may not be offered and supported by the
operator.

■ Proxyless Blazer® web browser supporting direct download of ring tones,
applications, and documents.

■ Photo capture application.

■ E-mail.

E-mail applications are available. The type of application can vary by operator.

■ Standard Palm OS organizer applications.

■ On the Treo 650 smartphone, music playback capability and a high-resolution
screen.

Chapter 2 Product Line Overview

4

NOTE Some applications are applicable only to the GSM or CDMA version. Treo
smartphones might also be configured differently depending on the Operator.

What’s not supported by Treo smartphones
Treo smartphones use Palm™ OS version 5.x. However, as each licensee can choose
to implement only certain features of the OS as it applies to its product, palmOne
implements certain features and not others. Here is a list of what Treo smartphones
do not support:

■ INet library

palmOne has never supported or ported the INet library, contained in the
header file INetMgr.h, to its products.

■ The Lz77Mgr.h header file is not supported.

■ SmsLib.h header file

Treo smartphones have their own SMS library. The Treo SMS library supports
the Exchange Manager.

■ Telephony Manager

Treo smartphones have their own Phone library. The telephony header files
TelephonyMgr.h, TelephonyMgrTypes.h, and TelephonyMgrUI.h are not
supported in the Palm OS.

■ Fax services are not supported by Treo smartphones.

■ The Treo 650 smartphone does not include the zLib that was included in the
Treo 600 smartphone. A version of this library can be found at:
www.copera.com/zlib-armlet/.

Tungsten product line
The latest offerings in the Tungsten product line are designed to target the power
business user. Tungsten handhelds provide easy, reliable access to business data,
as well as powerful and seamless integration with the desktop business
environment. As such, Tungsten handhelds provide a large, easy-to-read display,
compatibility with the most popular business applications, a large amount of
storage (which is not lost when battery power is depleted), powerful organization
and search functions, and the ability to mount the handheld as a drive on a
compatible PC available on some models.

What’s not supported by Tungsten handhelds
Here is a list of what Tungsten handhelds do not support:

■ INet library

palmOne has never supported or ported the INet library, contained in the
header file INetMgr.h, to its products.

■ The Lz77Mgr.h header file is not supported.

http://www.copera.com/zlib-armlet/

Zire product line

5

■ Telephony Manager

The telephony header files TelephonyMgr.h, TelephonyMgrTypes.h, and
TelephonyMgrUI.h are not supported.

Zire product line
The latest offerings in the Zire product line are designed to target the consumer
who wants an easy-to-use handheld that is ready out of the box and useful in both
a personal and business environment. Zire leverages MP3 capability, a color
screen, and expandibility to appeal to casual technology users interested in value,
as well as savvy young technology users interested in style and the latest
functionality.

What’s not supported by Zire handhelds
Here is a list of what Zire handhelds do not support:

■ INet library

palmOne has never supported or ported the INet library, contained in the
header file INetMgr.h, to its products.

■ The Lz77Mgr.h header file is not supported.

■ SMS library

The SMS library, included in the header file SmsLib.h, is not supported.

■ Telephony Manager

The telephony header files TelephonyMgr.h, TelephonyMgrTypes.h, and
TelephonyMgrUI.h are not supported.

Chapter 2 Product Line Overview

6

Hardware features
Hardware
feature

Treo 600 Treo 650 Tungsten
T5

Tungsten
T3

Tungsten
E

Tungsten
C

Zire 21 Zire 31 Zire 72

Processor

Type TI OMAP
ARM

Intel
XScale
ARM

ntel XScale
ARM

Intel Xscale TI OMAP
311 ARM

Intel
PXA255

TI OMAP
311 ARM

Intel ARM Intel
PXA270

Speed 144 Mhz 312 Mhz 412 Mhz 400Mhz 126Mhz 400Mhz 126Mhz 200Mhz 312Mhz

Memory

RAM 32 MB 32 MB 256 MB 64 MB 32 MB 64 MB 8 MB 16 MB 32 MB

ROM 8 MB 16 MB? 32 MB 16 MB 8 MB 16 MB 2 MB 4 MB 8 MB

Battery

Type Recharge-
able
Lithium
Ion

Recharge-
able
Lithium
Ion

Recharge-
able
Lithium
Ion

Recharge-
able
Lithium Ion

Recharge-
able
Lithium Ion

Recharge-
able
Lithium Ion

Recharge-
able
Lithium
Ion

Recharge-
able
Lithium
Ion

Recharge-
able
Lithium
Ion

mAh 1800 1900 1020 900 840 1500 900 900 950

Stand by or
use time

300 hours 300 hours 48 hours ??? ??? ??? ??? ??? ???

Talk time 4 hours 4 hours N/A N/A N/A N/A N/A N/A N/A

Removable No Yes No No No No No No No

Form
factor

Size 4.41" x
2.36" x
.87"
without
antenna

4.41" x
2.36" x
.87"
without
antenna

4.5" x
3" x
.5"
without
flipcover

4.3" x
3" x
.66"

4.5" x
3.1" x
.5"

4.0" x
3.07" x
.65"

4.4" x
2.9" x
.6"

4.4" x
2.9" x
.6"

4.6" x
2.95" x
.67"

5-way
button

Yes Yes Yes Yes Yes Yes No Yes Yes

Grafitti None None Dynamic Dynamic Yes None Yes Yes Yes

Keyboard Built-in
QWERTY
Keyboard

Built-in
QWERTY
Keyboard

None None None Built-in
QWERTY
Keyboard

None None None

Hardware
feature

Treo 600 Treo 650 Tungsten
T5

Tungsten
T3

Tungsten
E

Tungsten
C

Zire 21 Zire 31 Zire 72

Display

Resolution 160 x 160
pixels

320 x 320
pixels

320 x 480
pixels

320 x 480
pixels

320 x 320
pixels

320 x 320
pixels

160x160
pixels

160x160
pixels

320 x 320
pixels

Hardware features

7

Density 16-bit
(65,536
colors)

16-bit
(65,536
colors)

16-bit
(65,536
colors)

16-bit
(65,536
colors)

16-bit
(65,536
colors)

16-bit
(65,536
colors)

4-bit
grayscale

16-bit
(65,536
colors)

16-bit
(65,536
colors)

Wireless

CDMA or
GSM/
GPRS

CDMA or
GSM/
GPRS/
EDGE,
Bluetooth

Bluetooth Bluetooth None Wi-Fi
(802.11)

None None Bluetooth

Camera

VGA
resolution,
640 x 480,
0.3 mega-
pixels

VGA
resolution,
640 x 480,
0.3 mega-
pixels

Photo:
1280 x 960
Video:
320 x 240

None None None None None Photo:
1280 x 960
Video:
320 x 240

Interface Connector

Treo 600
smartpho
ne
connector
(USB,
Serial
without
flow
control)

Multi-
connector
(USB,
Serial
without
flow
control)

Multi-
connector
(USB,
Serial
without
flow
control)

Universal
Connector
(USB,
Serial with
flow
control)

Standard
Mini-USB

Universal
Connector
(USB,
Serial with
flow
control)

Standard
Mini-USB

Standard
Mini-USB

Standard
Mini-USB

Chapter 2 Product Line Overview

8

Software compatibility specifications (palmOne libraries)
Software Treo

600
Treo
650

Tungsten
T5

Tungsten
T3

Tungsten
E

Tungsten
C

Zire 21 Zire 31 Zire 72

PalmOS 5.21 5.4 5.4 5.21 5.21 5.21 5.21 5.28 5.28

Multimedia

Ring Tones x x - - - - - - -

Sound and
Voice
Recording

x x x x - x - - x

Camera x x x - - - - - x

Photos x x x x x - - x x

Video - - x - - - - - x

Codec Plug-in
Manager

- x x - - - - - x

Data communications

Network
preferences

x x - - - - - - -

HTTP x x x - - - - - -

Network
services

- - - - - x - - -

Telephony

Telephony x x - - - - - - -

SMS x x - - - - - - -

System extensions

Transparency x x - - - - - - -

File browser
API

- - x - - - - - -

Smart Text
Engine

x x - - - - - - -

REM sleep x x - - - - - - -

MMS helper
functions

x x - - - - - - -

Software compatibility specifications (palmOne libraries)

9

Software Treo
600

Treo
650

Tungsten
T5

Tungsten
T3

Tungsten
E

Tungsten
C

Zire 21 Zire 31 Zire 72

NVFS - x x - - - - - -

Handspring
extensions

x x - - - - - - -

Keyguard x x - - - - - - -

Tips and
tutorial

x x x - - - - - -

Full-screen
writing

- - x x - - - x x

Applications

Web browser x x x - - - - - -

VersaMail® - x x - - - - - -

Chapter 2 Product Line Overview

10

11

PART II

Features and Libraries

This part of the guide details the software libraries available in the SDK.

12

13

CHAPTER 3

Multimedia

This chapter details the multimedia features and libraries available in the SDK.

Ring tones library
Available on:
■ Treo™ 600 and Treo™ 650 smartphones

This section provides reference material for the API functions for the Tones library
that is used to manage the phone ring tone database. The TonesLib.h header file
provided with the SDK contains all the public equates referenced in this section,
including all constants, structure definitions, and function prototypes.

Ring tone database
The ring tones for the Treo smartphone by palmOne are stored in a MIDI database
similar to the Palm OS® System MIDI Sounds database. This section describes the
Treo smartphone ring tone database and the MIDI file format.

The Treo ring tone database is specific to ring tones which means a smartphone can
use a Palm OS tone database and a Treo ring tone database at the same time.

Palm OS MIDI File Format
The database type is smfr.

Each record in the database should contain one MIDI sound. The MIDI sound
format is the Format 0 Standard MIDI File (SMF). For more information on the
database format, see the Sound Manager reference information in the Palm OS
Reference Guide and the Sound section of the Palm OS Companion Guide available at
www.palmos.com/dev/tech/docs/.

http://www.palmos.com/dev/tech/docs/

Chapter 3 Multimedia

14

Treo smartphone ring tone database information
The following table contains the details of the system ring tone database.

In order for the system to recognize the new ring tone, the tone must be installed
in the database using an alarm management tool. If you are creating ring tone
management applications, you may want to keep a separate database of archived
ring tones. We recommend that you use the attributes listed in the following table
for such a database. You can also use standard Palm OS database calls to install the
sound records into this database from their own application. Typically, you would
create a MIDI sound database, install it on the smartphone, and then use an alarm
management program to copy the sounds into the system ring tone database.

Restoring the system ring tone database
The ring tone database is stored in RAM in order to allow applications to add and
delete ring tones. The OS also has a copy of this database frozen in the ROM image.
The database is copied to RAM after a hard reset or if the database has been deleted
from RAM. If the user wants to restore the original ring tones, he or she can simply
delete the database.

Tools for Ring Tone files
The Treo smartphone uses the standard Palm OS MIDI file for the ring tones. All
the popular tools for creating Palm OS system sounds can be used to create ring
tones for the smartphone products.

Voice Recording and Sound API
Available on:
■ Treo 600and Treo 650 smartphones

■ Tungsten™ T5, Tungsten™ T3, and Tungsten™ C handhelds

■ Zire™ 72 handhelds

In general, you should use the Palm OS SndStream API to control voice recording
and sounds. This API supports both synchronous and asynchronous mode.

The Treo smartphone has a two-speaker audio architecture. One speaker, called the
receiver, is mostly dedicated to telephony sound and is tuned to voice frequency.
The other, the external speaker, is mostly dedicated to system sounds and is tuned

Database Name #defined TonesDBName “MIDI Ring Tones”

Database Type smfr

Creator Code #define hsFileCMultiChannelRingToneDB MCnl

Database Type: smfr

Creator Code: HSsf

Voice Recording and Sound API

15

to polyphonic sounds and is also used for the speakerphone mode. The Treo
smartphone also includes the ability to play stereo sound through the headset jack.

Treo smartphones have improved sound support, and their audio subsystem
consists of three major categories:

■ Radio audio control

Enables the audio of the cellular radio, playback of received streams, and the
encoding and sending of recorded voice.

■ System audio control

Controls the speaker output for polyphonic sound playback and the
microphone input for voice recording.

NOTE The Treo 600 smartphone does not capture the microphone input
through an A/D converter.

■ Ring Tone Manager

Controls the playback of ring tones when a call is received.

It’s also possible to redirect the radio module audio output to the SDIO connector
so that an external card could make use of it. For example, the audio output could
be sent to a Bluetooth headset using Bluetooth® wireless technology.

Chapter 3 Multimedia

16

The following figure shows the Treo smartphone audio subsystem hardware.

Radio Module

Audio Codec
Subsystem

Headset Phone Audio
Stereo Out

Phone Speaker
(Receiver)

System Speaker
(System Tones, Ring

Tones, Speakerphone)

I2S
CPU

Headset
MIC

Built-in
MIC MIC1

MIC2

LineOut R

LineOut L

HPOut L/R

MonoCD L/R

Hardware Block Diagram

Voice Recording and Sound API

17

The following figure shows the Treo smartphone audio subsystem software.

The usual software interface, that is used to play sound is the standard Palm OS
Sound Manager. palmOne has added special controls that automatically direct the
sound playback to the right output, as described in the following tables.

The only other APIs you need are found in the API guide. These enable control of
the audio stream when it is needed. As mentioned earlier, palmOne™ extension to
the OS should automatically take care of switching the right input/output,
depending on usage.

The usage scenarios in the following tables show how the Treo 600 smartphone
system interacts with the audio subsystem when playing or recording audio
stream(s) (that is, what types of sounds are routed to which inputs and outputs).
Some of the supported scenarios are not currently used by palmOne, but could be
created by a third party (6, 7, 10–24).

Software Block Diagram

Hardware Support
Audio Codec, Radio I/O Control, Headset Detection...

AMR Codec
(N/A on CDMA)

Midi Synthesizer

Palm OS Sound
Manager

Handspring Sound
Extension

Application

Handspring Audio Driver

Wave
Codec

Asynchronous
Playback

Anything in this color is
something new or modified by
Handspring Sound Extension

Synchronous
Playback only

Usage Scenario Voice Sound
In

Voice Sound
Out

If Phone Sounds* If System Sounds**

1 Voice call using
smartphone only

Built-in mic Built-in
receiver

Mixed-in, built-in
speaker

Built-in speaker

Chapter 3 Multimedia

18

2 Voice call using
headset

Headset mic Headset
speaker

Headset speaker Built-in speaker

3 Headset plugged in,
not on a call

N/A N/A Headset speaker and
built-in speaker

Built-in speaker

4 Stereo headphone
plugged in, not on a
call

N/A N/A Headset speaker and
built-in speaker

Built-in speaker

5 Voice call using
speakerphone

Built-in mic Built-in
speaker

Mixed-in, built-in
speaker

Mixed-in, built-in
speaker

6 Voice call using
other type of
headset

OT headset
mic

OT headset
speaker

OT headset speaker Mixed in OT headset
speaker

7 Other type of
headset in use, not
on a call

N/A N/A OT headset speaker &
built-in speaker

Built-in speaker

8 Car kit on a call Car kit mic Car kit
speaker

Mixed-in car kit
speaker

Built-in speaker

9 Car kit off a call N/A N/A Car kit speaker Built-in speaker

10 PTT voice call using
headset

Headset mic Headset
speaker

Headset speaker and
built-in speaker

Built-in speaker

11 PTT voice call using
speakerphone

Built-in mic Built-in
speaker

Mixed-in, built-in
speaker

Mixed-in, built-in
speaker

12 Voice record memo Built-in mic N/A Built-in speaker—
priority

Built-in speaker

13 Voice command
using smartphone
only

Built-in mic N/A Built-in speaker Built-in speaker

14 Voice command
using headset

Headset mic N/A Headset speaker and
built-in speaker

Built-in speaker

15 Voice command
using car kit

Car kit mic N/A OT headset speaker Built-in speaker

16 MP3 music
playback—
smartphone only

N/A N/A Mixed-in, built-in
speaker

Mixed-in, built-in
speaker

17 MP3 music
playback—headset

N/A N/A Mixed-in headset and
built-in speaker

Mixed-in headset and
built-in speaker

Usage Scenario Voice Sound
In

Voice Sound
Out

If Phone Sounds* If System Sounds**

Voice Recording and Sound API

19

Notes:

■ Input

– Built-in mic: The microphone contained in the handset for use when the
headset is held to one’s ear.

– Headset mic: The microphone contained in the headset.

– Other Headset or car kit mic: The microphone contained in the appropriate
peripheral kit.

■ Output

– Built-in receiver: The speaker on the front of the handset that is used when
the handset is held next to the ear. Generally used for listening to voice calls.

– Built-in speaker: The louder speaker located on the back of the handset.
Generally used for system sounds and speakerphone mode.

– Headset, OT, or car kit speaker: The speaker built into the appropriate
peripheral.

■ *“If phone sounds”: This refers to how the audio is routed if the audio from a
class of sounds dedicated to phone usage interrupts the current usage scenario.
This includes the following types of sounds:

– Ring tones.

– Call progress tones.

18 MP3 music
playback—stereo
headphone

N/A N/A Mixed-in headphone
and built-in speaker

Mixed-in headphone
and built-in speaker

19 Playing games—
smartphone only

N/A N/A Mixed-in, built-in
speaker

Mixed-in, built-in
speaker

20 Playing games—
headset

N/A N/A Mixed-in headset and
built-in speaker

Mixed-in headset and
built-in speaker

21 Playing games—
stereo headphones

N/A N/A Mixed-in headphone
and built-in speaker

Mixed-in headphone
and built-in speaker

22 Voice memo
playback—
smartphone only

N/A N/A Mixed-in, built-in
speaker

Mixed-in, built-in
speaker

23 Voice memo
playback—headset

N/A N/A Mixed-in headset and
built-in speaker

Mixed-in headset and
built-in speaker

24 Voice memo
playback—stereo
headphones

N/A N/A Mixed-in headphone
and built-in speaker

Mixed-in headphone
and built-in speaker

Usage Scenario Voice Sound
In

Voice Sound
Out

If Phone Sounds* If System Sounds**

Chapter 3 Multimedia

20

– DTMF (dual tone multi-frequency).

– Low battery. This is technically a system sound, because it is generated by
the PDA. It is treated as an exception because a low battery warning is critical
phone-related information that must be heard when on an active call,
regardless of what the system sound settings are.

■ **”If System Sounds”: All system sounds will be played through both the
headset/headphone and built-in speaker except the System Sounds for Alarms,
SMS alerts, and Mail alerts.

The usage scenarios in the following table show how the Treo 650 smartphone
system interacts with the audio subsystem when playing or recording audio
stream(s).

Usage Scenario Ringer
switch
sound on/
off

On active
call?

Telephony
audio

Alerts
(Attention
Manager)

MP3
(application
audio)

High-
priority
system
sounds

1 Base mic/speaker OFF YES Receiver No sounda No sound No sound

2 Base mic/speaker OFF NO No sound No sound No sound No sound

3 Base mic/speaker ON YES Receiver Receivera Mute/hold Receivera

4 Base mic/speaker ON NO No sound Speaker Speaker Speaker

5 Speakerphone
mode

OFF YES No sound No sounda No sound No sound

6 Speakerphone
mode

OFF NO N/A N/A N/A N/A

7 Speakerphone
mode

ON YES Speaker Speakera Mute/hold Speakera

8 Speakerphone
mode

ON NO N/A N/A N/A N/A

9 Headset inserted OFF YES Headset Headseta Mute/hold Headset

10 Headset inserted OFF NO No sound Headset Headset Headset

11 Headset inserted ON YES Headset Headseta Mute/hold Headseta

12 Headset inserted ON NO No sound Speaker and
mute MP3

Headset Speaker
and mute
MP3

13 Bluetooth
headset in use

OFF YES Bluetooth No sound Mute/hold Bluetooth

14 Bluetooth
headset in use

OFF NO No sound No sound No sound No sound

Camera Manager API

21

Notes:

a Alerts should be sound mixed-in at a lower volume than the active call in progress.

Camera Manager API
Available on:
■ Treo 600 and Treo 650 smartphones

■ Tungsten T5 handhelds

■ Zire 72 handhelds

This section provides reference information for the Camera Manager API. You can
use the functions in this API to control the settings of a camera, to allow an
application to capture and preview images and video through the camera, and to
turn the camera on.

The Camera Manager API is declared in the header files palmOneCameraCommon.h
and palmOneCamera.h. Camera slider notification information is declared in the
header file PalmCameraSlider.h for the Zire 72 handheld.

There are three versions of the Camera Manager API: version 1, version 2, and
version 3. Version 2 has several additional features available. Version 3 includes
minor changes such as additional image formats. The differences are noted
throughout this section.

NOTE The Treo 600 smartphone Camera APIs are still supported for the Treo 600. In
the future, however, the Camera Manager API should be used.

Using the Camera Manager API
Depending on the camera hardware available on a particular handheld, various
Camera Manager settings and functionality may or may not be available. Thus,
you should always use the various Query CamLibControl command controls to
check what features and settings are available. For more information, see the
information on CamLibControl in the API function descriptions.

15 Bluetooth
headset in use

ON YES Bluetooth Speaker Mute/hold Bluetooth

16 Bluetooth
headset in use

ON NO No sound Speaker Speaker Speaker

Usage Scenario Ringer
switch
sound on/
off

On active
call?

Telephony
audio

Alerts
(Attention
Manager)

MP3
(application
audio)

High-
priority
system
sounds

Chapter 3 Multimedia

22

Overview of the camera feature
Some handhelds and smartphones include a camera with which users can capture
images and video. Some handhelds also include a camera slider that opens to
reveal a camera shutter button and the camera lens.

Generally, applications should check for the presence of a camera slider, register
for camera slider notifications, and then turn the camera on if the slider is open or
if no slider is present.

Typically, an application should follow this general workflow:

1. Open the Camera library.

2. Check to see if a camera slider is present.

3. If a camera slider is present, register for camera slider notifications.

4. If a camera slider is present, check to see if the slider is open.

5. If a camera slider is present and open or no camera slider is present, turn the
camera on.

6. Proceed with camera functionality, such as turning on image preview, adjusting
settings, and so forth.

Handheld resources required for camera functionality
The following requirements are necessary to take advantage of camera
functionality:

■ To preview images, capture images, and display the camera configuration
dialog box, the handheld must be in 16-bit color-depth mode. The camera
configuration dialog box may or may not be present on a particular handheld.

■ Depending on the available camera hardware, images can be previewed in 320
x 240 or 160 x 120 resolution and captured in 1280 x 960, 640 x 480, 320 x 240, or
160 x 120 resolution.

■ Memory, preview, and capture requirements for video are as follows. Video is
not available in version 1 of the Camera Manager API, and QCIF and CIF format
are not available in version 1 or version 2.

Size Memory

1280 x 960 (SXGA) 2.4MB

640 x 480 (VGA) 600KB

320 x 240 (QVGA) 150KB

160 x 120 (QQVGA) 37.5KB

176 x 144 (QCIF) 50KB

352 x 288 (CIF) 198KB

palmOne Photos API

23

palmOne Photos API
This section provides reference information for the palmOne Photos API. You can
use the functions in this API to manipulate digital images in the palmOne Photos
application: select images, open and close images, get image information, delete
images, and so forth.

palmOne Photos API includes two basic categories of functionality: the ability to
capture images with a camera attached to a handheld and the ability to store and
manipulate images and video files.

There are three versions of the palmOne Photos API: version 1, version 2, and
version 3. Version 2 and 3 have several additional features available. In general,
structures, function names, and so forth that end in “V2” are available only in
version 2 of the palmOne Photos API and those that end in “V3” are only available
in version 3 of the palmOne Photos API. Exceptions are noted where appropriate.

The palmOne Photos API is declared in the header file palmOnePhoto.h. (The old
name used in early versions, PalmPhoto.h, is still compatible but will be
deprecated.)

Codec Plug-in Manager API
This section provides reference information for the Codec Plug-in Manager API.
The Codec Plug-in Manager API provides a standardized way to load and unload
various codecs.

You can use the functions in this API to control starting codec sessions and to
encode and decode data using a codec.

The Codec Plug-in Manager API is declared in the header file
palmOneCodecPluginMgr.h.

How codecs handle individual formats are declared in the header file
palmOneCodecFormat.h. Because there are many separate formats handled by the
Codec Plug-in Manager and new formats may be added later as new codecs are

Application

Photo Library

Camera Library

Chapter 3 Multimedia

24

written or released, the particulars of handling the various formats are beyond the
scope of this chapter. Please look at the API guide for the latest information. Also,
see the Samples folder in the SDK for examples of how to handle various formats.

Codec Plug-in Manager API Overview
Codecs enumerate all supported formats for each codec included in a module file
PRC.

The Codec Plug-in Manager selects a particular codec based on four criteria:

■ Input format

The format of the data input to the codec.

■ Output format

The format of the data output from the codec.

■ PRC Creator ID

The creator ID of the PRC containing the desired codec on the device. This is
optional; you can have the Codec Plug-in Manager select an appropriate codec
based on the input and output formats. PRC Creator IDs are unique and must
be registered with PalmSource.

■ Codec ID

The codec ID of the codec. This is provided because a PRC file can contain
multiple codecs that have the same input and output formats. Again, this is
optional; you can have the Codec Plug-in Manager select an appropriate codec
based on the input and output formats. The Codec ID is unique within each
PRC.

Codec Plug-in Manager process
The process of using the Codec Plug-in Manager is as follows:

1. Create a session.

2. Specify the input and output formats and, optionally, which particular codec to
use.

3. Start decoding or encoding the output.

Codec Plug-in Manager API

25

4. Delete the session once the decoding or encoding is complete.

Codec media formats
You can find a complete list of the codec media formats currently specified in the
PalmCodecFormat.h section of the API guide. Each media format is denoted by a
four-byte string (for example, JPEG).

Each media format has an associated generic typedef structure that contains the
parameters associated with that format. These structures are passed during codec
session initialization. Each codec supports some or all of the parameters in such
structures. Some parameters inside the structure might not apply to a specific
vendor’s codec and therefore can be ignored. Each parameter is of the type UInt32
to enable simple byte-swapping.

LIB Open

Set In Size and Out Size

Create Session

Done

Encode / Decode

Delete Session

Partial Buffer
Management

Recycle Unused
Input Data

Over Run Under Run

Need Bigger Dest Need Bigger SRC

Error

No No

Other

Custom Control

Out Size
>0

In Size
>0

Got data

Codec Needs
More Data

LIB Close

No

Yes

Yes

Yes Yes

ErrNone

No

1 2

3

4

Chapter 3 Multimedia

26

In general, however, codecs should always use most of the parameters in each
structure. And if a parameter structure’s content is NULL, codecs should use default
values if possible. For example, encoding PCM format to ADPCM format doesn’t
require parameters for the ADPCM format, because all of the ADPCM parameters
can be derived from the PCM parameter values.

27

CHAPTER 4

Data Communications

This chapter details the data communications features and APIs available in the
palmOne™ SDK

NetPref library API
Available on:
■ Treo™ 600 and Treo™ 650 smartphones

This section provides detailed information about the NetPref library API.

The NetPref library was created to provide better support for the GSM/GPRS and
1XRTT network parameters, dynamic UI flags, Home/Roaming network
configurations, CCSM database utilization, synchronization with IOTA-
provisioned settings, and configuration of fallback services required by the
features of the Treo™ smartphone. The network database access was redesigned
by splitting database and record access operations from the Network panel into the
NetPref library.

Loading the library
The NetPref library is designed as a Palm OS® shared library. The NetPref library
should be loaded for use and unloaded after use by a client application. You “link”
the NetPref library when you need it and “unlink” it when you have finished. The
system does not load the NetPref library at reset or start-up time and leave it
permanently installed, as is done with some other libraries. This method helps
avoid some HotSync® conflicts, such as an attempt to install over a protected
database. For examples of linking and unlinking, take a look at
NetPrefUtilNetPrefLibLink and NetPrefUtilNetPrefLibUnlink as defined in the
NetPrefUtils package.

The following code sample demonstrates how to link the NetPref library based on
the NetPrefUtil package.

extern Boolean
NetPrefUtilNetPrefLibLink (NetPrefUtilNetPrefLibType* netPrefLibP)
{

Boolean isSuccessful = false;
Err err = 0;
UInt16 refNum = 0;
NetPrefContextTypeTag* cxtP = NULL;

Chapter 4 Data Communications

28

ErrNonFatalDisplayIf (!netPrefLibP, "null arg");
 ErrNonFatalDisplayIf (netPrefLibP->linkSignature

== netPrefUtilNetPrefLinkSignature,
"NetPref lib already linked");

err = SysLibLoad (netPrefLibTypeID, netPrefLibCreatorID,
&refNum);

if (err)
{
ErrNonFatalDisplay ("failed to load NetPrefLib");
goto Exit;
}

err = NetPrefLibOpen (refNum, &cxtP);
if (err)

{
ErrNonFatalDisplay ("failed to open NetPrefLib");
goto Exit;
}

// "Construct" the NetPref lib "instance"
isSuccessful = true;

Exit:
if (err)

{
if (refNum != 0)

SysLibRemove (refNum);
MemSet (netPrefLibP, sizeof(*netPrefLibP), 0);
}

return (isSuccessful);
} // NetPrefUtilNetPrefLibLink

NetPref library Information
The following table shows the attributes of the NetPref library and related
information. For more detail, see the API Guide.

Description Attribute

Creator ID HsNP

Type ID libr

Library Database Name NetPrefLibrary

Library Name HsNetPrefLibrary.lib

Header Files NetPrefUtils.h

NetPrefLibrary.h

NetPrefLibTypes.h

NetPrefLibErrors.h

NetPrefLibTarget.h

NetPrefLibFieldInfoTable.h

NetPref library API

29

NetPref panel
The Network Preference panel has been modified to provide support to the various
Treo smartphone features that are not possible by using the original Palm OS (3.5
and 5.x) Network Preference panel implementation. Parameters specific to GSM/
GPRS and CDMA/1-X (Simple-IP & Mobile-IP), IOTA support, CCSM table
support, and our various UI features such as hiding certain fields and locking
certain services were added. The network database record format was extended in
a backward-compatible way, and the network database access logic was separated
into the NetPref library. The new Network Preferences panel as well as other
system components, such as NetMaster library, the IOTA application, and network
profile creator, use the NetPref library to read, write, create, duplicate, and delete
network service profiles.

In addition, the configuration of NetLib was redesigned to dynamically perform
during each network login instead of doing so only when a user selects a service.
This dynamic configuration implementation was moved from the Network panel
to the NetMaster library, which is described later in this section. This permits the
support of dynamic network configuration based on location, such as Home
versus Roaming, the execution of GPRS and One-X specific functions during login,
the implementation of the service fallback feature, and so forth. The following are
examples of Preference Panel displays.

Chapter 4 Data Communications

30

The new Network Preference panel will continue to support the legacy Network
Preference panel’s limited launch code API, such as enumerating profile names,
getting or setting the default profile, and so forth. Applications such as the
HotSync® application use this API to select the appropriate network preference
profile. The new implementation provides full backward-compatibility with the
legacy API.

■ sysAppLaunchCmdPanelCalledFromApp

Displays the network panel as if it were a dialog box popped up from the calling
app, returning to the calling app when the dialog box is dismissed by tapping
the Done button, for example.

■ svcCFACmdQuickEdit

Manifestation of sysAppLaunchCmdPanelCalledFromApp that brings up the
“quick- edit” form of the panel, such as the phone number form for a dial-up
service profile.

– sysSvcLaunchCmdSetServiceID: Sets the default service.

– sysSvcLaunchCmdGetServiceID: Gets the default service.

– sysSvcLaunchCmdGetServiceList: Gets a list of service names and
corresponding IDs.

– sysSvcLaunchCmdGetServiceInfo: Gets the service name when the unique ID
of the service is given.

– sysSvcLaunchCmdGetQuickEditLabel: Gets the “quick-edit” value string to
display to the user, such as the phone number value from a dial-up service
profile.

NOTE The network preference database has been restructured to support the new
parameters needed by the persistent data connection. Any preexisting application
that reads, creates, or modifies network services or profiles directly in the original
Palm OS network preference database will probably not work with the products that
support this new architecture. If standard Palm OS 3.5 APIs were used, such
applications might still work. Legacy profiles are supported because they are
converted to the new structure of the database the first time they are accessed. To
create or read network profile information in new applications, use the NetPref
library. The library provides all the necessary routines to interface with the network
preference database. There is no longer any need to read/write directly to the
network preference database.

HTTP library

31

HTTP library
Available on:
■ Treo™ 600 and Treo™ 650 smartphones

■ Tungsten™ T5 handhelds

The HTTP library is a shared library. This HTTP library was added to Palm OS 5.X
to give applications a high-level interface to implement HTTP access.

The HTTP library is used by the palmOne™ web browser and other applications.
Third-party applications can share and use the HTTP library to implement their
own HTTP access requirements. The HTTP library supports HTTP protocol
versions 1.0 and 1.1 and the WAP 2.0 HTTP client profile. The HTTP library also
supports SSL using the Palm OS SSL library for secure (HTTPS) connections, proxy
configuration, and cookies.

Architecture
The following figure shows the architecture of the HTTP library. The HTTP library
is provided at the Palm OS library level. The HTTP is implemented at a peer level
with the Palm OS NetLib library and SSL library. Applications must call the NetLib
library to initialize and enable the TCP sockets for the HTTP library. The HTTP
library will call the SSL library directly to implement authentication and
cryptography necessary for secure access. Thus, after standard initialization of the
NetLib library, the applications will then directly call into the HTTP library to
implement all their HTTP accesses.

Network Library

ISP
(usually carrier provided)

Website
Gray:

Not prov ided or
changed by
Handspring

White:
Handspring has

changed or added
these

Blazer
(and/or other 3rd party app)

(68K)

HTTP Library
(ARM) SSL Library

IOTA
(68K internal app)

Chapter 4 Data Communications

32

Functional highlights
The HTTP library is designed for easy sharing by multiple applications. The HTTP
library is implemented as a single instance running in the execution task of caller
applications. The library does not launch any additional tasks and is safe to use as
a background task, because it does not display any UI. The library does provide the
necessary callbacks to allow applications to handle UI in the application code, if
necessary.

The HTTP library requires applications to handle the NetLib library interface by
passing the HTTP library a reference to NetLib wrapper function callbacks.The
HTTP library intelligently manages the pool of sockets. The library provides the
calling application an API to specify the maximum number of sockets used by the
HTTP library.

The HTTP library supports the following:

■ HTTP versions 1.0 and 1.1 as defined in RFCs 1945 and 2616, and the WAP 2.0
HTTP client profile

■ Basic, digest, and proxy authentication as specified in RFC 2617

■ SSL (HTTPS) connections

■ GZIP and Zlib (using deflate) compression formats

■ Chunked encoding allowing applications to begin sending data before the
application knows the total amount of data to be sent

■ Individual application user agent profile

An application can control the user agent profile by adding a simple string or
WAP 248 UA Prof to the request header.

■ Keep-alive connections

However, keep-alive connections are not shared among applications. Different
sockets are used for multiple keep-alive connections. For example, two sockets
are used to open two separate connections to www.yahoo.com.

■ Non-blocking sockets

HTTP library interface to SSL
The HTTP library includes support for SSL. In Treo smartphones, the HTTP library
uses the SSL and crypto module libraries provided in Palm OS 5.x and later. These
two libraries provide sufficient crypto functionality to negotiate secure SSL
connections with most secure web sites.

Palm OS 5.x and later includes two security-related shared libraries: the SSL library
and the Cryptography Provider Manager.

The SSL library in Palm OS 5.x and later includes:

■ SSL protocol implementation, version 3 only—not SSL v2 or TLS v1

■ RSA public/private key algorithm for key exchange

http://www.yahoo.com

HTTP library

33

■ RC4 symmetric cipher for bulk data encryption

■ Authentication of the server-side of the connection using digital certificates and
signature verification

■ Message verification using the MD5 and SHA-1 hash algorithms

■ SSL session resumption

The SSL library in Palm OS supports 4 SSL cipher suites:

■ sslCs_RSA_RC4_128_MD5

■ sslCs_RSA_RC4_128_SHA1

■ sslCs_RSA_RC4_56_SHA1

■ sslCs_RSA_RC4_40_MD5

The first two cipher suites include a connection that uses the RC4 symmetric cipher
with a 128-bit key for data encryption, the RSA algorithm for key exchange, and
either the MD5 or the SHA1 hash algorithm for verifying message integrity. These
two cipher suites are widely supported by popular web servers on the Internet.

The other security-related library included in Palm OS is the Cryptography
Provider Manager (CPM). The CPM exports an API that allows developers to
perform specific cryptographic operations. The CPM in Palm OS provides access
to the following:

■ RC4 symmetric cipher, variable key length

■ SHA-1 hash algorithm

■ Message verification

Chapter 4 Data Communications

34

HTTP library use of Certificates/Public Key Infrastructure
The HTTP library reads a set of root certificates from a database on start-up. These
root certificates identify each of the major certificate authorities and are used by the
HTTP library during SSL connection establishment to authenticate the remote web
server. The database containing the root certificates is burned into the ROM with
the HTTP library.

Certain large corporations and institutions act as certificate authorities and issue
their own certificates. Such a corporation or institution then uses certificates signed
using its self-issued root certificate to identify its secure web servers. In order for a
user’s web browser to negotiate a secure SSL connection with a web server
identified by the corporation’s certificate, the user must add the corporation’s self-
issued root certificate to his or her web browser’s set of trusted root certificates.
The HTTP library does not include a mechanism that allows the user to add trusted
root certificates to the certificate database on the user’s device. However, you can
design your calling application to check remote server’s certificates and display a
UI to add them as trusted.

HTTP library implementation
The HTTP library APIs can be categorized into these four groups:

■ Palm OS library management

■ Library initialization and finalization

■ Stream operations

■ SSL

The Palm OS library management APIs include functions to open, close, sleep,
wake, or count the HTTP library.

The initialization and finalization APIs include functions to load, open, initialize,
close, and remove the HTTP library.

The stream operation APIs include functions to create, configure, send, and receive
requests and responses. They also include functions to load, open, initialize, close,
and remove the HTTP library.

The SSL category APIs include functions to authenticate, certify, encode, and
decode secure connections.

See the API guide for more details about the available HTTP APIs.

HTTP library

35

General HTTP program information
The following pseudo code demonstrates the usage model of a typical client
application using the HTTP library:

Library Open
find or load HTTP library

Library Initialize
Initialize global environment variables: application,
netlib, peer
Open NetLib library
Initialize HTTP library.
Set up connection time-outs
(Confirm certification)
(Set proxy)

Stream Create
Stream Initialize
Stream Send Request and Read Response

Send request
Loop on Read Response until Read terminates

Stream Close
Library Finalize
Library Close

Initialization: The following sample code demonstrates the HTTP library
initialization. The sample code shows that the initialization includes opening both
the HTTP library and the NetLib library, setting all the callback for calling NetLib’s
TCP socket functions, and setting the application execution environments through
the three global variables structures—struct HS_HTTPLibNetInfo, struct
HS_HTTPLibPeer, and struct HS_HTTPLibAppInfo.

The application’s SSL certificate, proxy connection, and connection timeouts are
also initialized.

void HTTPLibInitialize(void)
{
err = HS_HTTPLibOpen(gRefNum);

/* gPeer */
MemSet(&gPeer, 0, sizeof(HS_HTTPLibPeer));
gPeer.HS_HTTPLibPeerTCPOpen = &PrvTCPOpen;
gPeer.HS_HTTPLibPeerTCPClose = &PrvTCPClose;
gPeer.HS_HTTPLibPeerTCPIsConnected = &PrvTCPIsConnected;
gPeer.HS_HTTPLibPeerTCPConnect = &PrvTCPConnect;
gPeer.HS_HTTPLibPeerTCPRead = &PrvTCPRead;
gPeer.HS_HTTPLibPeerTCPWrite = &PrvTCPWrite;
gPeer.HS_HTTPLibPeerTCPCanReadWrite = &PrvTCPCanReadWrite;

gAppInfo.maxSockets = 3;
gAppInfo.isForeground = true;
gAppInfo.cookieMaxJarSize = (UInt16)300 * (UInt16)1024;

PrvPeerTCPInitialize();
gLibHandle = HS_HTTPLibInitialize(gRefNum, &gAppInfo, &gNetLibInfo,

&gPeer);

Chapter 4 Data Communications

36

/* set callbacks */
//HS_HTTPLibSetSSLServerCertConfirmProc(gRefNum, gLibHandle,

&test_confirm_cb, (HS_HTTPLibOpaque)gLibHandle);
//HS_HTTPLibSetTunnelingCallback(gRefNum, gLibHandle,
&PrvTunnelingCallback, NULL);

/* set timeout time */
HS_HTTPLibSetConnectTimeOut(gRefNum, gLibHandle, -1);
HS_HTTPLibSetReqTimeOut(gRefNum, gLibHandle, -1);
HS_HTTPLibSetRspTimeOut(gRefNum, gLibHandle, 10 * 1000);

/* set proxy info if used*/
//HS_HTTPLibSetProxy(gRefNum, gLibHandle, ProxyHost,
StrLen(ProxyHost), ProxyPort, ProxyPort, NoProxyHost, 0);
//HS_HTTPLibSetUseProxy(gRefNum, gLibHandle, true);

}
................
................

/* Wrappers for NetLib callbacks */
void PrvPeerTCPInitialize() {.... NetLibOpen(.... }

Int32 PrvTCPOpen() {..... NetLibSocketOpen(.... }

void PrvTCPClose() { NetLibSocketClose(.... }

Int32 PrvTCPIsConnected() {.... NetLibSelect(.... }

Int32 PrvTCPConnect() {.... NetLibSocketConnect(.... }

Int32 PrvTCPRead() {..... NetLibReceive(.... }

Int32 PrvTCPWrite() {.... NetLibSend(.....}

Int32 PrvTCPCanReadWrite() {.... NetLibSelect(.... }

Finalization: The following sample code demonstrates the HTTP library
finalization. The finalization appears as a short sequence of freeing memory and
closing the NetLib and HTTP libraries.

void HTTPLibInitialize(void)
{
HS_HTTPLibFinalize(gRefNum, gLibHandle);
PrvPeerFinalize();
HS_HTTPLibClose(gRefNum, &count);
}

void PrvPeerTCPFinalize() { NetLibIFDown(.... }

HTTP library

37

Processing Loop: The HTTP library does not contain an internal processing loop,
so applications should implement a processing loop to send and receive incoming
stream data. Applications can implement the processing loop as a state machine
that models the sequence of communication between the client and the server
through the HTTP protocol. The following example shows how an HTTP sequence
is modeled into a state machine.

Common HTTP accesses follow this sequence pattern:

1. Generate an HTTP request and send the request.

2. Read the response header.

3. Read the content of the data stream.

4. Continue reading content until the finish or until some error occurs.

5. Close the stream connection.

Applications can define the preceding state transitions into the state machine to
process streaming data.

Applications can also implement the following state transition pattern for
successful HTTP accesses in the state machine:

1. Initiate the state machine with a request creation with the state
kDownloadState_Request.

2. Through the state machine, send a request out and switch the state to
kDownloadState_ReceiveHeader.

3. Read the initial response and header and then transition to the state
kDownloadState_ReceiveContent.

4. Continue to loop and read the response until the data is finished, and then
transition to the state kDownloadState_Close.

5. Close the stream, and switch to the state kDownloadState_Done.

6. Exit with the condition httpErrorOK.

An error can occur during the state kDownloadState_Request_xyz or
kDownloadState_Receive_xyz when switching to the states kDownloadState_Error,
kDownloadState_Cancel, or kDownloadState_Abort. These states trigger a loop exit,
and the appropriate error conditions are recorded.

Chapter 4 Data Communications

38

Net Services API

39

The sample code in the palmOne sample application call HTTPLibTest includes
code for an application’s processing loop to send an HTTP request and receive the
response through a state machine. This processing loop can be modified to adapt
to other applications. Refer to the HTTPLibTest project.

Net Services API
Available on:
■ Tungsten™ C handhelds

This section provides reference information for the Net Services API. You can use
the functions in this API to check a handheld’s radio hardware, to add or change
network user profiles, and to implement other 802.11 network service tasks.

The NetServices library is available only on handhelds equipped with Wi-Fi, either
through built-in hardware resident on the device or through a Wi-Fi add-on
accessory.

The Net Services API is declared in the header file PalmNetServices.h. The Net
Services API also uses data structures declared in the header file PalmWiFiCommon.h.

Overview of the Net Services feature
Handhelds that include Wi-Fi (wireless fidelity) functionality include a panel that
allows users to add network profiles in order to connect to different 802.11 Internet
access points. Users can choose different profile names, SSIDs (service set
identifiers), encryption methods, and other profile characteristics based on the
requirements of the access points and on their own personal preferences.

Using the Net Services API, you can create your own panel to allow users to create
profiles, to specify encryption methods, and to connect to access points.

NOTE The Net Services API does not provide a method to add profiles to the existing
Wi-Fi panel. If you create a Net Services application, you must design your own panel
to display and create profiles, connect to access points, and so forth. Furthermore, if
you plan to add, delete, or modify your own separate set of profiles, you should
design your own panel because the default Wi-Fi panel may overwrite the profiles
you create and modify. If you simply want to replace the default Wi-Fi panel, set the
creator ID and type of the panel you create to that of the default Wi-Fi panel.

Chapter 4 Data Communications

40

41

CHAPTER 5

Telephony

This section provides reference material for the telephony APIs in the palmOne™
SDK.

Overview of the Telephony API libraries
Available on:
■ Treo™ 600 and Treo™ 650 smartphones

The HsPhone.h header file provided with the Phone SDK kit contains all the public
equates referenced in this section, including all constants, structure definitions,
and function prototypes. Refer to the API guide for more details.

The telephony libraries include the following categories:

The telephony libraries depend on a set of mostly common structures, types, and
enumerations. You can also look at the latest version of the header files in the
palmOne™ Header package under Common/Libraries/Telephony for the most
up-to-date definitions.

NOTE The palmOne Telephony library does not support third-party applications that
control phone calls directly. The supported method is the use of the helper
application described in “Launching the Phone application in a specific view.”

Phone library Category Description

SMS Functions that apply to sending, receiving, and
managing SMS messages. Declared in HsPhoneSMS.h.

GSM Functions that apply to GSM type products with some
functions that apply to both GSM and CDMA type
products. Declared in HsPhoneGSM.h.

CDMA Functions that apply only to the CDMA type product.

Chapter 5 Telephony

42

Because the telephony libraries contain so many different enumerations, structures
and types, the telephony header files are divided into categories so that they are
easier to understand. These categories are defined in the following table.

NOTE The telephony libraries support the specific requirements of the Treo 600
smartphone and the Treo 650 smartphone. Treo 600 and Treo 650 smartphones do
not support the Palm OS telephony functions. If you want to use the telephony
functions on the Treo smartphone, you must use the palmOne Telephony Library
functions.

Category Description

Library General Palm OS® library functions and enumerations
related to the telephony libraries. Declared in
HsPhoneLibrary.h.

Network Cellular network types and functions. Declared in
HsPhoneNetwork.h.

Developers should have a basic knowledge of how a
cellular network behaves. The following concepts
should be familiar to you if you want to use the
Telephony Network APIs:

■ Current operator versus home operator

■ How to select the current operator when more than
one is available

■ Phone registration process with the wireless network

■ Interactions with a SIM card

■ Voicemail box interaction from the network

Audio Specific audio definition: ringing profile and slider
switch.

Events Telephony events sent to an application that registers
for them. Its main enum is PhnEventCode, which
contains the notification received by a registered
application. Refer to the sample code in the SDK.

Security Password Type enumerations.

IOTA Internet Over The Air enumerations.

Misc Other functions. Declared in HsPhoneMisc.h.

CDMA and GSM library differences

43

CDMA and GSM library differences
The CDMA and GSM Telephony APIs are almost the same. However, because the
actual radio architecture differs, palmOne has two different libraries as defined in
the following table. It is important to use the correct library for the correct radio
architecture when using the Telephony APIs.

GSM Connected indicator
On a Treo smartphone, if you want your application to determine whether the
smartphone is registered with a network, use the Telephony library function
PhnLibRegistered.

You may want your application to update the GSM Connected indicator when the
following phone events occur:

■ phnEvtRegistration

■ phnEvtError

■ phnEvtIndication

– indicationNetworkAvailable

– indicationStartingRadio

– indicationResettingRadio

– indicationPoweringOffRadio

NOTE To convey whether the phone is connected to a network, the simplest
approach is to use the palmOne system Signal gadget. (See “How to include the
Signal gadget” for more information.) It appears when the phone is connected to a
network, and does not appear when the phone is not connected.

Library Constant Value Description

Basic
definition

phnLibDbType libr Database type ID

CDMA

phnLibCDMADbCreator HsCL CDMA library creator ID

phnLibCDMADbName Phone Library CDMA library Database name

phnLibCDMAName PhoneLib.prc CDMA library name

GSM

phnLibGSMDbCreator GSM! GSM library creator ID

phnLibGSMDbName Phone Library GSM library Database name

phnLibGSMName GSMLibrary.lib GSM library name

Chapter 5 Telephony

44

Operator’s Name indicator
To retrieve the current operator’s name, use the Telephony library function
PhnLibCurrentOperator.

You may want your application to update the Operator’s Name indicator when the
following phone events occur:

■ phnEvtRegistration

■ phnEvtError

■ phnEvtIndication

– indicationNetworkAvailable

– indicationStartingRadio

– indicationResettingRadio

– indicationPoweringOffRadio

Voicemail indicator
To retrieve the current status of Voicemail, use the Telephony library function
PhnLibBoxInformation.

You should update the Voicemail indicator in your application when a
phnEvtVoiceMail event occurs. phnEvtVoiceMail events occur when new voicemail
messages are received and when users clear their voicemail.

Launching the Phone application in a specific view
This section details how to launch the Phone application on Treo 600 and Treo 650
smartphones in a specific view. You can also refer to the sample code in the SDK
for complete details.

Required headers
The headers required to launch the Phone application in a specific view are as
follows:

■ Common/System/HsAppLaunchCmd.h

This header file includes Phone application launch commands and
corresponding launch command parameter structures.

■ Common/System/HsCreators.h

This header file includes the Phone application creator type.

Launching the Phone application in Call Log view
To launch the Phone application in the Call Log view, use the
phoneAppLaunchCmdViewHistory launch command as follows:

Launching the Phone application in a specific view

45

DmGetNextDatabaseByTypeCreator (true,
 &searchState,
 sysFileTApplication,

 hsFileCPhone,
 true,

&cardNo,
 &dbID);

err = SysUIAppSwitch(cardNo,
 dbID,
 phoneAppLaunchCmdViewHistory,
 NULL /*paramsP*/);

Launching the Phone application in Dial Pad view
When launching the Phone application in Dial Pad view, you can do one of the
following:

■ Launch in Dial Pad view and automatically dial a specified number.

■ Launch in Dial Pad view and prefill the number field in the Dial Pad view with
a specified number without automatically dialing it.

■ Launch in Dial Pad view with no number filled in.

To launch in Dial Pad view and automatically dial a phone number
Use the following code as reference:

PhoneAppLaunchCmdDialPtrparamsP = NULL;
UInt16 size = sizeof(PhoneAppLaunchCmdDialType);
Char* numberP = <THE_PHONE_NUMBER_YOU_WANT_AUTO_DIALED>;

// Set up a parameter block so the Phone application
// automatically dials a phone number

if (numberP)
 {
size += StrLen(numberP) + 1;
 }

paramsP = MemPtrNew (size);
MemSet (paramsP, size, 0);

paramsP->version = 1;
paramsP->failLaunchCreator = <YOUR_APP_CREATOR>;
if (numberP)
 {
paramsP->number = MemPtrNew (StrLen(numberP) + 1);

StrCopy(paramsP->number, numberP);
MemPtrSetOwner (paramsP->number);

 }

MemPtrSetOwner (paramsP, 0);

DmGetNextDatabaseByTypeCreator (true,
 &searchState,
 sysFileTApplication,

Chapter 5 Telephony

46

 hsFileCPhone,
 true,
 &cardNo,
 &dbID);

err = SysUIAppSwitch(cardNo,
 dbID,
 phoneAppLaunchCmdDial,
 paramsP);

To launch in Dial Pad view and prefill the number field
Use the following code as reference:

PhoneAppLaunchCmdDialPtrparamsP = NULL;
UInt16 size = sizeof(PhoneAppLaunchCmdDialType);
Char* numberP = < PHONE_NUMBER_TO_PREFILL_FIELD_WITH>;

// Setup a parameter block so the Phone application pre-fills
// a phone number in the Dial Pad number field

if (numberP)
 {
size += StrLen(numberP) + 1;
 }

paramsP = MemPtrNew (size);
MemSet (paramsP, size, 0);

paramsP->version = 1;
paramsP->failLaunchCreator = <YOUR_APP_CREATOR>;
if (numberP)
 {

paramsP->number = MemPtrNew (StrLen(numberP) + 1);
StrCopy(paramsP->number, numberP);
MemPtrSetOwner (paramsP->number);

 }

MemPtrSetOwner (paramsP, 0);

DmGetNextDatabaseByTypeCreator (true,
 &searchState,
 sysFileTApplication,

 hsFileCPhone,
 true,
 &cardNo,
 &dbID);

err = SysUIAppSwitch(cardNo,
 dbID,
 phoneAppLaunchCmdViewKeypad,
 paramsP);

To launch in Dial Pad view without a phone number
Use the following code as reference:

DmGetNextDatabaseByTypeCreator (true,

Launching the Contacts application with the New Contact window open

47

 &searchState,
 sysFileTApplication,

 hsFileCPhone,
 true,
 &cardNo,
 &dbID);

err = SysUIAppSwitch(cardNo,
 dbID,
 phoneAppLaunchCmdViewKeypad,

NULL /*paramsP*/);

Launching the Phone application in the Favorites view
To launch the Phone application in the Favorites view, use the
phoneAppLaunchCmdViewSpeed launch command as follows:

DmGetNextDatabaseByTypeCreator (true,
 &searchState,
 sysFileTApplication,

 hsFileCPhone,
 true,
 &cardNo,
 &dbID);

err = SysUIAppSwitch(cardNo,
 dbID,
 phoneAppLaunchCmdViewSpeed,
 NULL /*paramsP*/);

Launching the Contacts application with the New Contact window open
On Treo smartphones, you can launch the Contacts application with the New
Contact window open.

Required headers
The headers required for launching the Contacts application with the New Contact
window open are as follows:

■ Common/System/HsAppLaunchCmd.h

This header file includes Contact application launch commands and
corresponding launch command parameter structures.

■ Common/System/palmOneCreators.h

This header file contains the Contacts application creator type.

To launch the Contacts application with the New Contact window open, use the
addrAppNotificationCreateNewRecord launch command as follows:

notifyParamP = MemPtrNew(sizeof(SysNotifyParamType));

Chapter 5 Telephony

48

MemSet(notifyParamP, notifyParamSize, 0);

 notifyParamP->notifyType = addrAppNotificationCreateNewRecord;
 notifyParamP->broadcaster = <YOUR_APP_CREATOR>;
 notifyParamP->notifyDetailsP = NULL;
 notifyParamP->handled = false;

DmGetNextDatabaseByTypeCreator(true,
 &searchState,
 sysFileTApplication,
 kPalmCreatorIDContacts,
 true,
 &cardNo,
 &dbID);

err = SysUIAppSwitch(cardNo,
dbID,
sysAppLaunchCmdNotify,
notifyParamP);

49

CHAPTER 6

SMS

This chapter describes the SMS library usage model.

SMS stands for Short Message Service. This service allows short text messages to
be sent and received by your mobile phone.

NBS stands for Narrow Band Socket. NBS is a special kind of SMS message. If a
SMS message contains //SCK <code> it is treated as an NBS message.

What is the difference between SMS and NBS?
NBS on palmOne devices are treated in a silent manner. The message is invisible to
the user. An alert is shown every time a SMS message is received. No alert is shown
to the user when an NBS message is received.

NBS messages can be silently deleted.

SMS library
Available on:
■ Treo™ 600 and Treo™ 650 smartphones

The SMS Messaging application is the main interface to the SMS Database and SMS
features on a device. In addition to the SMS application, you can create your own
applications to receive, send, and manage SMS messages.

SMS is a useful way to wake up a device remotely and trigger specific actions
defined by your application. For example, an SMS could trigger an E-mail
application to retrieve new e-mail from a corporate server.

Technically, the SMS library is part of the Telephony library, but it is logically a
separate unit. The SMS library relies on functionality from the Telephony library
and uses similar methods.

This chapter describes some of the key features of the SMS library. Among these
features are:

■ Sending messages

■ Receiving messages

■ Encoding

Chapter 6 SMS

50

■ Segmenting and reassembling messages

■ Storing messages in a database

What is SMS?
The point-to-point SMS provides a means of sending short messages to and from
a GSM phone. SMS is implemented using a service center that acts as a store and
forwarding center for short messages. Note that certain CDMA operators are
supporting or will be supporting SMS. The SMS library architecture described here
generally applies to CDMA.

Two different point-to-point services are defined in the SMS specification: mobile
originated and mobile terminated. Mobile originated messages are transported from
a phone to a service center. These messages may be destined for other mobile users
or an e-mail gateway. Mobile terminated messages are transported from the service
center to a phone. These messages may have originated from another phone or
from a variety of other sources such as an e-mail application or a web site.

A single message sent on the SMS network is limited to 160 characters. Longer
messages must be segmented.

Why use the SMS library?
The SMS library enables the sending and receiving of short messages from a
smartphone to another SMS-enabled recipient.

On the Treo 650 smartphone and the Treo 600 smartphone, these messages can be
sent much more quickly than with a PPP connection. This is because SMS does not
require an initial connection to an ISP. Connecting to an ISP can take up to 10 to 15
seconds, including modem negotiation time and user authentication.

NOTE When sending an SMS message, the current SMS library architecture has a
three- to four- second delay before finishing the sending API call. This is due to radio
architecture latency.

Cost is another consideration for using SMS. A typical U.S. service provider
charges 15 cents a minute for data service, but only 10 cents for a short message.

Additionally, SMS messages can be sent directly to a device. They do not require a
client application to dial in to the network to check for new e-mail; instead, the
message is sent directly to the client application. The client can even receive an
SMS message while a voice or data call is in progress.

Understanding the SMS library
The SMS library takes care of the low-level details of communicating with a device.
All incoming messages are indicated to a registered application using launch
codes. A successful or unsuccessful transmission of a message is also indicated
using launch codes.

Understanding the SMS library

51

The SMS library handles the following functions for SMS messages:

■ Sending

■ Receiving

■ Encoding

This refers only to character encoding. Currently, only the GSM alphabet is
supported. The GSM alphabet is different from the Palm OS® alphabet.
Additionally, encryption and compression of messages are not supported in the
current version of the SMS library.

NOTE The current version of the SMS library handles text messages for both the
GSM and CDMA versions of devices. All messages handled by the library are
assumed to be text and are handled appropriately.

The GSM library can also handle binary messages, but the CDMA library cannot. If a
client application wants to send binary data on CDMA, it must encode and decode the
data properly.

Also, the CDMA version supports only 7-bit ASCII characters, 160 characters
maximum, no segmentation.

Incoming messages and message events
An application must register itself with the Telephony library in order to receive
incoming message events. You register for the SMS service using PhnLibRegister
where services = phnServiceSMS:

PhnLibRegister (libRef, appFileCreator, phnServiceSMS);

Chapter 6 SMS

52

The following figure shows the workflow of incoming SMS messages.

Each incoming message is indicated to an application by sending a
phnEvtMessageInd event unless it is a segment of a message. In that case, the library
sends a phnEvtSegmentInd event. The library sends a phnEvtMessageInd only after
all of a multisegmented messages’s parts have been received.

If a new message is added to the database, the application is sent the
phnEvtSegmentInd event to trigger an update of the message list. The new message
is saved in the SMS database and stays there until it’s deleted unless the message
is a type NBS (narrow band socket) message. In that case, the message is deleted
after the phnEvtMessageInd notification is acknowledged by one of the registered
applications.

Outgoing messages
A message is sent by creating a new outgoing message using PhnLibNewMessage
and filling in the desired recipient and message text. More than one recipient may
be specified if the message is being sent to a group.

The message text may be longer than 160 characters. The library segments and
reassembles such messages automatically so that the segmentation is transparent
to the user of the SMS library.

Message is saved in
SMS Database

 Incoming SMS Events
Message
Received

Is it a
segment ? Yes

No

Send notifications:
phnEvtSegmentInd

Send notifications:
phnEvtMessageInd

Understanding the SMS library

53

Handling the GSM alphabet and Palm OS alphabet
A special alphabet is used to encode SMS messages. The text of all incoming and
outgoing messages stored in the message database is encoded using standard
Palm OS encoding.

When a message is received, its encoding is changed from the GSM alphabet to the
Palm OS alphabet. Any missing characters are replaced by substitution strings.
A message is encoded in the GSM alphabet when being sent. Optionally,
substitution strings may be converted to their character equivalents. The following
table shows the character with its corresponding substitution string.

NOTE The client application should not assume that a message contains
160 characters or fewer. Even if the actual message contains fewer than
160 characters, the message’s text may be longer than 160 characters because
characters that are not available on Palm OS are replaced by substitution strings.

Message segmentation
Most mobile phones allow the user to compose messages of no more than
160 characters; however, in GSM, the Messaging application sets the maximum
length of a message to 650 characters. Messages that contain more that
160 characters are segmented.

The SMS library supports three types of segmentation schemes. Two of these
methods are text-based while the third is binary. The binary method is preferred,
because it allows for the reassembly of messages even if they arrive out of order.

Binary segmentation
The binary segmentation scheme works by adding a UDH (user data header) to
each segment of a segmented message. The UDH contains a reference number to
identify the message, the segment’s index, and the total number of segments.
Because the UDH takes 6 bytes, the number of characters in a message is reduced
to 154.

Using the UDH, it is possible to reassemble messages from their segments even if
the segments arrive out of order. The reassembly of incoming segmented messages
is transparent to the client application. The client application may retrieve a

GSM Palm OS GSM Palm OS

∆ \Delta Π \Pi

Φ \Phi Ψ \Psi

Γ \Gamma Σ \Sigma

Λ \Lambda Θ \Theta

Ω \Omega Ξ \Xi

Chapter 6 SMS

54

message’s text even if all the segments have not been received. Use PhnLibGetText
to retrieve the message.

When the first segment of a segmented message is received, the client receives a
phnEvtSegmentInd event after the segment has been stored in the database. When
all of the segments have been received, a phnEvtMessageInd event is sent.

Automatic reassembly of messages works if all parts of the message are received
within six hours after the first segment is received. After six hours, segmentation
information is deleted by the library.

NOTE The automatic reassembly of messages is a GSM feature. The CDMA version
of products do not support automatic reassembly of segmented messages.

Textual segmentation
The SMS library supports two textual segmentation schemes. One segmentation
scheme is used only for sending segmented messages to an e-mail gateway. The
other is used for segmenting regular text messages.

The segmentation scheme used to send messages to an e-mail gateway does not
allow the reassembly of the message if the messages arrive out of order. This
scheme is a recognized GSM standard. It works by inserting “+” signs into the
message’s text. The length of an “inner” segment is reduced to 158 characters, and
the length of the first and last segments is 159 characters. A message with three
parts is segmented as follows:

First segment+
+Inner segment+
+Last segment

NOTE For messages sent to an e-mail gateway, the recipient’s address adds to the
message’s length.

This segmentation scheme is used exclusively to send messages to an e-mail
gateway. The SMS library does not use this scheme to send text messages to normal
subscribers.

The scheme for segmenting regular messages adds header information to every
segment. The header is of the form i/k, where i is the segment’s index and k is the
total number of segments. The length of the header is not constant and is
dependent upon the values of i and k. A message with three parts is segmented as
follows:

1/3 First segment
2/3 Second segment
3/3 Last segment

The library does not attempt to reassemble messages when they are sent using this
segmentation scheme. The application must reassemble the messages as needed.
The reassembly is not automatically done by the library because the header does
not indicate clearly to which message a segment belongs.

Understanding the SMS library

55

Message database
All incoming and outgoing SMS messages are stored in a message database on the
device except for NBS-type messages. NBS message content is stored in the
paramBlock when the application receives the notification.

An outgoing message stored in the database may be sent using the SMS library.
Incoming messages received are also stored in this database. The SMS library
handles only messages stored in this database. If you want an application to store
the messages in a separate database, you must have the application copy the
messages from the SMS database.

This section describes the fields for a single SMS message. The standard Palm OS
routines for databases are used to manage these records.

IMPORTANT A message’s internal structure is private and not simple. Client
applications should modify data in an SMS message only by using the functions
provided by the SMS library.

A record in the message database has four separate parts. The first part has a fixed
size, and the size of the other three parts is variable. As a result, a complete record
has a variable size.

The four separate parts of a message database record are as follows:

■ Header information

■ Segmentation information

■ Address information

■ Message text

Header information
The first part of each record is the message header information. It has a fixed size.
The fields in the header information section of the record are used to store flags and
determine the size of the size[] field. Some fields are not used in all messages. For
example, validity is used only for outgoing messages, and segments is used only for
incoming messages.

SMS Header Structure
typedef struct {
 UInt32 owner;
 SMSMessageType type;
 SMSMessageStatus status;
 UInt32 date;
 UInt32 flags;
 UInt8 validity;
 UInt8 segments;
 UInt16 size[1];
}SmsHeader;

Chapter 6 SMS

56

See the API guide for details on each field.

Segmentation information
The second part of a message record contains segmentation information. This part
is variable in size and is accessed through the size array. Each segment’s size is
represented with 2 bytes.

Address information
The third part of a message record contains address information. This part is
variable in size. The size of this address information is defined in the size field. The
address information contains the data in a PhnAddressList structure.

Message text
The fourth part of a message record is the actual text of the message. This part is
variable in size. The size is calculated by taking the size of the complete message
and subtracting the sizes of the first three parts. All characters in this part of the
record are considered to be Palm OS encoded. For outgoing messages, the
characters are converted to the GSM alphabet when the message is sent.

NOTE The conversion of the text is done just before the message is sent. The result
of the conversion is not stored with the message. If sending a message fails, the text
is converted again when the message is sent again.

Launching SMS from the New SMS screen
On Treo smartphones, to launch the SMS application in the New SMS screen, use
the Palm OS system Helper API:

HelperNotifyEventType param;
HelperNotifyExecuteType execute;
SysNotifyParamType notifyParam;
Err err = errNone;

MemSet(¶m, sizeof(HelperNotifyEventType), 0);
param.version = kHelperNotifyCurrentVersion;
param.actionCode = kHelperNotifyActionCodeExecute;

execute.helperAppID = 0; // Setting the helperAppID to 0 means
 // "use default helper"

execute.serviceClassID = kHelperServiceClassIDSMS;

// If you want the New SMS screen to be prefilled with a phone number
// or e-mail address, then set execute.dataP to the string (Char*)
// representing the phone number or e-mail address. If you do not
// want the New SMS screen to be prefilled with a number, set
// execute.dataP to NULL

execute.dataP = NULL;
execute.displayedName = NULL;
execute.detailsP = NULL;

Launching SMS from the New SMS screen

57

param.data.executeP = &execute;

MemSet (¬ifyParam, sizeof(SysNotifyParamType), 0);
notifyParam.broadcaster = <YOUR_APP_CREATOR>;
notifyParam.notifyType = sysNotifyHelperEvent;
notifyParam.notifyDetailsP = ¶m;
err = SysNotifyBroadcast(¬ifyParam);

Chapter 6 SMS

58

59

CHAPTER 7

System Extensions

This chapter provides details about the system extension features and APIs
available in the palmOne™ SDK.

Transparency API
Available on:
■ Treo™ 600 and Treo™ 650 smartphones

The Transparency library is used to connect the radio modem directly to one of the
data ports on a Treo™ smartphone.

The library is the preferred method to enable tethered mode in an application
because it configures the radio in the right mode to transmit and receive data to the
network. The Transparency API is preferable to directly trying to control the radio
through its lower level serial driver and through the AT command.

It supports diagnostics or tethered mode. It does not support both simultaneously.
See the API guide for more details.

60

Chapter 7 System Extensions

The following figure shows a possible architecture that one could use to connect
the Treo smartphone modem to a desktop using tethered mode and the
Transparency library.

File Browser API
Available on:
■ Tungsten™ T5 handhelds

The File Browser uses the Exchange Manager registry with some new enums
defined by PalmSource:

#define exgRegEditCreatorID 0xff7b // creator ID registry
#define exgRegEditExtensionID 0xff7d // filename

 extension registry
#define exgRegEditTypeID 0xff7e // MIME type registry

These constants are defined in FileBrowserLibCommon.h. Applications should
register using ExgRegisterDatatype with ID exgRegEditExtensionID. The
description of a file type being registered should look like this:

“<Icon 1000,1100>Image”

Radio
(CDMA or GPRS)

Radio Serial Driver

Communication Channel
Provider Library

Phone LibraryVirtual ModemPass-through
Library

Tethered Mode
Setup

Application

Cradle Serial Driver

Cradle

Palm standard
Serial or USB

Driver
(PalmUSBD.sys)

Application

Network Stack, Drivers
and Libraries

Desktop Palm OS Device

Net Library

Palm OS Data App
(accessing TCP/IP

network)

Built-in
Phone App

Serial or USB
Port

Path of data for
Tethered Mode

These are
mutually
exclusive

Provided by
3rd Party

Transparency Library

Sub-Device
Driver

HotSync

Modem driver

Serial
Driver

USB
Driver

File Browser API

61

The first number is the ID of a bitmap family resource for the large icon provided
by the application. The second number is the ID of the small icon provided by the
application. You can skip the second number if the small icon ID is one greater than
that of the large icon:

“<Icon 1000>Image”

The text after the close-angle-quote is the description string that would normally
be used. It isn’t currently exposed in the File Browser UI, but it could easily be
exposed later on so, be sure to include a description.

The size of the large and small icons should match the dimensions of the large and
small application icons in the Launcher: 22 x 22 pixels and 15 x 9 pixels. These
dimensions are expressed in normal density; the double-density dimensions are 44
x 44 and 30 x 18. The absolute maximum dimensions supported by the File Browser
and Favorites applications are 32 x 22 and 16 x 11—64 x 44 and 32 x 22 in double-
density. As always, be sure to include a normal-density bitmap as the first element
in each bitmap family.

When the File Browser wants to open a file, it does so through the Exchange
Manager. Applications typically receive sysAppLaunchCmdExgReceiveData to open
files. The application won’t receive a sysAppLaunchCmdExgAskUser sublaunch but
will receive a sysAppLaunchCmdExgReceiveData sublaunch, just as it would for
incoming beams.

Applications should check the name field in the socket to see if it is a “file:” URL.
If so, the application should set the goToCreator field in the socket to its own
creator ID. It can then proceed as if a beam was received, but it shouldn’t create a
new record. Instead, it should store the parsed data somewhere temporarily and
set the goToParams struct in the socket to refer to this temporary area.

Alternatively, once you know you’re handling a “file:” URL, you can have your
application stop using the Exchange Manager. Have your application put the URL
into a feature pointer and set the goToCreator. Then, when the application receives
the sysAppLaunchCmdGoTo launch command, you can have the application look for
this feature pointer. If the feature pointer is found, you can have the application
parse the URL to get a volRefNum and path. Then you can have the application
proceed as described earlier for kSysAppLaunchCmdOpenFile. This is the approach
used in the sample application. The code to parse the “file:” URLs is included in
the File Browser API library. The sample application available in the SDK includes
wrappers around this entry point to make the code easier to use.

The wrapper function is as follows:

static Char *ParseFileURL (const Char *url, UInt16 *volRefNumP)
{

Char *path = NULL;
UInt16 refNum;
Err err;

err = SysLibFind(kFileBrowserLibName, &refNum);
ErrFatalDisplayIf(err, "Can't find file browser lib");
err = FileBrowserLibOpen(refNum);
ErrFatalDisplayIf(err, "Can't open file browser lib");

62

Chapter 7 System Extensions

FileBrowserLibParseFileURL(refNum, url, volRefNumP, &path);
FileBrowserLibClose(refNum);
return path;

}

The entry point used in this wrapper function is:

Err FileBrowserLibParseFileURL(UInt16 refNum, const Char *urlP,
UInt16 *volRefNumP, Char **filePathP);

It takes a “file:” URL as input and outputs a volRefNum and path. It also allocates
the path. The caller is responsible for freeing it. If the URL can’t be parsed for any
reason, it passes back vfsInvalidVolRef for the volRefNum and NULL for the path.

A fileType parameter is included in the Open and Save As dialog box APIs. Pass
NULL for the fileType parameter to go to the root directory when switching
volumes. The initial folder is the root directory unless you specify a root folder. To
specify an initial file name, you must use a full path.

Pass an extension with the initial period or a MIME type to use the registered
default directory for the specified file type. The default directory is used when
switching volumes and when no initial directory is specified in the initial path.

For example, you could invoke the Save As dialog box with “.jpg” or “image/
jpgeg” as the fileType, “MonaLisa.jpg” as the initial path, and the volRefNum for
the SD card. The initial directory would then be /DCIM, and the filename would
be prepopulated with MonaLisa.jpg. When the user presses the internal drive
button, the/Photos and Videos directory of the internal drive is displayed. When
the user presses the internal drive button again, the root directory is displayed.

By registering with the Exchange Manager and handling
sysAppLaunchCmdExgReceiveData, an application can ensure that its files appear
with the correct icon in Files, and that selecting these files opens them in the
application. This is the most important aspect of the File Browser API, but there is
another side to it as well. Applications can use the File Browser library to display
an Open or Save As dialog box. This is most appropriate for applications that
attempt to mimic their desktop counterparts. We recommend that these dialog
boxes not be used for other applications.

The File Browser library’s entry points are declared in FileBrowserLib68K.h. To
display the Open and Save As dialog boxes, only four of these entry points are
required: FileBrowserLibOpen, FileBrowserLibClose,
FileBrowserLibShowOpenDialog, and FileBrowserLibShowSaveAsDialog. Some
constants defined in FileBrowserLibCommon.h are also needed.

For example, to display an Open dialog box:

UInt16 refNum;
UInt16 volRefNum;
Char *path = MemPtrNew (kFileBrowserLibPathBufferSize);
const UInt16 numExtensions = 1;
const Char *extensions[numExtensions] = {"txt"};
Err err;

ErrFatalDisplayIf (path == NULL, "Can't alloc path");

File Browser API

63

// Find the library and call the Open function. There is no need
// to load the library.
err = SysLibFind (kFileBrowserLibName, &refNum);
ErrFatalDisplayIf (err, "Can't find file browser lib");
err = FileBrowserLibOpen (refNum);
ErrFatalDisplayIf (err, "Can't open file browser lib");

// If you want to start with a particular volume, set volRefNum
// to that volume. Otherwise, use vfsInvalidVolRef.
volRefNum = vfsInvalidVolRef;

// If you want to start in a particular directory, set path to
// that directory. Otherwise, use an empty string. You can include
// a filename as well as a directory if you want a file to be
// selected initially. You can specify a filename with no path, but
// only if you specify a fileType.
path[0] = chrNull;

// Display the Open dialog box. Returns whether a file was selected.
if (FileBrowserLibShowOpenDialog (refNum, &volRefNum, path,

numExtensions , extensions, // filter to show only these files
"text/plain", // use default folder for this

fileType
"Select Item", // title for the dialog
kFileBrowserLibFlagNoFolders)) // pick a file, not a folder

{
// Do something with volRefNum and path.

}

// Clean up. There is no need to remove the library.
MemPtrFree (path);
FileBrowserLibClose (refNum);

The File Browser library is preloaded when the device is reset, so you just need to
find it and call the FileBrowserLibOpen and FileBrowserLibClose entry points. You
don’t need to call SysLibLoad or SysLibRemove.

The volRefNum and path are used both as input and as output. For input, you can
do the following:

■ Not specify a volume or a path (vfsInvalidVolRef and "")

■ Specify a volume only

■ Specify a volume and a directory but no filename

■ Specify a volume, a directory, and a filename

■ Specify a volume and a filename but no directory

■ Specify a filename but no volume or directory

The last two options require that a fileType be specified, as well. If the user selects
a file or folder and selects OK, the volume and path of the selected file or folder is
passed back in the volRefNum and path parameters and the function returns true.
Otherwise, the parameters are left as they are and false is returned.

64

Chapter 7 System Extensions

If a list of extensions is passed in, only files with one of the specified extensions are
listed, along with all the folders. Use 0 for numExtensions and NULL for extensions
to disable filtering.

You can specify a MIME type or an extension for the fileType. Be sure to include a
period before the extension: .txt. If a fileType is specified, the Open dialog box
automatically navigates to the default directory for the specified fileType when
the user switches volumes. The default directory for a fileType can be set using
VFSRegisterDefaultDirectory. It can be different for different media types—for
example, SD/MMC as opposed to the internal drive. If the initial path doesn’t
include a directory and a fileType is specified, the default directory for the
specified fileType is used. We recommend that a fileType be specified whenever
possible; it makes it faster for the user to navigate to the appropriate directory. If
you use NULL for the fileType, the user is taken to the root directory when
switching volumes.

The title of the Open dialog box depends upon flag settings specified by the client
application. If NULL is passed in for the title, the Open dialog box is given the
default title specified by the flag settings in the client application.

You can use various combinations of the following flags defined in
FileBrowserLibCommon.h:

■ kFileBrowserLibFlagOneVolume - no volume picker

■ kFileBrowserLibFlagNoFiles - no files, only folders

■ kFileBrowserLibFlagNoFolders - no folders, only files

These flags should be logically combined together. For example:
kFileBrowserLibFlagOneVolume | kFileBrowserLibFlagNoFiles. Use zero to
specify no flags. If you use kFileBrowserLibFlagOneVolume, be sure to specify a
volume because the user won’t be allowed to switch to any other volume.If you use
kFileBrowserLibFlagNoFiles, the user is only allowed to pick a folder. Files won’t
be shown at all. If you use kFileBrowserLibFlagNoFolders, the user is only allowed
to pick a file but can still navigate into folders to find a file. If you don’t use either
of these flags, the user is allowed to pick a file or a folder.

FileBrowserLibShowSaveAsDialog is very similar to
FileBrowserLibShowOpenDialog. In addition to allowing the user to navigate to any
directory, it includes a field where the user can enter a filename. If the specified
path includes a filename, it appears in this field. There is an additional parameter
for the default extension. If specified, this is appended to the filename entered by
the user when it doesn’t already have an extension. Use NULL for the default
extension to use the entered filename exactly as it is entered.

The flags used for the Save As dialog box are as follows:

■ kFileBrowserLibFlagOneVolume - no volume picker

■ kFileBrowserLibFlagPromptOverwrite - warn before replacing

■ kFileBrowserLibFlagRequireExtension - only given extensions

■ kFileBrowserLibFlagNoNewFolder - no New Folder button

Smart Text Engine API

65

The first flag is used in the same way as it is for the Open dialog box. Use
kFileBrowserLibFlagPromptOverwrite if you want to warn the user when a
filename of an existing file in the selected directory is selected. This is preferable to
checking for duplicate filenames afterward because it allows the user to edit the
filename or choose a different directory. Use
kFileBrowserLibFlagRequireExtension if you want to force the user to use a
specific extension or one of several extensions. Pass in the list of legal extensions in
the numExtensions and extensions arguments. Use the
kFileBrowserLibFlagNoNewFolder flag if you want to prevent the user from
creating new folders. This hides the New Folder button.

The FileBrowserLibShowSaveAsDialog function doesn’t actually save anything. It
just prompts the user for where to save the file and what to call it. It’s up to you to
do the following:

■ Create the file, truncating the existing file, if any

■ Write to the file

■ Close the file

Similarly, FileBrowserLibShowOpenDialog doesn’t open the file or folder selected
by the user. It’s up to you to do the following:

■ Open the file or folder

■ For folders, enumerate the contents

■ Close the file or folder

Smart Text Engine API
Available on:
■ Treo 600 and Treo 650 smartphones

The Smart Text Engine (STE) shared library enables applications to implement rich
text display and processing. The STE is designed to allow any application to
automatically identify, render, and link web URLs, e-mail addresses, and phone
numbers to appropriate applications. For example, selecting a phone number in
SMS dials the number, or selecting a URL in an e-mail launches that URL in the
web browser. The STE library offers a high level of convenience for end users as it
seamlessly links information and communication applications.

The STE library performs three basic functions: parsing, rendering, and displaying.
Applications supply the STE with a text stream object and specify the area on the
screen to render. This area can include a scroll bar that is used to scroll the contents
of a multipage display. The STE passes the text through its three layers to create,
display, and activate links.

The STE library solves the traditional Palm OS® limitations of the text field: black-
and-white display with one font style. Using the STE library, applications can mix
bold and standard fonts, mix colors, add graphics, and even add emoticons.

66

Chapter 7 System Extensions

In addition to the information provided here, you can also refer to the STETest.zip
sample code file in the SDK for information on how to use this library.

Refer to the API guide for detailed information about each of the STE APIs.

Smart Text Engine API

67

STE Architecture
The STE includes several components—the parsing engine, the rendering engine,
the display engine, event handling, and text selection. This modular design allows
new components to be added easily. For example, if an HTML parser is needed, it
can be added to the STE library without major architectural modifications. The
following figure shows the architecture of the STE.

68

Chapter 7 System Extensions

STE Parsing Engine
The parsing engine is responsible for finding the URLs, e-mail addresses, and
phone numbers within text. It also detects emoticons and special Smart Text
delimiters or tags that affect the text format display. This allows applications to
quickly detect whether the text has STE delimiters.

Scanning for URLs, e-mail addresses, and phone numbers requires complex
processing in the STE library. A specific algorithm is used to check the validity of
characters in URL and e-mail addresses text strings. Checking phone numbers is
more complex because it involves appending multiple numbers separated by
spaces to compile the final phone number. A basic matching algorithm is used to
find emoticons with one special condition: all smileys must have either a ‘:’ (colon)
or ‘;’ (semicolon) for the eyes.

Smart Text delimiters are identified by the characters “//STE” followed by
additional characters that define the exact properties of the delimiter.

The parsing engine works by separating the string into separate words—groups of
characters separated by a space character. Each of the words is prescanned to check
whether it is a potential URL, e-mail address, phone number, or emoticon type. If
the word qualifies as any of these types, it is then further scanned to see if it
matches the requirements for that type. Phone number checks require scanning for
consecutive groups of words to form the final complete phone number.

The result of the parsing engine is a list of parsed items. This list is then used by
the rendering engine to format and display the rich text.

STE Rendering Engine
The rendering engine takes the text input, along with the parsed info list, and
determines exactly where the text belongs in the list. If there is no formatting
involved, this is very much like displaying text in a text field. When special objects
and formatting are added to text, the rendering process becomes more complex.

The basic algorithm goes through the text string and determines whether the next
word can fit on the current line in the display. All the STE text string display
properties are considered when determining fit. The font can be bold, normal, or
colored. There can be emoticons and other bitmaps displayed, as well. The
different widths of the text and graphics in different display modes are also
considered when calculating fit. The engine keeps track of the actual text that is
displayed on each line to process text selection and manipulation.

After all the text has been parsed and rendered, it can be displayed.

STE Display Engine
The display engine takes the data structures created by the rendering engine and
displays the correct data at the correct location in the list. The display engine also
controls text highlighting and scroll bar positioning.

REM Sleep API

69

REM Sleep API
Available on:
■ Treo 600 and Treo 650 smartphones

The REM Sleep API allows applications on a smartphone to run while the display
is off and the keyboard and digitizer are disabled. The REM Sleep API is on the
Treo™ 600 smartphone and the Treo™ 650 smartphone, but not on Tungsten™ or
Zire™ handhelds.

REM sleep mode is initiated at the point when the smartphone would otherwise
go into deep sleep mode. You should already be familiar with the sleep-deferral
and notification mechanisms in the Palm OS before using the REM Sleep API. For
more information on notifications, refer to the “Notifications” section, in particular
the “Sleep and Wake Notifications,” in the Palm OS Programmer's Companion, vol. I.

The smartphone may be put to sleep for two reasons—the user presses the power
button or another button that functions as a power button, or the smartphone
remains idle for the duration set as the auto-off timeout value.

Normal sleep deferral
The process of a smartphone going to sleep begins with a virtual key event. In the
case of a user pressing the power button, a vchrHardPower event occurs. In the case
of the auto-off timeout value being reached, a vchrAutoOff event occurs.

When the initiating event is processed by SysHandleEvent, a sleep-request
notification is broadcast to all registered recipient applications. If any recipient sets
the deferSleep member of the notification parameter block, the system does not go
to sleep and the smartphone continues to run.

When sleep is deferred, the application or library responsible should enqueue
vchrResumeSleep after it has finished doing whatever caused it to defer the sleep.
The event vchrResumeSleep works similarly to vchrHardPower and vchrAutoOff in
that it causes the sleep-request notification to be broadcast. Another application
may then set the deferSleep member, causing the defer process to continue.

If the sleep request is not deferred, the system enqueues a virtual key event with
the vchrPowerOff character. When the vchrPowerOff event enters SysHandleEvent,
a sleep notification is broadcast to inform its recipients that the system is going to
sleep, and the system is immediately put to sleep thereafter.

REM sleep mode
REM sleep mode occurs in the time between when the sleep-request notification
occurs and when the sleep notification occurs. If the sleep-request notification is
not deferred, the display is turned off and then a REM-request notification is
broadcast (hsNotifyRemSleepRequestEvent). The REM-sleep-request notification
has the exact same parameter block as the sleep-request notification. A recipient of
the notification that needs REM sleep simply sets the deferSleep member in the
parameter block. If the deferSleep parameter is set in the REM-sleep-request

70

Chapter 7 System Extensions

notification, the system broadcasts a REM notification to inform recipients that
REM sleep has been entered.

The expectation is that whatever is happening during REM sleep is a transient
condition that will in most cases lead to deep sleep shortly thereafter. To
accommodate this expectation, the REM-request notification is periodically resent
until it is not deferred. The current implementation resets the auto-off timer to
expire a few seconds after entering REM sleep so that the whole REM-request
notification process repeats periodically. You should not rely on this particular
implementation, but instead defer the REM request as often as it comes.

IMPORTANT An application has to register for REM sleep notification
(hsNotifyRemSleepRequestEvent) and normal sleep (sysNotifySleeprequestEvent)
notification to support any kind of sleep deferral.

Detecting REM sleep mode
If you need to determine whether the smartphone is already in REM sleep while
handling a REM-request notification, you’ll have to register for the sleep-request
notification and use HsAttrGet() to obtain the value of hsAttrDisplayOn. By the
time the REM request is broadcast, the display is already turned off, and the sleep
reason in the REM request simply reflects whatever the sleep reason was from the
preceding sleep request.

REM Sleep API

71

The following figure shows the sleep mode flowchart of events.

Normal waking operation

SysHandleEvent handles one of:
vchrHardPower, vchrAutoOff, vchrResumeSleep

Auto-off timer is reset

sysNotifySleepRequestEvent is broadcasted

Should the device sleep?

Display is turned off and non-power/app keys
are disabled *

hsNotifyRemSleepRequestEvent
is broadcasted

Remain in REM Sleep?

sysNotifySleepNotifyEvent is broadcasted

User presses power/app key

sysNotifyEarlyWakeupEvent and
sysNotifyLateWakeupEvent are broadcasted

sysHandleEvent handles key with
powerOnKeyMask

EvtResetAutoOffTime() resets the auto-off
timer and turns on display

SysHandleEvent reenables the keyboard on
the next event

Increment deferSleep

Auto-off timer set to expire
in a few seconds

hsNotifyRemSleepEvent
broadcasted

Auto-off timer expires

Yes

No

Increment
deferSleep No

Yes

* The keys and display could already
be in their sleeping state if the device
is already in REM sleep

Performed by System or
user

Peformed by application
to support sleep deferal

Normal
Sleep

Deferal

REM
Sleep

Deferal

72

Chapter 7 System Extensions

Waking up from REM sleep mode
While the system is running in REM sleep mode, it may be necessary to “wake up”
and turn the display on, which you can accomplish by calling
EvtResetAutoOffTimer.

When displaying any UI that must be seen by the user immediately, you should
call EvtResetAutoOffTimer to ensure that the display is on. However, it’s likely that
a user won’t even pay attention to their smartphone that are in REM sleep mode.
If the user must be notified, consider using the Attention Manager, instead.

In order to maintain the expected user experience, while in REM sleep mode the
keyboard and touch screen are set to behave as if the smartphone is sleeping. That
is, the touch screen is disabled and only those keys that would normally wake the
smartphone are active. If one of the keys that would normally wake the
smartphone is pressed, it generates a key event with the poweredOnKeyMask
modifier bit set. When EvtGetEvent sees a key event with this bit set, it turns the
display back on by calling EvtResetAutoOffTimer.

A version of REM sleep has been present in the Palm OS since version 3.5: After
waking up from deep sleep, the auto-off timeout has effectively already expired. If
the event queue is emptied without the auto-timer ever being reset, a vchrAutoOff
event is immediately returned from EvtGetEvent, causing SysHandleEvent to
initiate putting the smartphone back to sleep right away. This behavior has not
been changed, but has been accounted for in the REM Sleep API. There will not be
a barrage of auto-off events if REM sleep is entered from deep sleep without the
display ever being turned on. (This happens during mail sync in certain
applications, for example.)

Keyguard API
Available on:
■ Treo 600 and Treo 650 smartphones

It prevents the accidental turning on of a smartphone because of an accidental key
press. For example, when a smartphone is in a user’s pocket or purse, the power
button sometimes gets pressed inadvertently. Applications can set or query the
state of the Keyguard feature on the smartphone.

When Keyguard is active, the digitizer is locked and EvtGetEvent will not return
any key events that came from the keyboard. Other key events not generated by
the keyboard are returned.

To programmatically enable or disable Keyguard, use HsAttrSet() to set the value
of hsAttrKeyboardLocked to true. Do not send an hsChrKeyboardLock key event to
enable Keyguard.

To query whether Keyguard is active, use HsAttrGet() to get the value of
hsAttrKeyboardLocked.

MMS helper functions API

73

NOTE hsAttrKeyboardLocked does not always indicate that the Keyguard dialog box
is being displayed. There are states in Keyguard in which key and pen events are
filtered and the Keyguard dialog box is not displayed.

To prevent Keyguard from being enabled, block the virtual character
hsChrKeyboardLock from being handled by SysHandleEvent. In an active
application, check for hsChrKeyboardLock between EvtGetEvent and
SysHandleEvent. In an application running in the background, register for
sysNotifyVirtualCharHandlingEvent notification and mark the notification
handled when a virtual character comes through. Blocking hsChrKeyboardLock is
all that is required. Even if Keyguard is already enabled, such as through auto-
keyguard, Keyguard is disabled when hsChrKeyboardLock is blocked.

Setting the value of hsAttrKeyboardLocked to true does not immediately enable
Keyguard. Instead, an internal state is set and hsChrKeyboardLock is enqueued.
Only when hsChrKeyboardLock reaches SysHandleEvent is Keyguard enabled. At
that time, the Keyguard dialog box is displayed, taking control from the active app.

When auto-keyguard is on, Keyguard is enabled after waking up from REM or
deep sleep until either the dialog box is displayed or it is determined that
Keyguard doesn’t need to be enabled because the smartphone wasn’t asleep long
enough. This prevents extra keystrokes from being lost while a smartphone wakes
up. If the value of hsAttrKeyboardLocked is set to false or hsChrKeyboardLock is
blocked while the auto-keyguard process is occurring, Keyguard is disabled before
the dialog box is displayed.

Option and Shift key APIs
The Option and Shift keys increase the range of input possibilities on a Treo
smartphone. For example, a map application, which uses a 5-way Up key press to
scroll up, can use an Option+5-way Up key press to zoom in.

There are APIs available to detect if Caps Lock or Option Lock is on. An application
can also detect if the Option key or the Shift key has been pressed.

There are also APIs available to set Caps Lock or Option Lock and to
programmatically simulate Option or Shift key presses.

Also, if an application includes a Graffiti Shift Indicator(GSI) UI object in the
application's resource, then Option and Shift key presses can be visually detected.

MMS helper functions API
Available on:
■ Treo 600 and Treo 650 smartphones

The MMS helper function APIs are only available on Treo smartphones. The MMS
(Multimedia Messaging Service) Messaging application is the built-in application
that provides an interface for other applications to send and receive MMS
messages. Application developers can interface with the MMS Messaging
application through the Helper API.

74

Chapter 7 System Extensions

The MMSHelperCommon.h header file provided with the SDK contains all the public
equates.

You can also refer to the MMSReceiver.zip and MMSSender.zip sample code files
in the SDK to learn how to use this library.

MMS Usage Model
This section explains how to use the MMS Helper structures with the Palm OS
Helper APIs to submit a MMS send request to the MMS Messaging application.

The built-in MMS Messaging application is registered in the system as a Helper
service class for the MMS service type. Thus, when the system receives MMS
Helper requests submitted by applications, the system broadcasts a notification to
the MMS Messaging application to accept and receive the MMS helper data
structure from the requesting application.

This gives audio and imaging applications an easy and convenient method to send
their picture or audio files using a phone without having to implement the Phone
API interface code. The application needs to know only the phone number or
e-mail address contact info of the recipient in order to send MMS data to the
recipient.

NOTE Currently, only the built-in MMS Messaging application is registered as an
MMS Helper service provider. In the future, there may be multiple applications
registered as MMS Helper service providers. Please be as specific as possible when
designing an application request for an MMS Helper service.

A Helper requesting application can specifically request which Helper service
provider to invoke by specifying the exact creator ID of that Helper service provider
in the helperAppID field of the HelperNotifyExecuteType structure. Setting
helperAppID to 0 indicates all Helper service providers.

The following figure shows the MMS helper usage model.

MMS Sample Code
The following sample code shows how an application submits an MMS send
request to an MMS service provider. The implementation first populates the

System

MMS

Third Party

Imaging Map

Messaging

App

Submit
MMS
Request

Send MMS
Data

Register as MMS
Service Provider

NVFS API

75

HelperServiceMMSDetailsType and HelperServiceMMSObjectType structures with
the data, address, and message information. It then attaches the detail structure
into a HelperNotifyExecuteType so that it can be submitted to the system and be
broadcast to all the service providers.

{
...

case MMSSendButton:
{
BitmapPtr bitmapP = NULL;

HelperServiceMMSDetailsType MMSDetails;
HelperServiceMMSObjectTypeobject;

MemSet(&MMSDetails, sizeof(HelperServiceMMSDetailsType),0);
MemSet(&object,sizeof(HelperServiceMMSObjectType),0);

bitmapP = MemHandleLock (gLockBitmapH);

object.pageNum = 1;
object.tempFileName = NULL;
object.mimeType = "application/vnd.palm.bmp";
object.bufferP = bitmapP;
object.bufferLen = MemPtrSize(bitmapP);

MMSDetails.object = &object;
MMSDetails.version = 1;
MMSDetails.justSend=false;

MMSDetails.cc = ìa cc addressî;
MMSDetails.subject = ìsubject textî;
MMSDetails.message = ìmessage textî;

err = PrvInvokeHelperService(kHelperServiceClassIDMMS,
“recipient_address@palmOne.com”, "Helper Sender", &MMSDetails);

MemHandleUnlock(gLockBitmapH);

...

NVFS API
Available on:
■ Treo 650 smartphones

■ Tungsten T5 handhelds

NVFS stands for Non Volatile File System. Storage in palmOne™ devices
traditionally included nonvolatile NOR flash where the Palm OS and built-in
applications were stored, and a volatile SDRAM (synchronous dynamic random
access memory) where the Dynamic and Storage heaps were stored. If the power
was removed, all data in the RAM was deleted.

76

Chapter 7 System Extensions

The latest devices, the Treo 650 smartphone and the Tungsten T5 handheld, have
NAND flash memory, which is nonvolatile. Future palmOne devices might
include NAND memory, as well. This NAND Flash houses the storage heap and
other data so that it is not erased even if the power is drained from the device.
NAND memory provides sequential access, whereas the NOR memory was
random access.

NOTE Throughout this section, the term ROM denotes read-only memory, and the
term rom denotes the OS and palmOne system code, including drivers, the PIM
applications, and other programs stored in the NAND flash memory.

The main difference between NOR and NAND flash memory is that NOR flash is
completely XIP (execute in place), and all addresses in a NOR flash are mapped
using address pins so that each byte can be accessed. In NAND flash memory, data
is accessed in blocks, and only a small section. The section that houses the boot
code is XIP.

What this means is that the whole rom cannot remain in NAND flash memory and
execute as in the past.

NVFS moves the role of database and application storage into flash and uses a
portion of RAM as a cache, called the DBCache, which acts like a temporary
storage heap. When an application is launched, its PRC is copied from flash as
required into DBCache and is executed from there. In addition, when a database is
opened by an application, it is copied from flash into DBCache and is accessed
directly from the DBCache. All application access to its databases go directly to the
DBCache only; it does not know that there is flash storage behind it. Because the

NAND Flash DRAM

ROM Token

SPL/TPL

Sample content, overflow programs

Compressed ROM

User Data
(Accessessible only by
using a Special flag

File Volume
(Tungsten T5 Only)

5% of 256MB

256KB

Treo 650: 8MB
Tungsten T5: 14MB

Treo 650: 24MB
Tungsten T5: 64MB

Tungsten T5:
164.95MB

Bad Block
Reserve 12.8MB

Total - Treo 650: 32MB, Tungsten T5: 256 MB

Uncompressed
executable Rom

DB cache

Dynamic Heap + Misc.

16MB

 6MB

10MB

Total = 32MB

NVFS - Memory Map

NVFS API

77

cache is write-back, writes to the DBCache do not immediately propagate back to
flash. Instead the OS writes back those changes either when the database is closed,
or when the application manually instructs NVFS to write back the database by
calling a new NVFS API. At these times, the database is scanned for “dirty”
records, and those records are written back to flash.

When the system goes to sleep or wakes up, it makes sure that database changes
are committed to flash memory. The system commits changes to NAND flash
when it receives a sleep notification. It does this at normal priority. Applications
that make database changes in response to sleep notifications should do so at a
higher priority so the system can commit the changes.

The following diagrams show how the NAND Flash and RAM are partitioned. All
memory sizes shown in the figures are approximate values.

Differences between NOR and NAND flash memory
In old devices, the NOR flash or masked ROM housed the rom while RAM housed
the dynamic and storage heaps. In the new devices, the RAM contains the dynamic
heap and a DBCache area that acts as a temporary storage heap. The actual
databases are stored in the NAND flash memory as files and are brought into the
DBCache area when opened.

The rom is compressed and stored in the NAND Flash, and during boot time the
rom is decompressed and brought into RAM storage. Then the Palm OS starts

Total Size
= 32MB

NAND Flash Part Positions

<Not Accessible>

<Not Accessible>

<Hidden,
Accessible by

Special Means>

<Accessible
if Present>

Total Size
= 256 MB

Division by Size for
Tungsten T5Division by Size for Treo 650

< 1 MB

Not Present

24 MB

8 MBCompressed
ROM

Boot Code

Internal Volume*

User Data or
Storage Heap

< 1 MB

178 MB

64 MB

14 MB

Total Size
= 32MB

RAM Partitions

Total Size
= 32 MB

Size Divisions Treo 650Size Divisions in
Tungsten T5

16 MB

6 MB

10 MB

16 MB

6 MB

10 MBDB Cache
Area

Depcompressed
Rom

Dynamic Heap

78

Chapter 7 System Extensions

executing OS code from the RAM. The portion of RAM that has the decompressed
rom is read only so that users cannot corrupt OS code (see the preceding figure).
The RAM also contains the dynamic heap as in the past. The compressed rom in
NAND flash is not visible to or accessible to users or developers.

Performing a soft reset wipes the RAM clean and retrieves a fresh load of the rom
from the NAND flash. A hard reset additionally erases the storage heap that is in
the NAND flash.

The NAND flash is formatted into multiple partitions. The compressed rom is
stored in one partition, the user store in a second partition, and an optional third
partition can be present as shown in the preceding diagram. The Palm OS sees
these partitions as nonremovable volumes accessible using VFSMgr calls. Data in the
flash is stored as FAT (file allocation table) files. The volume that houses the storage
heap is hidden in all devices and can be accessed only by using a special private
flag while enumerating the volumes. This volume is known as the private volume.
A partition called INTERNAL may also be present on some devices, such as
Tungsten T5 handhelds, which you can access and use similar to the way you
would use an SD slot. A VFSVolumeEnumerate() function yields the two volumes,
one for the internal slot and one for the external slot in these devices.

Because the DBCache size is limited to approximately 10MB, resource databases
are currently limited to this size. For large record databases, the OS intelligently
purges or flushes data from the cache to free space for new records: If the DBCache
becomes full, the OS purges records that are not locked in memory. If the records
are modified, and then they are committed back to flash memory. The purging of
data takes place in the background and is seamless to the user. You should be
aware that there are some performance issues associated with this method. There
may be a noticeable time difference in performance compared to earlier devices
when a large amount of data is flushed back from the cache into the NAND flash
memory.

Programming on devices that have NVFS
The changes in how NAND flash works, as opposed to NOR flash, require some
changes in how you program for the new devices and future devices. Although all
applications should run basically without much modification, there may be some
cases that require special handling, such as those that deal with very large
databases (over 5MB). Some of these cases are discussed in this section.

Checking for NVFS
To check if a device includes NVFS, use the following command:

FtrGet (sysFtrCreator, sysFtrNumDmAutoBackup, &returnVal);

If the returnVal is 1, NVFS is present on the device. sysFtrNumDmAutoBackup is
defined in the PmPalmOSNVFS.h header file.

Database issues
One of the issues with the DBCache area is that if a device loses power when a user
is modifying a database, all modifications are lost, because database changes are

NVFS API

79

committed back into the NAND flash only when the database is closed. This also
occurs when users remove the battery from Treo 650 smartphones.

NOTE There is no way to determine programmatically that the battery is about to be
removed.

To overcome this problem, you might want your applications to call the
DmSyncDatbase() API. This API ensures that database changes are committed to
NAND flash. (Note that the DmSyncDatbase() API has nothing to do with the
HotSync® feature.) DmSyncDatabase() takes a reference to the open database that
needs to be synchronized. To use DmSyncDatabase(), you need the new
PmPalmOSNVFS.h header file from the palmOne SDK.

There may be a case in which there is space in DBCache while the storage heap is
full. Database creation and modification may work in this case, but
DMCloseDatabase() may fail, because the database data cannot be committed to the
storage heap.

To check the free bytes or size of DBCache, use MemFreeBytes() and set the high bit
of the heap id as follows:

MemHeapFreeBytes(STORAGE_HEAP_ID | dbCacheFlag, &free, &max);

The call MemHeapFreeBytes(STORAGE_HEAP_ID, &free, &max); returns the free bytes
in the storage in the NAND flash part of the memory.

To discover the size of the user store or DBCache area, you can use the Palm OS
API MemHeapSize with the same values for the STORAGE_HEAP_ID described above.

Applications that work with resource databases larger than the size of the
DBCache area can directly access the internal file volume as described in the next
section, or split the data in databases to span multiple databases.

Accessing the internal file volumes in NVFS
The volume housing the storage heap can be accessed using the
VFSVolumeEnumerate() function as follows:

#define vfsIteratorStart 0L
#define vfsIteratorStop 0xffffffffL

UInt32 volIterator = vfsIteratorStart | vfsIncludePrivateVolumes; //
0x80000000L is the flag passed in to include the private volume...

while (volIterator != vfsIteratorStop)
{

if ((err = VFSVolumeEnumerate(&otherVolRefNum, &volIterator)) ==
errNone) {

err = VFSVolumeInfo(otherVolRefNum, &volInfo);
if (err)

 goto Done;
if (volInfo.attributes & vfsVolumeAttrHidden)
{
// This is an internal file volume. Perform actions now...
}

80

Chapter 7 System Extensions

}
}

After you retrieve the volume reference number, the volume can be accessed by
VFSMgr as with any other volume. If the vfsIncludePrivateVolumes flag is omitted,
the private volume is not enumerated. So, for example, in a Treo 650 smartphone,
the preceding code enumerates a private volume and the SD slot’s volume.
vfsIncludePrivateVolumes is defined in the PmPalmOSNVFS.h header file.

Applications that must access the private volume directly to store files in the FAT
file system can do so if they are having problems working with large databases
because of the DBCache size. You should use the private volume sparingly,
however, because overuse cuts into the user storage space.

Similarly, you can use the Expansion Manager to see the private volume as a
separate internal slot if it is used with the following flag:

#define expIteratorStart 0L
#define expIteratorStop 0xffffffffL

UInt32 slotIterator = expIteratorStart | expIncludePrivateSlots; //
0x80000000L is
flag passed in to include private slot;

while (slotIterator != expIteratorStop)
{

if ((err = ExpSlotEnumerate(&slotRefNum, &slotIterator)) ==
errNone)

{
// Perform actions now...

}
}

Other than the private volume, some devices may include a separate internal file
volume that can be used for file storage. Tungsten T5 handhelds, for example, have
an internal file volume that is available as an internal drive. The following code
enumerates two volumes: the internal file volume and the SD slot volume. You can
use vfsVolumeAttrNonRemovable to check whether a volume is nonremovable, thus
indicating that it is an internal volume. You need the new PmPalmOSNVFS.h header
file from the palmOne SDK to do so. The PalmSource SDK may not have the flag
defined. You can use the vfsIncludePrivateVolumes flag to access the third private
volume in a Tungsten T5 handheld.

UInt32 volIterator = vfsIteratorStart;

while (volIterator != vfsIteratorStop)
{

if ((err = VFSVolumeEnumerate(&otherVolRefNum, &volIterator)) ==
errNone) {

err = VFSVolumeInfo(otherVolRefNum, &volInfo);
if (err)
 goto Done;
if (volInfo.attributes & vfsVolumeAttrNonRemovable)
{

// This is the internal file volume. Perform actions now...
}

5-Way Navigation and Keyboard API

81

}
}

Similarly, you can use the Expansion Manager to access the slots by using the
capability flags expCapabilityNonRemovable and expCapabilityHidden from the
ExpCardInfoType structure to check the slot details. You may need the new
PmPalmOSNVFS.h header file from the palmOne SDK for these flag definitions.

Feature pointer issues
Because feature pointers are allocated in the DBCache, it is possible to run out of
space if you open a very large database. Even if the user store in the NAND flash
has free space, a feature pointer call such as FtrPtrResize can fail if the DBCache
is full. Query the free bytes in DBCache and take the appropriate actions as
mentioned in the preceding sections if you allocate large feature pointers or if you
are using feature pointers while working on large databases.

5-Way Navigation and Keyboard API
Available on:
■ Treo 600 and Treo 650 smartphones

■ Tungsten T5, Tugnsten™ T3, Tungsten™ E, and Tungsten™ C handhelds

■ Zire™ 31 and Zire™ 72 handhelds

This section describes the software associated with the 5-way navigation button.

In addition to the information provided here, you can refer to the sample code in
the SDK for information on how to use this module.

82

Chapter 7 System Extensions

5-way navigation terminology
The terms object focus mode, application focus mode, tab order, and action buttons and
interaction mode appear throughout this section. A short description for each of
these terms follows:

■ Object focus mode refers to the state when a form’s focus is enabled and the 5-way
keys are used for navigation.

■ Application focus mode refers to the state when a form’s focus is not enabled and
Up and Down are used as page-up and page-down keys.

■ Tab order refers to the horizontal ordering of the objects or, in other words, the
order in which objects receive the focus when Right is pressed repeatedly.

■ Action buttons refers to the command buttons that are lined up along the bottom
of a form.

■ Interaction mode refers to the state when the 5-way keys interact with the object
rather than move the focus. For example, a field object is in interaction mode
when the 5-way keys move its insertion point and a list object is in interaction
mode when the 5-way keys move a highlight through the lists items.

Overview of 5-way navigation
The navigation model is two-dimensional. Left and Right move the focus
horizontally, while Up and Down move the focus vertically.

Depending on the object type of the object that has the focus, Center either
simulates a tap on the focused object or toggles the interaction mode of the focused
object.

To support this functionality, the system was expanded to generate and handle
additional navigation events. These include 5-way key events and the focus
change events. The events are handled when an application calls
FrmDispatchEvent(). During such a call, the events are handled in the following
manner. (Note that steps 2 and 3 are part of FrmHandleEvent().):

1. The current form’s custom event handler receives the event.

This is when the application can override default navigation behavior. If the
handler returns true, no more event processing occurs and steps 2 and 3 are
never reached.

2. If the event is a key event, the focused object’s type is obtained. If the event is a
focus change event, the type of the object specified in the event is obtained.

The handler specific to the object type obtained is then called on the event. (For
example, CtlHandleEvent() is called if the object is a control.) The various object
type handlers have been expanded to handle navigation events that are
associated with type-specific navigation behavior. If the handler returns true,
no more event processing occurs and step 3 is never reached.

3. A generic focus handler is called on the event. This handler is primarily
responsible for moving the focus in the form.

5-Way Navigation and Keyboard API

83

Navigation events
The Treo 600 smartphone, the Treo 650 smartphone, and the Tungsten T5 handheld
not only generate keyDown events for keys, but they also generate keyHold and
keyUp events for keys. A keyHold event is generated when a key is held for 1 second
and a keyUp event is generated when a key is released. keyHold and keyUp events
have the same fields as keyDown events—character field, modifiers field, and key
code field.

When object focus mode is on, the 5-way button generates keyDown, keyHold, and
keyUp events with the following character values: vchrRockerUp, vchrRockerDown,
vchrRockerLeft, vchrRockerRight, and vchrRockerCenter.

When object focus mode is off, the 5-way button generates keyDown, keyHold, and
keyUp events with the following character values: vchrPageUp, vchrPageDown,
vchrRockerLeft, vchrRockerRight, and vchrRockerCenter.

The page keys are enqueued when object focus mode is off so that forms that are
not 5-way navigation–aware do not lose their paging functionality.

Focus change events are generated as the navigation focus moves in a form.
A frmObjectFocusTake event is sent when an object should take the focus. The
system’s internal focus structures are updated when the event is handled, not when
it is sent. A frmObjectFocusLost event is sent after an object has lost the focus. The
system’s internal focus structures have already been updated when this event is
sent. Therefore, it simply initiates the redrawing of the object that lost the focus.

Option and Shift modifiers
Treo 600 and Treo 650 smartphones have Option and Shift keys. If the Option key
is held down while the 5-way button is pressed, the optionKeyMask in the 5-way
button’s key events is set. Similarly, if the Shift key is held down while the 5-way
button is pressed, the shiftKeyMask in the 5-way button’s key events is set.

These masks allow applications to assign secondary features and functionality to
the 5-way button on the Treo 600 and Treo 650 smartphones.

Including objects as skipped objects
Editable fields, tables with fields, pop-up triggers, and selector triggers
automatically get navigation focus when the user taps them. If the object is not in
the tab order, then the system simply moves the focus to the first object in the tab
order when the user presses a directional button after tapping the object. Such a
movement of the focus may not make sense to the user.

To ensure that focus movement is always logical to the user, such objects should be
included in the tab order but marked as skipped by setting the
kFrmNavObjectFlagsSkip flag. This flag can be set through FrmSetNavEntry(),
through FrmSetNavOrder(), or in a navigation resource. The object is skipped when
the user moves the focus with the 5-way buttons, but the system knows how to
move the focus from the object after the user taps it.

84

Chapter 7 System Extensions

Default navigation
If a form does not have a navigation resource, the system determines the
navigation order for the form dynamically. It determines whether the form is
initially in object focus mode or application focus mode, which UI objects can
receive the focus, the tab order, the vertical order, where the focus begins, and
whether the focus cycles.

IMPORTANT To truly support 5-way navigation, we highly recommend that an
application have fnav resources in its resource file rather than rely on the default
navigation order.

Initial focus mode
Forms are separated into modal and nonmodal forms. The window of a modal
form has the modal flag set. You can check this flag by calling WinModal() on the
form’s window. All other forms are considered nonmodal.

Initially, modal forms are placed in object focus mode, and nonmodal forms are
placed in application focus mode. You can programmatically change the mode of
a form with FrmSetNavState().

UI objects included in the navigation order
All UI objects in a form are included in the navigation order. However, during form
initialization, only the following objects are not marked as skipped:

■ Usable, enabled controls (controls include command buttons, push buttons,
check boxes, pop-up triggers, selector triggers, repeating buttons, sliders, and
feedback sliders)

■ Usable lists

■ Usable, editable fields

NOTE An application can clear the skipped flag for any object in the form by calling
FrmSetNavOrder() or FrmSetNavEntry().

If an object is not initially included in the default order, it is not included later if it
becomes a valid focus object. For example, if a control that was initially disabled is
enabled, it is not included in the default order when it is enabled.

However, objects that were initially included in the default order that later become
invalid focus objects are skipped. For example, if a field was initially editable and
was later made noneditable, it is skipped.

5-Way Navigation and Keyboard API

85

Tab order
The tab order is determined by taking the UI objects that can receive the focus and
sorting them by their left coordinate and then their top coordinate. A stable sort is
used (insertion sort) so that after sorting:

■ Objects are sorted by their top position.

■ Objects with the same top position are sorted by their left position.

Vertical order
The objects in the vertical order are a subset of those in the tab order. The vertical
order is determined by iterating from the first object in the tab order to the last and
including only the following objects:

■ The first object

■ Any subsequent object that is completely below the previously included object

This algorithm results in only the leftmost objects of the form being included in the
vertical order.

Because the vertical order may not include all the objects in the tab order, some
objects that can receive the navigation focus cannot be navigated to by only using
the Up and Down keys. In other words, navigating to objects that are in the tab
order but not in the vertical order will require some use of the Left or Right key. For
example, consider the following dialog box:

The check box and the OK button are the leftmost objects in their row and therefore
are the objects in the vertical order. To get to the Cancel button from the top check
box, the user would have to press Down and then Right. There is no way to get to
the Cancel button by using only the Up and Down keys.

If an object that was initially usable and was part of the vertical order is later made
nonusable, and an application has not made any changes to the order through the
navigation API functions, the vertical order is recalculated using the algorithm
previously described. The vertical order is not recalculated when an application
has made changes to the order, to ensure that the application’s changes are not
overridden.

86

Chapter 7 System Extensions

Initial focus
If there are any action buttons, the focus is initially given to the leftmost one.
If there are no action buttons, the focus is given to the first object in the tab order.

The first action button is identified using the following rules:

■ The usable, enabled objects with the greatest top coordinate values are
identified. In other words, the objects in the form’s bottom row are identified.

■ The first action button is the leftmost command button among those objects.
If there are no command buttons among these objects, the focus is given to the
first object in the tab order.

Cycling
On the Treo 600 smartphone, the Treo 650 smartphone, and the Tungsten T5
handheld, the focus never cycles horizontally. When the focus is on the first object
in the tab order, pressing Left does not move the focus to the last object, and when
the focus is on the last object, pressing Right does not move the focus to the first
object.

Although the focus never cycles vertically on Treo 600 smartphones, the focus does
cycle vertically in modal dialog boxes on Treo 650 smartphones and Tungsten T5
handhelds. On Treo 600 smartphones and in nonmodal dialog boxes on Treo 650
smartphones and Tungsten T5 handhelds, when the focus is on the top object in the
vertical order, pressing Up does not move the focus to the bottom object, and when
the focus is on the bottom object, pressing Down does not move the focus to the top
object. In modal dialog boxes on Treo 650 smartphones and the Tungsten T5
handheld, pressing Up while the focus is on the top object does move the focus to
the bottom object, and pressing Down while the focus is on the bottom object does
move the focus to the top object.

Custom navigation
Applications can customize navigation by providing a navigation resource for a
form, by making navigation API calls, and by handling navigation events.

Hex navigation resource
A navigation resource specifies what UI objects in the form are included in the
navigation order, what the tab order is, what the vertical order is, whether the focus
is initially on or off, where the focus begins, where the focus can move, and what
the bottom-left object is. (The bottom-left object information is needed to cycle the
focus from the top of the form.)

IMPORTANT As mentioned before, we recommend that an application include fnav
resources in its resource file rather than rely on default navigation order.

For the system to detect a navigation resource, the navigation resource must be in
the same database as its associated form. For the system to detect that a form has a

5-Way Navigation and Keyboard API

87

navigation resource, the navigation resource must be in the same database as the
form.

Technically, an application only needs a navigation resource if the behavior is not
the correct behavior for a form. However, the creation of navigation resources for
all forms that have navigation is recommended because the default navigation
order may be different on various platforms and some platforms may not even
provide a default navigation order.

The resource is a hex resource of type formNavRscType (fnav). It is defined as a 68K
format (big endian) resource.

The term “hint” is appended to the name of those fields that are used only by some
platforms. For example, the bottomLeftObjectIDHint is used only by those
platforms that have their focus cycle from the top of the form to the bottom. If an
application specifies a value for this field, it will run properly on platforms that do
cycle and platforms that do not cycle.

The navigation resource has a header section and a list-of-objects section. The
format of the header is described in the API guide.

PilRC navigation resource
The PilRC resource compiler supports a navigation resource format that is easier
to create than the HEX resource just described. Many of the fields required by the
HEX resource are optional in the navigation resource and a navigationmap that
allows UI objects to be specified in row-column fashion is supported. This format
is supported starting with PilRC 3.0 and is documented in the manual packaged
with PilRC. PilRC can be obtained at http://pilrc.sourceforge.net.

Objects that become nonusable
The system skips over nonusable objects when a user moves through the tab order.
Objects that reside in the same position in the form and are alternately shown
should therefore be placed next to each other in the tab order and have the same
above and below objects.

If an object in the vertical order becomes nonusable, and the user navigates up to
it, the object above receives the focus instead. The down case works the same way,
except that the object below the nonusable object receives the focus. If you want an
application to behave differently, use the API calls to explicitly set which object
should replace the nonusable object in the vertical order.

Handling navigation events
System navigation behavior is executed when FrmHandleEvent() receives a
navigation event. Because FrmDispatchEvent() calls a form’s custom event handler
before calling FrmHandleEvent(), a form can easily override default navigation
behavior by handling navigation events in its custom event handler.

As explained earlier, the system’s internal focus structures are updated when a
frmObjectFocusTake event is handled, not when it is sent. Therefore, an application
must explicitly call FrmSetFocus() on the event’s associated object if it handles a
frmObjectFocusTake event.

http://pilrc.sourceforge.net

88

Chapter 7 System Extensions

A frmObjectFocusLost event is sent after an object has lost the focus. The internal
focus structures will have already been updated when this event is sent. Therefore,
an application does not have to do anything besides implement its desired custom
behavior if it handles a frmObjectFocusLost event.

With tables and gadgets, applications must intercept navigation events. These UI
object types have minimal default behavior, if any.

For example, when an application has a table that is included in the focus order,
the application might perform the following actions in its custom handler:

■ frmObjectFocusTake event for table:

Call FrmSetFocus() on the table, highlight the first row of the table, and return
true.

■ frmObjectFocusLost event for table:

Unhighlight row in table and return true.

■ An Up keyDown event when table has the focus:

If the highlight is not on the table’s top row, move the highlight up a row, and
return true.

■ A Down keyDown event when table has the focus:

If the highlight is not on the table’s bottom row, move the highlight down a row,
and return true.

In general, it is assumed that most modal forms do not alter the default navigation
behavior, while most nonmodal forms do. That is why navigation is automatically
enabled only for modal forms. Nonmodal forms are usually the main views of an
application and therefore require a lot of custom behavior.

5-Way Navigation and Keyboard API

89

Focus treatment
The functions that draw UI objects are updated to know how to draw the new
visual states introduced by navigation. The system uses a blue square ring, a blue
rounded ring, or blue bars to indicate that an object has the focus:

CtlDrawControl() checks whether the control it is drawing has the navigation
focus, and draws a focus ring around the control if it does.

FldDrawField() checks whether the field it is drawing has the navigation focus.
The function then checks whether the field is in interaction mode. If it is not in
interaction mode, the function draws focus bars above and below the field and
does not draw the insertion point. If it is in interaction mode, the function draws
the field normally and draws the insertion point.

If LstDrawList() is drawing an embedded list, it checks whether the list has the
navigation focus. The function then checks whether the list is in interaction mode.
If it is in interaction mode, the function draws a focus ring around the temporarily
selected item. If it is not in interaction mode, the function draws a focus ring
around the entire list.

90

Chapter 7 System Extensions

API functions are provided if you want to draw focus rings around objects other
than controls, fields, and lists in your application. On the Treo 600 smartphone, the
functions are HsNavDrawFocusRing(), HsNavRemoveFocusRing(), and
HsNavGetFocusRingInfo(). On the Treo 650 smartphone and the Tungsten T5
handheld, the functions are FrmNavDrawFocusRing(), FrmNavRemoveFocusRing(),
and FrmNavGetFocusRingInfo().

The system ensures that no more than one ring is ever drawn on a form. If a ring is
being drawn and there is already a ring on the form, the system removes the ring
already displayed on the form before drawing the new ring. A ring drawn with
HsNavDrawFocusRing() or FrmNavDrawFocusRing() should never be directly erased.
If you want your application to remove the ring, it should call
HsNavRemoveFocusRing() or FrmNavRemoveFocusRing().

On Tungsten T5 handhelds, when the Active Input Area is collapsed or expanded,
the system automatically removes any focus ring before the area is collapsed or
expanded and, after the area has been collapsed or expanded, sends a
frmObjectFocusTake event with the ID of the object that had the focus ring.

Navigational API and behavioral differences between Treo™ 600 smartphones, Treo 650
smartphones, and Tungsten™ T5 handhelds

This section describes navigational differences between the Treo 600 smartphone,
Treo 650 smartphone, and Tungsten T5 handheld.

Palm OS Features
Treo 600 smartphones, Treo 650 smartphones, and Tungsten T5 handhelds all set
the hsFtrIDNavigationSupported feature. The feature’s creator is hsFtrCreator. The
value of the feature is the version number of the palmOne navigation API. On
Treo 600 smartphones the version is 1, and on Treo 650 smartphones and
Tungsten T5 handhelds the version is 2.

Treo 650 smartphones and Tungsten T5 handhelds also set the
sysFtrNumFiveWayNavVersion feature. The feature’s creator is sysFileCSystem. The
value of the feature is the version number of the PalmSource navigation API. On
both Treo 650 smartphones and Tungsten T5 handhelds, the version is 1. Version 2
of the palmOne navigation API and version 1 of the PalmSource navigation API
are the same.

Treo 600 smartphones with software = 1.12, Treo 650 smartphones, and
Tungsten T5 handhelds set the sysFtrNumUIHardwareFlags feature. The feature’s
creator is sysFileCSystem. The value of this feature is a bit field that describes what
hardware is available on the device. The bit definitions used with the feature’s
value are as follows:

■ sysFtrNumUIHardwareHard5Way:

The device has a 5-way rocker.

■ sysFtrNumUIHardwareHasThumbWheel:

The device has a thumb wheel.

5-Way Navigation and Keyboard API

91

■ sysFtrNumUIHardwareHasThumbWheelBack:

The device has a thumb wheel with a Back button.

■ sysFtrNumUIHardwareHasKbd:

The device has a dedicated keyboard.

On Treo 600 smartphones with software = 1.12, Treo 650 smartphones, and
Tungsten T5 handhelds, the sysFtrNumUIHardwareHas5Way is set. On Treo 600
smartphones with software = 1.12 and on Treo 650 smartphones, the
sysFtrNumUIHardwareHasKbd is also set.

NOTE The feature not being set on the original Treo 600 smartphone software was
an oversight. This problem was fixed with software update 1.12 available from the
palmOne Customer Support download area.

The Tungsten T5 handheld no longer supports the navFtrVersion feature
supported on Zire handhelds and earlier Tungsten handhelds.

Functions
Treo 600 smartphones and Treo 650 smartphones support HsNavDrawFocusRing(),
HsNavRemoveFocusRing(), HsNavGetFocusRingInfo(), and HsNavObjectTakeFocus()
calls. Treo 650 smartphones and Tungsten T5 handhelds support
FrmNavDrawFocusRing(), FrmNavRemoveFocusRing(), FrmNavGetFocusRingInfo(),
and FrmNavObjectTakeFocus() calls.

Except for the prefix differences in their names, these functions work exactly the
same way. Applications should transition to using the FrmNav API calls, because the
HsNav calls are deprecated and remain only on Treo 650 smartphones for Treo 600
smartphone backward compatibility.

IMPORTANT Do not make HsNav calls on Tungsten T5 handhelds. HsNav calls made
on Tungsten T5 handhelds will fail, most likely with a Sys0505 error, which means
that the module that exports the function is not on the handheld.

Because Treo 600 smartphones support only the HsNav version of these calls and
Tungsten T5 handhelds support only the FrmNav version of these calls, applications
intended to run on both devices must check their context before making these calls.
The suggested method is to check the version number of the
hsFtrIDNavigationSupported feature and decide whether to make an HsNav call or
a FrmNav call based on the version value. Specifically, HsNav calls should be made if
the version is 1, and FrmNav calls should be made if the version is 2. The decision
about what call to make must be made at runtime. For example:

if (FtrGet (hsFtrCreator, hsFtrIDNavigationSupported, &version) == 0)
 {
 if (version == 1)
 HsNavObjectTakeFocus (formP, objID);
 else // if version >= 2

92

Chapter 7 System Extensions

 FrmNavObjectTakeFocus (formP, objID);
 }

Associating custom behavior with the Center button
Treo 600 smartphones, Treo 650 smartphones, and Tungsten T5 handhelds
generate the following key events for Center button actions:

On Treo 600 smartphones, associating custom behavior with the Center button
simply entails handling the vchrRockerCenter keyDown event. Applications can
handle the other events as well, although most applications will not need to. If an
application handles the other events, it is responsible for making sure that multiple
actions are not triggered by the Center button. For example, an application that
performs an action on keyUp should ensure that no action is performed on keyDown.

On Treo 600 smartphones, by default, a Center button press and hold does nothing
different from a Center button press. On Treo 650 smartphones and Tungsten T5

Action Treo 600 smartphone Treo 650 smartphone and
Tungsten T5 handheld

Press keyDown event with
chr=vchrRockerCenter,
keycode=keyRockerCenter, and
modifiers=commandKeyMask.

keyDown event with
chr=vchrHardRockerCenter,
keycode=keyRockerCenter, and
modifiers=commandKeyMask.

Continuous
Press

keyDown event with
chr=vchrRockerCenter,
keycode=keyRockerCenter, and
modifiers=autoRepeatKeyMask |

commandKeyMask.

keyDown event with
chr=vchrHardRockerCenter,
keycode=keyRockerCenter, and
modifiers=autoRepeatKeyMask |

commandKeyMask.

Held for 1
second or
longer

keyHold event with
chr=vchrRockerCenter,
keycode=keyRockerCenter, and
modifiers=commandKeyMask.

keyHold event with
chr=vchrHardRockerCenter,
keycode=keyRockerCenter, and
modifiers=commandKeyMask.

Release keyUp event with
chr=vchrRockerCenter,
keycode=keyRockerCenter, and
modifiers=commandKeyMask.

keyUp event with
chr=vchrHardRockerCenter,
keycode=keyRockerCenter, and
modifiers=commandKeyMask.
(Consumed by SysHandleEvent if
the system handled keyHold of
vchrHardRockerCenter.)

keyDown event with
chr=vchrRockerCenter,
keycode=0, and
modifiers=commandKeyMask. (If
the keyDown event
vchr=vchrHardRockerCenter is
not handled and the system does
not handle the keyHold event of
vchrHardRockerCenter.)

5-Way Navigation and Keyboard API

93

handhelds, however, if the Center button is pressed and held, the Attention dialog
box is displayed.

As such, on Treo 650 smartphones and Tungsten T5 handhelds, an application
cannot associate an action with the press of the Center button because it is not yet
known whether the Center button is going to be pressed or pressed and held. If an
application associates an action on press and then the button is pressed and held,
two actions will be triggered by the Center button. On Treo 650 smartphones and
Tungsten T5 handhelds, actions should occur on the release of the Center button
and only if the Center button was not held.

To minimize the changes required to make Treo 600 smartphone applications work
with Treo 650 smartphones and Tungsten T5 handhelds, on these devices a
vchrRockerCenter keyDown event is generated on Center button release rather than
on press, and it is only generated on release if the Center button was not held.

This means that an application can safely handle any vchrRockerCenter keyDown
event it receives without the Center button triggering multiple actions. The
application need not check to see if it is running on a Treo 600 smartphone, nor
does it need to determine whether the Center button is held before handling the
event. This also means that a continuous press keyDown event, a keyHold event, and
a keyUp event for vchrRockerCenter are not generated on Treo 650 smartphones and
Tungsten T5 handhelds. See the next section for what new events are generated on
Treo 650 smartphones and Tungsten T5 handhelds.

New Center button events for Treo 650 smartphones and Tungsten T5 handhelds
vchrHardRockerCenter key events are generated on Treo 650 smartphones and
Tungsten T5 handhelds in the same fashion that vchrRockerCenter key events are
generated on Treo 600 smartphones. Only Treo 650 smartphone and Tungsten T5
handheld applications that need more information on the state of the Center
button than what the vchrRockerCenter keyDown event provides need to handle
vchrHardRockerCenter key events.

The system will not handle a vchrHardRockerCenter keyHold event if a form’s
custom handler, the handler associated with a form by FrmSetEventHandler,
handles a vchrRockerHardCenter keyDown event. This prevents an action from
occurring on both the press and hold of the Center button.

If an application did not handle the vchrHardRockCenter keyDown event and the
system did not handle the vchrHardRockerCenter keyHold event, a keyDown event
with chr=vchrRockerCenter, keycode=0, and modifiers=commandKeyMask is
generated on release.

Even though an application can handle Center presses, doing so is not
recommended because it prevents the Attention dialog box from being displayed
when the Center button is held.

94

Chapter 7 System Extensions

Paging
On Treo 650 smartphones and Tungsten T5 handhelds, paging through lists of
records or through lines of text is easier than it is on Treo 600 smartphones. On Treo
600 smartphones, when the focus is on a multiline field that is not in interaction
mode, Up and Down move the focus off the field and to the object above or below.
On Treo 650 smartphones and Tungsten T5 handhelds, Up and Down still move
the focus to the object above or below if the top or bottom line of text is showing.
However, if the top or bottom line of text is not showing, then Up and Down pages
the field’s text up or down. Only after the top or bottom is reached and Up or
Down is released and pressed again does the focus move to the object above or
below. Users can still easily move the focus off the field by pressing the Center
button if the field is in interaction mode, and then pressing Left or Right. Focus
bars above and below a field convey that Up and Down behave in this manner.

Navigation behavior for tables is to be completely implemented by third-party
applications. For tables in palmOne applications, the same paging behavior the
system uses for multiline fields is used for Up and Down. Additionally, if a table
uses Center to open a record, Left takes the table out of interaction mode. Without
this extra functionality added to the Left button, there would be no easy way to
move the focus off a table.

For consistency’s sake and to ensure a good user experience, we recommend that
third-party applications follow these navigation conventions in their tables as well.

Palm navigation macros
The navigation macros supported on Tungsten and Zire handhelds also work on
Treo 650 smartphones and Tungsten T5 handhelds. They continue to be supported
to help minimize the code paths that an application needs to take to run on
multiple devices. The details of these macros are thoroughly documented in the
palmOneNavigator.h header file.

Tips and pitfalls

Navigation Order
■ Application developers must create a navigation resource any time they have a

form whose initial navigation order is not the default navigation order.
FrmSetNavOrder() and FrmSetNavEntry() are not intended to replace the use of
navigation resources. A form that should initially have a custom navigation
order should always have a navigation resource.

Having the navigation information available at the time the system initializes
the form is much cleaner than having the system initialize the form with the
default navigation order and then having the order changed when the
application performs its own form initialization. FrmSetNavOrder() and
FrmSetNavEntry() are mainly for dynamically created forms or forms with
navigation orders that change sometime after form initialization.

■ For forms that are “navigation-aware” (that is., forms that have a navigation
resource and/or call navigation API functions), we do not automatically update

5-Way Navigation and Keyboard API

95

the vertical navigation order as object attributes are changed, as objects are
included in the order, or as objects are excluded from the order.

Application developers may have the expectation that the vertical order will
automatically be updated because we do automatically update the vertical
navigation order of forms that are not “navigation-aware”. We are not, however,
comfortable automatically determining the navigation order for all forms. We
do so only when we have to—when a form does not know about navigation.

If a form knows about navigation, it is the developer’s responsibility to specify
the proper vertical order through a navigation resource and then update the
vertical order as needed.

■ Developers can enable basic navigation for existing applications by simply
creating navigation resources for the application’s forms and including the
resources into the application’s existing .prc.

■ Popup lists do not technically receive the navigation focus. When they are not
popped-up, they are not usable and therefore cannot receive the focus. When
they are popped-up, the rocker keys have dedicated functionality—regardless
of whether object focus mode is on or which object has focus. Therefore, there is
no need to put popup lists in a custom navigation order (although no problems
arise if they are placed in the order).

If a form is using the default navigation order, the popup list will be included
in the order but will most likely be marked as skipped (because the list will most
likely not be usable when the form is initialized).

Focus
■ Although FrmSetFocus() gives the focus to the specified object, it does not

redraw the object. To give focus to a system-supported navigation object
(controls, fields, or lists), an application should call HsNavObjectTakeFocus() on
the object. HsNavObjectTakeFocus() sends a frmObjectFocusTake event for the
object and FrmHandleEvent() processes the event by calling FrmSetFocus() on
the object and redrawing the object.

■ The effects of calling FrmSetFocus() to set the navigation focus will be lost if
FrmSetFocus() is called in response to a frmOpen event. This is because a
frmObjectFocusTake event that sets the form’s initial navigation focus is sent
just after the frmOpen event.

To properly give an object the initial focus, a navigation resource with the object
specified as the initial focus object should be provided.

■ If the object with the navigation focus is hidden, the form will be in a state where
there is no navigation focus. The application is responsible for setting the new
focus after it hides the focused object.

If the application fails to do this and the user presses a directional rocker key
when there is no focus on the form, we will move the focus to the first object in
the tab order.

96

Chapter 7 System Extensions

Focus Rings and Redraw Problems
■ An application may run into redraw problems when it controls the drawing

and/or removal of focus rings (when they directly call HsNavDrawFocusRing()
and/or HsNavRemoveFocusRing()).

Drawing focus rings around an object and properly restoring an object when it
loses the focus ring is very tricky to do. The rings can be drawn over an object’s
frame, over another object, and over pixels directly drawn to the screen. When
the system draws and removes the ring, it takes these possibilities into account
and also contends with clipping rectangles and objects that change appearance
between when they receive the focus ring and lose the focus ring. The system
manages these complications fairly well when it is controlling the drawing and
removal of rings.

For an application to properly handle these complications as well, application
developers should have a basic understanding of the ring drawing and removal
mechanism. Before a ring is drawn, the bits behind the ring are saved. When a
ring is being removed, the bits behind the ring are restored, the object is
redrawn, and the portion of any object that was behind the ring is redrawn.

Therefore, it is important that an application always draw an object in its
normal state BEFORE drawing a focus ring around it. If the appearance of an
object with the focus ring needs to change (i.e., if an object’s bounds needs to
change) or if what’s behind the focus ring needs to change (i.e., if the
background color of the form needs to change), an application should remove
the ring, make the changes, draw the changes, and then draw the ring again.

Fields
■ To give a field the insertion point, FldGrabFocus() should be called.

FldGrabFocus() will take care of enabling the insertion point and putting the
field into interaction mode. Similarly, to take the insertion point away from a
field, FldReleaseFocus() should be called. FldReleaseFocus() will take care of
disabling the insertion point and taking the field out of interaction mode.

■ Since navigation causes fields to constantly receive and lose the insertion point,
we need a way to always set the proper shift state for a field when it receives the
insertion point. We have therefore introduced the
hsNotifySetInitialFldStateEvent notification. An application that has a field
that should always have a particular shift state should register for the
notification.

When registering, it should pass the field’s form pointer as the user data for the
notification. When it receives the notification, it should compare the active form
pointer with the form pointer passed as the user data. If the pointers match, it
should then call FrmGetFocus() to see which object has the focus. If it is the field
that it wants to set the shift state for, the application should set the shift state and
then mark the notification as handled.

Handspring extensions

97

Handspring extensions
Available on:
■ Treo 600 and Treo 650 smartphones

The Treo smartphone by palmOne was originally designed by Handspring, and
Handspring created new extensions to the Palm OS to support Treo smartphones.
You can find the details of the new APIs in the API guide available separately from
palmOne on the palmOne web site, either in the palmOneAPIGuide.chm
Microsoft Help file or the palmOneAPIGuide.html HTML Help file.

Tips and Tutorials
Available on:
■ Treo 600 and Treo 650 smartphones

■ Tungsten T5 handhelds

A framework for applications to display formatted help content is included in the
SDK. This help content serves as an on-device training tool designed to provide
customers with a quick introduction to a device, application, or accessory.

Terminology

Tips
Tips are a collection of one-screen HTML pages (Lessons) that provide succinct
usage tips for an application. These Lessons are collected into one Topic.

Tips are accessed from a menu item in the application.

Tutorial
A Tutorial is a collection of several Topics.

Tutorials are accessed through an icon in the Application Launcher instead of
directly from an application. A Tutorial consists of a menu, and a collection of ten
or fewer Topics tied together in a logical manner. For example, the Tutorial that
comes preinstalled on Treo smartphones contains Topics that provide customers
with basic instruction on using their Treo smartphone.\

On the Treo 600 smartphone, the Launcher icon for the tutorial is labeled
“Tutorial”. On the Treo 650 smartphone, the Launcher icon for the tutorial is
labeled “Quick Tour”.

Topic
A Topic is a collection of Lessons on a common theme.

A Tips file generally has one Topic, while a Tutorial file usually contains multiple
topics. Tutorial files generally have a menu page that lets the user select which
Topic they want to see. For example, the first Topic in the tutorial that comes

98

Chapter 7 System Extensions

preinstalled on the Treo smartphone, “Getting Started,” covers basic familiarity
with the Treo smartphone buttons and behavior. When you build an XML file, a
Topic is defined by Sequence tags.

Lesson
A Lesson, sometimes referred to as a page, is a single screen within a Topic.
It consists of text, images, or both. A single idea is usually conveyed by one Lesson,
but more complex ideas may require multiple Lessons.

Content

Topic titles
Topic titles should fit on a single line—generally, 25 characters or less—and should
clearly describe the logical connection between enclosed Lessons. Standard title
capitalization rules should be used. When creating a Tips file, the Topic title should
be the name of the application the Tips are about.

Lesson text
Most Lessons contain text. Standard manual writing guidelines should be used
when writing text. Text should be limited to no more than 30 words per Lesson.

Lesson images
Whenever possible, images should be used to ground the text with specific
examples of the device, application, or accessory in action. See the image creation
guidelines for more information.

Tips and Tutorial structure
Before being converted into a Palm OS® PRC file, a Tutorial or Tips is a collection
of HTML files and images organized in a directory. Components include:

■ A folder to contain the complete contents of the Tips or Tutorial. This folder is
referred to as the root content folder.

■ A menu page that lists all the available Topics. This menu page is contained in
an HTML document that is usually named index.html. Tips files that contain
only one Topic do not need a menu page.

■ An HTML page for each Lesson in each Topic:

– If the HTML page references external content such as images or JavaScript,
they must also be present within the root content folder, unless the external
content is already in the device’s ROM.

– References to external content must be relative to the root content folder, not
to any subfolders within the content. For this reason, it’s frequently easiest to
put all the content files into one folder and reference files by filename only.

– HTML pages may also reference the shared content library in the device’s
ROM. See the shared content description document for more information.

Tips and Tutorials

99

– A style sheet and JavaScript library that provide the standard palmOne Tips
and Tutorial styles and formatting are included in the shared content library
in the device’s ROM. We strongly recommend that all Tips and Tutorial
content use these files. See the shared content description document for more
information.

■ An XML document, usually named tips.xml, that defines the elements and
structure of the Tutorial or Tips.

Menu document
Tutorials have a menu document written in HTML that let users select which topic
they want to view. Tips files normally contain only one Topic, so they do not have
menu documents. The HTML document that defines the menu is usually called
index.html and contains the following elements.

Oscar-The HTML looks like it came from the Treo 600. All HTMl and
screen shots need to be updated to the new Ace/Angus style.

Head
<html>
<head>
<meta name="HandheldFriendly" content="True">
<title>Tutorial Main Menu</title>

<link rel="stylesheet" href="common/inc/style.css" type="text/css"
title="test_style">

<script language="javascript" src="common/inc/tutorial.js"></script>
</head>

Where:

■ <meta name="HandheldFriendly" content="True"> prevents the rendering
engine from transforming the content.

■ <title>Tutorial Main Menu</title> is customizable.

The content within the title tags should reflect the title of the Tutorial.

■ <link rel...> and <script language...> tell the document which style sheet
and JavaScript source file to use.

These should refer to the shared style sheet and JavaScript files in the shared
content library in the device’s ROM as shown earlier.

Body
<body onLoad="setPage('menu','');">

Where:

■ setPage is a JavaScript routine that performs cookie actions appropriate to the
type of page.

– The first parameter defines what actions should be taken. The first parameter
for a menu page should always be titled “menu.”

– On a menu page, the second parameter should be empty.

100

Chapter 7 System Extensions

Icon
<!-- icon -->
<div id="icon">

Where:

■ <div id="icon"> positions the icon.

■ points to the menu icon in the shared
content library in the device’s ROM. All menus should use this icon.

Header and Content
<!-- header -->
<div id="menu_frame">

<p class="title">Tutorial Main Menu</p>

<!-- content -->

<img src="common/img/bullet_empty.gif"
name="hsgs" width="16" height="8" border="0">Getting Started

<img src="common/img/bullet_empty.gif"
name="hskb" width="16" height="8" border="0">Keyboard Basics

<img src="common/img/bullet_empty.gif"
name="hstt" width="16" height="8" border="0">Top 10 Fun Features

<img src="common/img/bullet_empty.gif"
name="hsup" width="16" height="8" border="0">Upgrading From a Palm OS Device

Where:

■ <div id="menu_frame"> defines the position and background image for the
menu frame. This should not be changed.

■ <p class="title">Tutorial Main Menu</p> defines the color and position of the
title that will appear on the Tutorial menu page. Replace “Tutorial Main Menu”
with the title of your Tutorial. When testing your Tutorial, make sure your title
fits in the allotted space.

■ Each Topic that is to appear in your menu should be coded as follows:
<img src="common/img/

bullet_empty.gif" id="ft01" width="16" height="8" border="0">Getting

Started

– Replace get_start_1.html with the name of the HTML document that
defines the first Lesson in the Topic.

– Replace hsgs with a code uniquely identifying the Topic. This code is used
on the last Lesson of a Topic, so make a note of it for future reference. This is
used to update the bullet to a checkmark once the Topic is completed by the
user. See the built-in Quick Tour for an example of this behavior.

– Replace Getting Started with the name of the Topic.

Footer
<!-- footer -->

Tips and Tutorials

101

Scroll Up or Down and press Center to select a topic
</body>

This footer text should appear at the bottom of every menu. Do not change this
section.

Lesson document
To make it easier to understand the structure, Lesson documents should be given
a consistent naming structure. For example, the Lessons in the “Getting Started”
Topic are named get_start_1.html, get_start_2.html, get_start_3.html and so
on.

Head
<html>
<head>
<meta name="HandheldFriendly" content="True">

<title>Getting Started</title>
<link rel="stylesheet" href="common/inc/style.css" type="text/css"
title="test_style">
<script language="javascript" src="common/inc/tutorial.js"></script>’

Where:

■ <meta name="HandheldFriendly" content="True"> prevents the rendering
engine from transforming the content.

■ <title>Getting Started</title> is customizable.

The content within the title tags should reflect the title of this Topic. All Lessons
in the same Topic should use the same title. Tips files should use the name of the
application that the Tips are about as the title of all Lesson documents.

■ <link rel...> and <script language...> tell the document which style sheet
and JavaScript source file to use.

These should refer to the shared style sheet and JavaScript files in the shared
content library in the device’s ROM as shown in the example. The <script
language...> tags are necessary only on the last Lesson of a Topic.

Body
<body onLoad="setPage('end','hsgs');">

Where:

■ The last Lesson of a Tutorial Topic should have a body tag like the one shown
in the example.

■ setPage is a JavaScript routine that performs cookie actions appropriate to the
type of page.

– The first parameter defines what actions should be taken. If this is the last
Lesson in the Topic, the first parameter should be set to end.

– The second parameter should be the same as the code used to uniquely
identify this Topic on the menu page.

102

Chapter 7 System Extensions

– This is used to update the bullet to a checkmark once the Topic is completed
by the user. See the built-in Quick Tour for an example of this behavior.

■ All other Lessons should have a regular <body> tag.

Icon
<!-- icon -->
<div id="icon">

<div id="icon"> positions the icon.

 points to the icon used for this Topic.
Replace common/img/icon_gs.gif with the path to your icon image relative to the
root folder. All Lessons in the same Topic should use the same image. See the
attached image guidelines for more information.

Header and Content
<!-- header -->

<p class="title">Getting Started</p>

<!-- content -->

<P>
Congratulations on your purchase!
</P>

<P>
The following tips will help you get started.
</P>

<img src="common/img/key_fiveway.gif" width="51" height="34" class="cap_none" border="0"
style="margin: 26 5 0 5">

<P>
Press the Center navigation button to go to the next page.
</P>

<!-- arrows and text -->
<img src="common/img/arrow_down_long.gif" width="8" height="30" border="0"
style="position:absolute; top:83; left:126;">
</div>

</body>

Where:

■ <div id="content_frame"> defines the position and area in which the content
will appear. This should not be changed.

■ <p class="title">Getting Started</p> defines the title for the Topic that will
appear at the top of the screen. Replace “Getting Started” with your Topic title.
The same title should be used for all Lessons in this Topic. Tips files should use
the name of the application that the Tips are about as the title of all Lesson
documents.

Tips and Tutorials

103

■ All content should appear between <!-- content --> <img src="common/img/
spacer.gif" height="5" width="125" border="0">
 and </div>.

Lesson Content Formatting
There are several alternate ways of presenting content. In general, any Lesson may
consist of the following:

■ Text that flows vertically and horizontally in the main content frame

■ Images that flow vertically within the main content frame and float right

■ Images that flow vertically within the main content frame and float left

■ Images that flow vertically within the main content frame and are centered

■ Text or images that are removed from the flow of the main content frame and
are absolutely positioned

■ Text that appears in a graphic box on top of another image, otherwise known as
a “callout.”

In this example, all text but the word “Next” flows vertically and horizontally in
the main content frame. The image of the navigation button flows vertically within
the main content frame and floats right. The word “Next” and the arrow pointing
to the center button are removed from the flow of the main content frame and are
absolutely positioned. The HTML that defines this content is as follows:

<!-- content -->

<p>
Congratulations on your purchase! The following tips will help you get started.
</p>

img src="img/fiveway.gif" width="51" height="34" class="capp_top" borders="0">

<p>
To go to the next page, press the center navigation button.
</p>

<!-- arrows and text -->
<img src="img/arrow_down_long.gif" width="8" height="30" border="0"
style="position:absolute; top:63; left:125;">
Next

104

Chapter 7 System Extensions

Where:

■ The text that will appear within the main flow of the content frame must be set
off with paragraph tags (<p> and </p>).

■ Because HTML aligns paragraphs and images at the top of their respective
blocks, appears after the first paragraph to
align with the top of the second paragraph. The path to the image file, as always,
is defined from the root folder.

■ <img...class="cap_top"> defines the margins, which are extended—in this
case on top—to make room for a caption. The following are predefined classes
and their margins. If you need larger margins, you will need to define them
within the img tag using the style attribute.

– cap_none: top:5; right:5; bottom:0; left:5; float: right

– cap_top: top:30; right:5; bottom:0; left:5; float: right

– cap_left: top:5; right:5; bottom:0; left:30; float: right

■ defines the path from the root folder
to the arrow image. You’ll find predefined arrows in the attached template
documentation; use those as a template if you create your own. Within the img
tag is the style attribute: <img...style="position:absolute; top:52;
left:126;">. Use this syntax to place elements exactly, always defining distance
from the top-left corner at 0,0 pixels.

■ is used to absolutely
position text. Always define distance from the top-left corner at 0,0 pixels.

This is an example of a callout. The following code generates the callout:

<table border="0" width="80" cellspacing="0" cellpadding="0" align="left" >

<tr>
<td></td>
<td></td>
<td></td>

</tr>
<tr bgcolor="#CCFFCC">

<td></td>
<td>When on a call, press Center to Hang Up, or Right to choose another option.</

td>
<td></td>

Tips and Tutorials

105

</tr>
<tr>

<td></td>
<td></td>
<td></td>

</tr>
</table>

Where:

■ and
absolutely positions the entire callout on the screen.

Always measure to the top and left of the block being positioned from the top-
left corner of the screen at 0,0 pixels.

■ <table border="0" width="80" cellspacing="0" cellpadding="0"

align="left"> starts the table that will draw the callout.

The width can be adjusted to accommodate content, but should be no wider
than 90 pixels.

■ In the first row, <td><img src="common/img/pull_tl.gif" width="6"
height="7" border="0"></td> defines the image of the top-left corner of the
callout, <td><img src="common/img/pull_t.gif" width="68" height="7"
border="0"></td> defines the image for the top bar of the callout, and <td><img
src=" common/img/pull_tr.gif" width="6" height="7" border="0"> defines
the image for the top-right corner of the callout in the shared content library in
the device’s ROM.

Always use these graphics when creating a callout. Adjust the width of
pull_t.gif so that the width of all three images equals the width of the table.

■ In the second row, <tr bgcolor="#CCFFCC"> defines the background color of the
callout.

Always use #CCFFCC for the callout background color. <td><img src="
common/img/pull_l.gif" width="6" height="45" border="0" ></td> defines
the left-side vertical bar of the callout, and <td><img src=" common/img/
pull_r.gif" width="6" height="45" border="0" ></td> defines the right-side
vertical bar of the callout in the shared content library in the device’s ROM. The
height of these two elements should be the same, and should be adjusted to
encompass all of the text in the second cell: <td>You’ll see the number as you
dial at the top of the screen.</td>.

■ In the third row, <td><img src=" common/img/pull_bl.gif" width="6"
height="7" border="0"></td> defines the image of the bottom-left corner of the
callout, <td><img src=" common/img/pull_b.gif" width="68" height="7"
border="0"></td> defines the image for the bottom bar of the callout, and
<td>
defines the image for the bottom-right corner of the callout in the shared content
library in the device’s ROM.

Always use these graphics when creating a callout. Adjust the width of
pull_b.gif so that the width of all three equals the width of the table.

106

Chapter 7 System Extensions

Some content may be in the form of bulleted lists. Because HTML doesn’t support
indented lists, use the following code to align numbered lists:

<p class="hanging_indent">
1. Press
</p>

<p class="handing_indent">
2.Dial numbers directly from the keyboard dialpad.
</p>

<p class="hanging_indent">
3. Press Center to place the call.

Where:

■ Each list item should be enclosed in a <p class="hanging_indent"> and </p>
tag.

■ Each step is numbered individually.

XML document
An XML document, usually named tips.xml, catalogs the elements and structure
of the Tutorial. It tells the PRC file creation utilities which content should be added
into the Tips or Tutorial PRC file. It also defines the ordering of the lessons and the
structure of the topics. It is an XML-formatted file that is processed by
createTipsRsc.exe to create a standard Palm OS XRD resource file. For information
about this process or clarifications about tips.xml syntax, please examine the
source code for createTipsRsc.exe.

All XML tags and tag attributes are case sensitive.Filenames in the tips.xml file as
well as within the HTML content are case sensitive. To make things simpler and
easier, we strongly recommend that all filenames within the tips.xml file and
within all tags in the content be in lowercase letters.

The header of the XML document is formatted as follows:

<?xml version="1.0" encoding="UTF-8"?>
<Tutorial Name="Device_Tutorial " Base="Tutorial_Tips" Description="Device
Tutorial">

Where:

■ <?xml version="1.0" encoding="UTF-8"?> defines the document type. This
should not be changed.

■ <Tutorial Name="Device_Tutorial" Base="Tutorial_Tips"

Description="Device Tutorial"> needs to be edited.

Replace Device_Tutorial in both the Name and Base attributes with the name
of the PRC database that will be created by the Tips and Tutorial creation
utilities. Replace Device Tutorial with the human-readable name of the
Tutorial file you want to create when the XML document is compiled.

Tips and Tutorials

107

<Page Base="1" Default="1" File="index.html"/>

■ Tutorials may contain pages that are not part of a Topic, such as the main menu
page. The syntax shown demonstrates how this is accomplished:

– Base="1" tells the creation utilities that this is a page that is shown directly
and may load other content, as opposed to included pages such as images or
style sheets.

– Default="1" tells the creation utilities that this is the page that should be
displayed when this tutorial is first opened. Only one page in a tips.xml file
should have the Default attribute set.

■ Because the content in a Tips file is usually all in one Topic, Tips files usually do
not have this form of the Page tag in their tips.xml files.

– In a Tips file, the first page of the Topic should be flagged Default="1"

<Sequence Menu="index.html">
 <Page File="get_start_1.html"/>
 <Page File="get_start_2.html"/>
 <Page File="get_start_3.html"/>
 <Page File="get_start_5.html"/>
 <Page File="get_start_6.html"/>
 <Page File="get_start_7.html"/>
 <Page File="get_start_8.html"/>
 <Page File="get_start_9.html"/>
 <Page File="get_start_10.html"/>
 <Page File="get_start_11.html"/>
 <Page File="get_start_12.html"/>
 <Page File="get_start_13.html"/>
 </Sequence>

■ The sequence tag defines one topic. Because a Tips file usually contains one
Topic, it will usually contain one pair of Sequence tags. Tutorials usually contain
multiple Topics, so they will usually contain multiple pairs of Sequence tags.

■ For a Tutorial, the sequence tag looks like this: <Sequence Menu="index.html">.
The Menu attribute tells the system where to navigate when the Menu button is
tapped. If you’ve named the menu page something other than index.html, you
will need to change it here.

■ For a Tips file, the sequence tag looks like this: <Sequence Done="1">. The Done
attribute tells the system to show a Done button instead of a Menu button. The
Done button, when clicked, exits Tips and returns the user to the calling
application.

■ <Page File="get_start_1.html"/> tells the creation utilities what HTML pages
contain the Lessons for this Topic. Order is important in this section; the Lessons
will be shown in the same order in which the Page tags appear within the
Sequence tag.

108

Chapter 7 System Extensions

<Page File="inc\style.css"/>
<Page File="inc\tutorial.js"/>
<Page File="inc\active_call.gif"/>

■ All other files used by the Tutorial or Tips file—other than shared content
already in the device’s ROM—need to be defined here using the relative path
from the root folder. For instance, all images used by the Lesson pages must be
included here. Order is not important in this section.

Converting Tips and Tutorial content in a PRC file

What you need
The following list of utilities and guidelines are what you will need to create Tips
and Tutorials. The utilities are provided in the SDK under TipsTutorialsUtil.zip.

The contents of the TipsTutorialsUtil.zip file are as follows:

■ Content developed using the guidelines in this chapter.

■ The tips.xml file that defines the content in the shared content library in the
device’s ROM. This file should be copied into the root content folder.

■ The createTipsRsc.exe program. The Perl source code for this program is also
included for your reference.

■ The Palm-BinTool.exe program.

■ The PalmRC.exe program.

■ A creator ID for the resulting PRC file. We highly recommend that the Tips and
Tutorial PRC file have a different creator ID from that of the main application.
This is the same type of creator ID as a standard Palm OS® application and can
be obtained from the PalmSource web site.

Converting content into an XRD resource file
To convert the content into a Palm XRD file, open a command prompt and change
directory (cd) to the directory with the tips.xml file. (The tips.xml file is described
in the guidelines.) Then run createTipsRsc.

The syntax for the createTipsRsc command is as follows:

createTipsRsc -i tips.xml -o tips.xrd -c CREATORID -s
shared_content.xml -p c:\bin\palm-bintool.exe -f

Where:

■ -i specifies the input XML file.

■ -o specifies the output XRD file.

■ -c specifies the creator ID for the final PRC file. CREATORID is a filler. You should
obtain an authentic one from PalmSource.

■ -s specifies the XML file that describes the shared content library in the devices
ROM.

Tips and Tutorials

109

■ -p specifies the full path to the palm-bintool.exe file.

■ -f is an optional flag that sets the backup flag on the final PRC file. This tells the
HotSync® to back up this file and to restore it automatically after a hard reset.

■ -l is an optional flag that sets the current locale. For instance, esES.

Converting a Palm XRD resource file into a PRC
To convert the XRD file into a PRC, run PalmRC with the following syntax:

PalmRC.exe tips.xrd -p ARM -overlayFilter BASE -target 4.0 -o tips.prc

Where:

■ tips.xrd is the name of the input XRD file.

■ tips.prc is the name of the output PRC file.

Do not modify any of the other command-line parameters.

The resulting PRC file can then be placed onto the device through a normal
HotSync operation.

Displaying Tips and Tutorial content
Use the methods described in this section to display Tips and Tutorial content.

Displaying Application Tips
To display tips within an application, launch the Blazer® web browser in Tutorial
mode. The command block should be a pointer to a null-terminated string that is
the name of the PRC database containing the application tips to be displayed. After
the browser exits, the calling application is relaunched automatically.

#define myappTipsDbName "MyApp_Tips"
#define myappTipsDbNameLength 10

void DisplayTips() {
Char* startPage;
startPage = MemPtrNew(myappTipsDbNameLength + 1);
MemPtrSetOwner(startPage, 0);
StrCopy(startPage, myappTipsDbName);
AppLaunchWithCommand(hsFileCBlazer3,

sysAppLaunchWebBrowserTutorialMode, startPage);
}

110

Chapter 7 System Extensions

Displaying a Tutorial
There is little programmatic difference between displaying Tips and displaying a
Tutorial. Tips are displayed by launching the Blazer web browser in Tutorial mode
from within an application, whereas a Tutorial is displayed by launching the Blazer
web browser in Tutorial mode from a stub application that appears in the
Launcher. This stub application has two functions:

■ Provide a user-visible entry point into the Tutorial by displaying an icon in the
Launcher.

■ Launch the Blazer web browser in Tutorial mode with the command block
pointing to a null-terminated string that is the name of the PRC database that
contains the Tutorial to be displayed.

The following is an example of a stub application:

#define Tutorial_Start_Page "Tutorial_Tips"
#define Tutorial_Start_Page_Length 13

UInt32 PilotMain(UInt16 cmd, MemPtr cmdPBP, UInt16 launchFlags)
{
 if (cmd == sysAppLaunchCmdNormalLaunch) {
 Char* startPage;
 startPage = MemPtrNew(Tutorial_Start_Page_Length + 1);
 StrCopy(startPage, Tutorial_Start_Page);
 MemPtrSetOwner(startPage, 0);

 AppLaunchWithCommand(hsFileCBlazer3,
sysAppLaunchWebBrowserTutorialMode, startPage);
 }

 return 0;
}

Tips and Tutorials

111

Graphic Element Design Guidelines
This section details the graphic element design guidelines.

Tutorial Main Menu
The tutorial main menu is as follows:

5p 16p 125p

13p

31p

Icons for upper right corners: Each icon used per chapter should be
drawn in Photoshop at 30/60 degree increments using 2x1 stepping.
Each icon should face left and have a cast shadow to the right.

Indicates
clear space

Gray 1-pixel border
represents nonactive

outer white pixel

Topic icon sits in upper
right corner; (space is 35p
x 42p) do not allow text to
overlap icon (clear space)

Title bar headers
and check circles

are flush left

Menu
topics are
flush left

112

Chapter 7 System Extensions

Tutorial Content Pages

Content Page: large graphic & pull quotes
Full screens should be approximately 70% and placed on the left
side of the screen. Pull quotes should be placed to the right as
shown, with arrow pointing to area that text is referencing.
Please use arrows (and circles) that exist in the template or
request a set from palmOne.

Same clear space
(32p x 42p) applies
on content pages

Same clear space
(35p x 42p) applies
on content pages

Content Page: graphic (tall) & text
All graphics, except when they completely fill the screen, should
be placed in the lower right corner. Use arrows with or without
text to point out information and circles to call out specific
details. Small graphics should be enlarged so that they are clear.

Content Page: graphic (wide) & text
All graphics, except when they completely fill the screen, should
be placed in the lower right corner. Crop the images so that they
are recognizable.

Content Page: Text only
Clear space for the icon still applies. For “scroll up or down”
please use the same format from the Main Menu.

Content Page: graphic (centered) & text
Certain graphics will look better when centered. This is the
exception, not the rule. Note that elements such as buttons or
keys from the device should be cropped as shown above.

Graphics: All icons used in the upper right corner should be drawn in Photoshop. All other placed images, such as screen shots or
device images, must be taken from the original source files and reduced to fit into the space allowed per page. All images should
be saved out of Photoshop using “save for web” at actual size in either jpeg or gif format, whichever is smaller. For JPEG, quality
setting should be 20 or 30, depending on the image, with 0 blur. For GIF, preferences should be set to GIF 32 No Dither.

All device images are the property of palmOne, and may be used with permission.

All button or key
graphics should
appear as shown in
this screen.

Do not crop
buttons like this:

Full-Screen Writing API

113

Images that are in the shared content library in the device’s ROM
The images available directly from the device’s ROM for your own Tips and
Tutorials can be found in the utility section of the SDK available at
pluggedin.palmone.com.

Full-Screen Writing API
Available on:
■ Tungsten T5 and Tungsten T3 handhelds

■ Zire 31 and Zire 72 handhelds

This section provides reference information for the full-screen writing feature that
is programmatically provided through the GoLCD (Graffiti® 2 writing on LCD)
Manager API. You can use the functions in this API to enable or disable full-screen
writing, enable and disable the Graffiti 2 shift indicator (GSI) as a control for full-
screen writing, enable and disable Graffiti 2 inking, and even change the colors of
Graffiti 2 inking and the GSI.

The GoLCD API is declared in the header file PalmGoLCD.h.

Overview of the full-screen writing feature
Full-screen writing allows users to enter Graffiti 2 characters in the application area
of a handheld’s display as well as in the Graffiti 2 writing area.

By setting Graffiti 2 Preferences, users can enable full-screen writing and choose
whether to show, or ink, the Graffiti 2 strokes in the application area.

In each application the availability of full-screen writing is indicated by a shaded,
rectangular Graffiti 2 shift indicator (GSI) in the lower-right corner of the display.
The user can tap the GSI to turn full-screen writing off and on. The GSI appears as
an outline when full-screen writing is off, and as a solid rectangle when it is on. In
addition, the shift indicator, punctuation-mode indicator, and shift-lock indicator
appear superimposed on the shaded rectangle when the user draws the
appropriate Graffiti 2 strokes to activate those modes.

Graffiti 2 strokes in the application area are distinguished from taps on application
controls, depending on the duration and direction of tap-and-hold events. GoLCD
interprets pen events in the writing bounds of the application area, which you can
set using GoLCDSetBounds. If the pen is held down for a certain length of time and
travels significantly across the screen in the writing bounds area, GoLCD enters
goLcdGraffitiMode and interprets all pen events as Graffiti 2 strokes. GoLCD exits
goLcdGraffitiMode and stops interpreting pen events as Graffiti 2 strokes when the
pen is lifted from the screen for a certain amount of time. For more information, see
the API guide.

http://pluggedin.palmone.com/
http://pluggedin.palmone.com/

114

Chapter 7 System Extensions

115

CHAPTER 8

Applications

This chapter details the application features and APIs available in some of the
palmOne™ applications.

Web Browser API
Available on:
■ Treo™ 600 and Treo™ 650 smartphones

■ Tungsten™ T5 handhelds

The palmOne web browser is a powerful handheld web browser designed for the
Palm™ operating system that can access multiple Internet content formats,
including HTML, xHTML, cHTML and WML. With the web browser, a user can
download a wide range of web pages from the Internet and view them on the
compact screen of the user’s device. The key features of the web browser are as
follows:

■ An intuitive graphical interface

■ Support for multiple markup languages

■ Support for secure web sites

■ Two modes of display:

– Optimized mode for optimization of content for Palm OS devices

– Wide Page mode for the display of content similar to that of a desktop
browser

■ 5-way navigation support

■ Ability to download applications, ring tones, images, and more

■ A variety of new UI features including History, Saved Pages, and Beaming
Bookmarks

This section describes the various technical features of the palmOne web browser
system that allow web site designers and programmers to deliver a better web
experience.

Chapter 8 Applications

116

How the web browser works
Versions of the web browser before Blazer version 3.0 were built in a proxy
solution. The proxy server adapted pages from the remote web servers and
streamed content to the client. The client application received the content from the
proxy server and displayed the web page on the device’s screen. Since Blazer 3.0
however, palmOne web browser is a proxyless, client-only browser. (It is capable
of using a standard HTTP proxy in the same way a desktop browser would use a
proxy.)

There are several reasons why this new architecture was chosen. For one, having a
client-only solution allows devices to access more wireless service provider
services like downloads and mobile content. Furthermore, the device processing
power has reached the point where the content optimizations can be accomplished
efficiently enough on the client.

The figure below shows how the proxy-less web browser accesses web pages.

The web browser uses the standard networking library (Netlib) of the Palm OS to
make the connection to the wireless service provider infrastructure.

Web Browser Feature Overview
This section covers the various features of the web browser. This information is
useful for understanding the software requirements, the technical features, and the
various user interface elements.

Web Browser API

117

Protocol stack support
The web browser uses the internet standard HTTP stack for communications.
While the browser does support WML, there is no support for the WAP 1.x
protocol stack.

Overview of key web browser features
The web browser incorporates a number of key technical features described in this
section.

Intuitive graphical interface
The web browser’s user interface takes advantage of the screen size on devices.
Users have one-touch access to bookmarks, navigation, the home page, and new
web pages. The web browser provides users with a familiar look and feel
comparable to that of a desktop browser.

Support for multiple markup languages
The web browser supports a wide variety of markup languages. This allows users
to access a wide variety of web and wireless content from a single browser. This
also gives content providers some flexibility in determining what type of markup
language to use. The various markup languages in the palmOne web browser are
as follows. For special tags that the browser supports, please see “Palm OS
Integration Tags.”

In addition to the supported markup languages, the web browser also has
extensive support for cascading style sheets and JavaScript.

See the latest “Browser Element Spec.pdf” for the tag-level support in the palmOne
web browser available online.

Support for secure web sites
The web browser supports the following security features:

■ End-to-end security using SSL 3.0

■ 128-bit encryption using the RC-4 algorithm

■ RSA-based key exchange

Markup Language

HTML 4.01

XHTML 1.1

XHTML Mobile Profile

cHTML (iHTML)

WML 1.3

DHTML

DOM

Chapter 8 Applications

118

■ RSA-based digital signature verification for verifying the authenticity of signed
certificates, signed code, and so forth.

■ MD5 and SHA-1 secure hash algorithms

■ SSL 3.0 with server-side authentication only

■ Support for X.509 certificates

■ Indication of a secure connection by a lock icon in the toolbar or URL bar.

Optimization of content for device screens
The web browser optimizes the content to take advantage of device characteristics
such as screen size, navigation, and so forth.

Download manager
The web browser incorporates new download management technology. This
technology allows users to download files over the air using the web browser.
There are a variety of applications for this new technology:

■ Posting applications, ring tones, images, and so forth for your users to
download

■ Incorporating mechanisms in your application to either auto-check for updates
and download them, or allow the user to manually download updates

Content support
When a user attempts to download a file, the download manager first checks with
the Exchange Manager to see if a content handler has registered for that type of file.
If there is a content handler registered, then the download proceeds as normal. If
there isn’t a content handler registered, Blazer 3.0 notifies the user that they must
first install a content handler for that file type before they will be able to download
the file. Blazer 4.0 allows all non-DRM-protected content to be saved to an
expansion card, if one is present, even if there is no Exchange Manager handler for
that content type.

For example, if the user tries to download a MIDI ring tone, because there is an
application in the device’s ROM that handles MIDI, the download proceeds.
However, if the user attempts to download an Adobe Acrobat file, unless they have
an application installed on their device that handles Acrobat files and that has
registered with the Exchange Manager as a handler for Acrobat files, the user is not
allowed to proceed with the download unless the user is running Blazer 4.0 and
has an expansion card inserted in their device. If the user is running Blazer 4.0 and
has an expansion card inserted in their device, the user could download the
Acrobat file directly to the expansion card.

In order to avoid memory problems, Blazer 4.0 browser limits the size of
downloaded files to 2MB. If a user tries to download a bigger file, an error message
is displayed.

For your convenience, Blazer 4.0 lists every type currently registered in the
Exchange Manager in the HTTP Accept header.

Web Browser API

119

Download restrictions
The web browser includes the following download restrictions.

JPEG Images
Normal behavior for a browser is to render JPEG images within the browser, as
opposed to downloading them and saving them on the device. Therefore, an image
must be specially flagged if it is to be downloaded rather than rendered in the
browser. There are two ways to flag an image for download:

■ Use a descriptor file to precede the image.

The download manager treats any images called by descriptor files as a
download, and does not render them in the browser.

■ Flag the image with a special MIMEtype.

If the web browser sees an image with the following MIME type, it will know
the image is for download, not rendering: x-handspring-image/jpeg.

The only images officially supported for download are JPEG images. All other
images are rendered in the browser.

In Blazer 4.0 web browser, the user can also tap-and-hold most images to bring up
a Save As dialog box that allows the user to save the image to the Exchange
Manager or to an expansion card (if present).

Ring tones
The palmOne Ring Tone manager can only play ring tones that are under 64k. If
the user attempts to download a ring tone that is larger than 64k, they are
presented with the following message:

Multiple file downloads
There are several schemes for supporting multiple file downloads. The most
common is to combine the files in a ZIP file and then extract that file onto the
device. In order for this to work, the user must first have an application on the
device that can extract ZIP files and that registers for ZIP files with the Exchange
Manager.

Alternatively, the Nutshell installer from Ecamm Network (www.ecamm.com)
works well. You can use the installer to package multiple PRC and PDB files into a
single PRC file. When the user runs the resulting installer PRC, the installer
unpacks the PRC’s and PDB’s and installs them on the device.

http://www.ecamm.com

Chapter 8 Applications

120

Digital rights management
The download manager provides some digital rights management functionality.
Specifically, wireless service providers can specify domains from which
downloads will be forward locked which means that the file cannot be beamed,
sent, and so forth. Forward lock applies to several multimedia types. It does not
apply to PRC applications. PRC applications have built-in digital rights
management, and those rights management schemes (for example, tying usage to
HotSync® ID) should be employed at the content developer’s discretion.

Launching the web browser on Treo smartphones
If you want your application to take the user directly to a web page, the web
browser has the ability to launch a specific URL. The following code sample shows
how to launch the web browser and go to a specific web page.

static void
LaunchBlazerWithURL(Char* urlP)
{

Err err = 0;
UInt16 cardNo;
LocalID dbID;
DmSearchStateType searchState;
Char* url;

// first check if web browser is installed
err = DmGetNextDatabaseByTypeCreator(true, &searchState, sysFileTApplication,

hsFileCBlazer3, true, &cardNo, &dbID);
if (err)

{
// Display appropriate error dialog...
return;

}
// ok, now let's call the web browser with the URL. Must first copy the URL,
// because it will be disposed of by the system after the browser exits
url = MemPtrNew(StrLen(urlP)+1);
if (!url)

{
return;

}
StrCopy(url, urlP);
// set the memory owner to zero, so it is not deleted
// by the system when we switch apps
MemPtrSetOwner(url, 0);

SysUIAppSwitch(cardNo, dbID, sysAppLaunchCmdGoToURL, url);

Launching the web browser in minimal mode
The web browser includes a minimal UI mode. This mode lets you display a web
page with the simplest possible UI. The following code sample shows how to
launch the web browser in minimal mode, and go to a specific web page.

static void
LaunchBlazerWithURL(Char* urlP)

Web Browser API

121

{
Err err = 0;
UInt16 cardNo;
LocalID dbID;
DmSearchStateType searchState;
Char* url;

// first check if web browser is installed
err = DmGetNextDatabaseByTypeCreator(true, &searchState, sysFileTApplication,

hsFileCBlazer3, true, &cardNo, &dbID);
if (err)

{
// Display appropriate error dialog...
return;

}
// ok, now let's call the web browser with the URL. Must first copy the URL,
// because it will be disposed of by the system after web browser exits
url = MemPtrNew(StrLen(urlP)+1);
if (!url)

{
return;

}
StrCopy(url, urlP);
// set the memory owner to zero, so it is not deleted
// by the system when we switch apps
MemPtrSetOwner(url, 0);

SysUIAppSwitch(cardNo, dbID, sysAppLaunchWebBrowserMinimalMode, url);

Chapter 8 Applications

122

VersaMail® application API
This section provides reference information for the VersaMail® application Device
APIs. You can use these APIs to create attachment plug-ins for VersaMail
attachments, add e-mail to VersaMail folders programmatically, create background
network connections, and so forth.

Prerequisite knowledge required for using the VersaMail Device APIs
The VersaMail APIs assume a working knowledge of the following:

■ VersaMail application itself

■ palmOne™ programming

■ palmOne 68k runtime environment

Overview of the VersaMail Device APIs
The VersaMail Device APIs consist of five main components that are documented
in the remaining portions of this section:

■ VersaMail Account Configuration

This component allows you to distribute a PDB file to multiple users to set their
initial VersaMail configuration automatically.

■ Adding Outgoing E-mails to VersaMail Folders

This component allows you to add e-mail messages to VersaMail folders
programmatically. It can be used to distribute Welcome e-mail, corporate
information e-mail, application information e-mail, and so forth.

■ VersaMail Font library

This component allows you to set the fonts displayed in the VersaMail Font
Picker dialog box, as well as get and set information about fonts
programmatically.

■ VersaMail Attachment Plug-ins API

This component allows you to create a plug-in for a type of attachment (for
example, BMP attachments) which users can then use to send and view
VersaMail e-mail attachments.

VersaMail Account Configuration
In an enterprise environment, it is often useful to set up all users with one or more
baseline VersaMail account configurations. You can do so by distributing a
database called __MMDevice.pdb. This feature will work in the VersaMail
application, version 2.0 or later.

VersaMail® application API

123

Overview of the MMDevice database
The MMDevice database consists of various records that set default values in
VersaMail accounts. Each record follows the same basic syntax. When the
VersaMail application is started on a handheld, it looks for the __MMDevice.pdb,
sets account information based on the values therein, and then deletes
__MMDevice.pdb. You should not confuse the file __MMDevice.pdb with
_MMDevice.pdb (single underscore), which is usually created when an account
configuration has changed.

__MMDevice.pdb is a case-sensitive name. It should have type and creator codes
of asc3 and a version number of 4.2 in hex (0x0420).

You can use the VMAccConfig application in the samples folder of the SDK to
create an __MMDevice.pdb database automatically.

MMDevice database record syntax
The syntax for each record in the MMDevice database is as follows:

set <key> <account slot> <value>

with one or more spaces or tab characters between each field.

■ set

This string literal is required at the beginning of each record.

■ key

A string referencing the particular account parameter you want to set. For more
information, see “MMDevice database record keys.”

■ account slot

You should set this value to 0. The account will be added to the end of the list of
existing accounts. The VersaMail application accepts only a total of 8 accounts.

■ value

The value you want to set for the particular account parameter.

The value is not parsed other than for keys that must be numeric. Trailing and
leading whitespace are trimmed, however.

To specify the default value for a record key, simply omit the entire record key
line. If you include the record key line with a blank value, the key’s value is
explicitly set to an empty string that may or may not be valid for a particular
record key.

For example, the following record would set the incoming mail server for the next
account in the list to mail.mac.com:

set incomingServer 0 mail.mac.com

NOTE The title key is mandatory. Please see “title” for more information.

Chapter 8 Applications

124

MMDevice database record keys
The following MMDevice record keys are valid. The keys are not case sensitive
and, unless otherwise noted, default to an empty value.

apn
The string that specifies the default access point name (APN) to be used for the
account. This refers to a service setting set in the Network preferences panel. If not
specified, the default service is used.

connectionType
How the connection is made with the e-mail server. You can set it to SyncOnly,
PalmWireless, or ModemDialup. For ModemDialup, the dial-up settings must be
configured through the system’s Network preferences panel.

emailAddress
The fully qualified address for the e-mail account.

incomingPort
The TCP/IP access port for the incoming e-mail server. The default value is blank,
but the default TCP/IP access port for POP servers is 110, and the default access
port for IMAP servers is 143. This value must be specified if the serverType value
is specified. For more information, see “serverType.”

incomingServer
The server for incoming e-mail. The incoming server is usually a POP or IMAP
server.

outgoingPort
TCP/IP access port for the outgoing e-mail server. Typically, this is the SMTP
port 25.

outgoingServer
The server for outgoing e-mail. The outgoing server is usually an SMTP server.

password
The password for the account.

replyTo
The fully qualified e-mail address for the Reply-To header of outgoing mail.

rootMailbox
For an IMAP e-mail account, this specifies the root prefix of the account. This is
typically not needed with most IMAP servers.

serverType
The protocol of the incoming e-mail server—POP, PalmDotCom, Enterprise, or IMAP.
The default for this key is POP. If you specify this key, you must specify the
incomingPort, as well. For more information, see “incomingPort.”

title
The title of the account as shown in the VersaMail application. For example,
“Personal Mail.” You must enter a value for this record key.

VersaMail® application API

125

useEncryptedPassword
Whether the account uses an encrypted password. Specify YES or NO.
The default is NO.

useEsmtp
Whether the account requires authenticated SMTP. Specify YES or NO.
The default is NO.

userName
The username for the account.

Adding Outgoing E-mail to VersaMail Folders
This section describes the various methods used to add outgoing e-mail to
VersaMail folders. You can use the launch codes provided by the VersaMail
application directly or use the Exchange Manager or Helper Notification methods
documented in the Palm OS Programmer’s Companion, Volumes I and II and the Palm
OS Programmer’s API Reference.

The direct and Exchange Manager methods work in the VersaMail application,
version 2.0 or later. The Helper Notification method works in the VersaMail
application, version 2.5 or later.

Overview of adding e-mail to the Outbox
There are three basic methods for adding e-mail to the VersaMail Outbox:

■ Using the Exchange Manager

An application can use the Exchange Manager Send command or the _send
URL send scheme to sublaunch a Compose e-mail message form. The Compose
form allows the user to add text to the message and save the message in the
VersaMail Outbox or Drafts folder for later sending. Using the Send command
displays a list box that gives the user a choice of Bluetooth® wireless technology,
SMS, or the VersaMail application to send the e-mail. If the VersaMail
application is not on the device, the list box does not contain the VersaMail
option. Similarly, on devices that don’t have the Bluetooth or SMS option, the
VersaMail application is automatically launched.

The following sample code shows how an application can use the Exchange
Manager to sublaunch a Compose e-mail message form:

/* Use the Exchange Manager to create a New mail message */
/* Lets you add an attachment */

ExgSocketType exgSocket;
Err err = errNone;

Char *textBuf = "test";
UInt32 size = StrLen(textBuf) + 1;

 // it's important to initialize the structure to null values

Chapter 8 Applications

126

MemSet(&exgSocket,sizeof(exgSocket),0);
exgSocket.description = "Testing";

/* A box pops up with an option to pick SMS, VersaMail application, etc.
 * You may not see the VersaMail option in the list if the VersaMail
 * application is not installed on the device.
 */

exgSocket.name = "?_send:Sample.txt";

/* send is important here */

exgSocket.type = ".txt";
err = ExgPut(&exgSocket);

 if (err == 0) {
 ExgSend(&exgSocket,textBuf,size,&err);
 ExgDisconnect(&exgSocket,err);
 }

For more information on using the Exchange Manager method, see the Palm OS
Programmer’s Companion, Volume II and the Palm OS Programmer’s API Reference.

■ Using Helper notifications

This method supports a SysUISwitch from the launching application to a full
VersaMail e-mail Compose form and back again. The full compose form is
opened when the appropriate control is tapped in the launching application,
and once the user has saved or sent the message, they are returned to the
launching application.

For more information on the Helper notifications method, see the Palm OS
Programmer’s Companion, Volume I, the Palm OS Programmer’s API Reference, and
the sample code AddEmail in the Samples folder of the SDK.

■ Programmatically using the strategies documented in this chapter

You must use the strategies documented in this chapter to allow a third-party
application to add outgoing e-mail messages to a VersaMail folder.

All of the strategies documented in this chapter use VersaMail launch
commands.

VersaMail® application API

127

VersaMail launch commands
There are three basic launch commands that you can use:

■ sysAppLaunchCmdAddRecord

This launch command creates a basic message without an attachment. You can
use MailAddRecordParamsType to simply add the message to the VersaMail
Outbox or MailAddRecordsParamsTypePlus to add the message to a different
VersaMail category, such as Drafts.

The attachment functionality of MailAddRecordsParamsTypePlus is ignored by
the VersaMail application when it is used with sysAppLaunchCmdAddRecord. To
use the attachment functionality of MailAddRecordsParamsTypePlus, you must
use the next launch code, MMPRO_ADD_MESSAGE_WITH_ATTACHMENT, instead.

sysAppLaunchCmdAddRecord is available in the systemMgr.h header file,
MailAddRecordsParamsType is available in the AppCmdLaunch.h header file, and
MailAddRecordsParamsTypePlus is available in the PalmVMLaunch.h header file.

■ MMPRO_ADD_MESSAGE_WITH_ATTACHMENT

This launch command works much like sysAppLaunchCmdAddRecord, except you
can use MailAddRecordsParamsTypePlus to specify both a category and an
attachment.

MMPRO_ADD_MESSAGE_WITH_ATTACHMENT is available in the PalmVMLaunch.h header
file.

■ MMPRO_LAUNCH_CODE

This launch command actually launches the VersaMail application itself and
presents the user with a full e-mail compose form. The MMPRO_LAUNCH_CODE
command uses the MMProLaunchStruct data structure to add attachments
smaller than 64KB and MMProLaunchStruct2 to add attachments larger than
64KB.

MMPRO_LAUNCH_CODE, MMProLaunchStruct, and MMProLaunchStruct2 are available
in the PalmVMLaunch.h header file.

VersaMail Font library
This section provides information on how to use the VersaMail Font library. You
can use the Font library to set the VersaMail Font Picker user interface and to work
directly with font information on a device. More information on the Font library
can be found in the API guide.

Checking whether the Font library is present
To check whether the Font library is present and loaded on a handheld, use
SysLibFind to check for the library name PalmSGFontLib and a 0 error return value.

The VersaMail Font library is not included in the current versions of the VersaMail
application. The library has to be retrieved, and you must perform a HotSync®
operation to install it on a device. The library is available in the SDK.

Also, the Font library requires the font databases—palmOneSGHiResFonts.pdb
for high-resolution devices and palmOneSGLowResFonts.pdb for low-resolution

Chapter 8 Applications

128

devices. The font databases are available in the VersaMail application, version 2.5
or later and in the SDK.

Using the Font library
The font library is loaded during many handheld events, such as HotSync

operations, but in order to use the functions in the Font library, you need to obtain
and store the library reference number. You can use standard methods to maintain
easy access to the reference number, such as globals with associated accessor
routines or Palm OS® FtrSet and FtrGet calls. For more information, see
VMFontOpen.

Also, before you use any of the Font Picker user interface functions, you must
initialize the Font Picker user interface data structure using InitFontUI. You
currently can apply only one style to a font. For example, you can apply bold or
italic to a font, not bold and italic.

VersaMail Attachment Plug-ins API
This section provides information on how to create a plug-in so that users can view
and send e-mail attachments using your plug-in in the VersaMail application. The
VersaMail Attachment Plug-ins API is declared in the header file PalmVMPlugin.h.

This feature works with the VersaMail application, version 2.6 or later. The SDK
includes a sample plug-in for TXT attachments.

Overview of how the VersaMail application handles plug-ins
The handling of e-mail attachments in the VersaMail application is controlled by
the VersaMail Plug-in Manager.

When a user attempts to view a particular attachment in the VersaMail application,
the VersaMail Plug-in Manager first tries to find the appropriate plug-in given the
attachment’s MIME type. If multiple compatible plug-ins are found, the VersaMail
application displays a list so the user can choose the plug-in they want to use.

If no plug-in is found, the Plug-in Manager attempts to find an application
registered with the Exchange Manager as the default application to handle the
particular MIME type. If no Exchange Manager application is found, the message
“No viewer for this attachment type” is displayed and the attachment can be
viewed with the plain text viewer.

When a user attempts to send a particular attachment in the VersaMail application,
all installed plug-ins are queried to find out what type of attachment each of them
supports. When an appropriate plug-in is found, the VersaMail application queries
the plug-in to display a list of possible attachments that can be sent. When a user
selects an attachment from this list, the VersaMail application calls the appropriate
plug-in to provide the data required to send the attachment.

VersaMail® application API

129

Overview of plug-in design
A plug-in should be designed as a palmOne PRC file with the application type
“mmpl” that supports the specific VersaMail launch commands detailed in this
section. Because plug-ins are seamless to the user and should not appear to them
to be separate programs, plug-ins should be created without an associated
program icon. Furthermore, when a plug-in has finished viewing or sending an
attachment, it should return control to the VersaMail application, not to the Home
screen or to any other application.

The VersaMail application builds a dynamic list of all available plug-ins so that the
user can install or remove them as desired. A separate plug-in should be provided
for each type of file attachment. If there are multiple plug-ins that support the same
type of file attachment, the user is provided with a list of possible plug-ins.

The VersaMail launch command that plug-ins must support are as follows:

■ MMPRO_PLUGIN_GET_INFO_LAUNCHCODE

This launch command is sent by the VersaMail application when it is trying to
get information about what plug-ins are available to send a particular
attachment.

■ MMPRO_PLUGIN_QUERY_LAUNCHCODE

This launch command is sent by the VersaMail application to get a list of
possible attachments a user can send.

■ MMPRO_PLUGIN_EXTENDED_QUERY_LAUNCHCODE

This launch command is sent by the VersaMail application to get a more
complete description of possible attachments a user can send. This launch
command is provided for applications in which a simple, short description of a
possible attachment is not enough information for a user to understand what
the attachment is. For example, in Date Book, a simple date without the
information associated with that date might not be enough information for a
user to determine if they want to send the date as an attachment.

■ MMPRO_PLUGIN_SEND_LAUNCHCODE

This launch command is sent by the VersaMail application when a user has
selected an attachment to send. The plug-in prepares the attachment so that it
can be sent in response.

■ MMPRO_PLUGIN_RECEIVE_LAUNCHCODE

This launch command is sent by the VersaMail application when an attachment
of the appropriate type is received. It allows the plug-in to do whatever you
would like the plug-in to do with a received attachment. For example, you
might want to display the attachment in a window that includes a Done button
that users can tap when the have finished viewing the attachment.

Chapter 8 Applications

130

131

PART III

Hardware Developers Kit

This part of the guide provides details on how to develop for hardware on Treo™
650 smartphones and Tungsten™ T5 handhelds. For older devices, see the archive
section of the pluggedin developer site from http://pluggedin.palmone.com.

http://pluggedin.palmone.com/

132

133

CHAPTER 9

Multi-connector Specifications

This chapter defines the interfaces and interactions of the palmOne™ expansion
multi-connector and its surrounding circuits and controlling software.

Overview
Available on:
■ Treo™ 650 smartphones

■ Tungsten™ T5 handhelds

This chapter specifies the electrical and software interface characteristics of the
palmOne multi-connector. These characteristics include sets of various charging,
cradle, and cable configurations, but from a handheld or smartphone perspective
the electrical specification and systems software requirements are consistent across
multiple devices. Specific devices may not, however, implement all of the features
of the multi-connector.

The multi-connector supports the following features:

■ Charging power from an external adapter with adapter detection ability

■ Universal Serial Bus (USB)

■ Serial communications (no flow control, logic levels)

■ Dedicated HotSync® technology interrupt

■ Power out

■ Stereo headphone-level output

■ Peripheral detection

The multi-connector interface supports interaction with the following devices:

■ USB HotSync cables and cradles

■ Other serial devices

Due to serial peripheral detachment detection requirements, a device cannot be
created that employs automatic serial peripheral detachment detection and
utilizes the USB VBUS line for USB charging, signaling, or connections. Any
device requiring both serial peripheral detection and USB functionality cannot
automatically detect detachment of the peripheral through the normal serial
peripheral detachment mechanism. Detachment for this situation must be
handled through a nonstandard mechanism, such as serial error handling. For

Chapter 9 Multi-connector Specifications

134

more information on the peripheral detection mechanism, see “Peripheral
detection.”

■ Pass-through peripherals

These include peripherals that connect to a handheld or smartphone and have
another connector to allow the peripheral to be connected to a USB HotSync
cable or cradle.

Pinout of the multi-connector
The pinout, with or without mounts, is described in the following table. All pin
references that follow in this chapter refer to the device connector pin-numbering
scheme shown in this table.

Pin # on
Device/
Multi-

Connector

Pin # on
Charger/
Adapter

Connector

Pin# on
Data/Cable
Connector

Name Direction with
respect to the
device

Default State
with no
attachment

Function

1 1 VDOCK Power CHRG_IN DC charging
voltage, 5V

2 2 ADAPTER_ID Input VCC, weak
pull-up

Adapter
identification

3 3 VDOCK_RTN Power GND DC charging
return

4 - 1 SHIELD Shield GND Cable shield

5 - 2 VBUS Power VBUS_IN USB charging
voltage, 5V
typical, 500 mA
max

6 - 3 USB_DP Input/output Floating USB Data +

7 - 4 USB_DN Input/output Floating USB Data -

8 - 5 DGND Power GND Digital ground,
and VBUS return

9 - 6 Reserved NA NA Do not connect

10 - 7 TXD Input/output VCC, weak
pull-up

Transmit data,
3.3V logic level

11 - 8 RXD Input VCC, weak
pull-up

Receive data,
3.3V logic level

12 - 9 HOTSYNC Input VCC, weak
pull-up

HotSync input,
active low, pulled
up on device

Pinout of the multi-connector

135

Shielding
On all peripheral devices, the shield pins 4 and 18 should be grounded with any
available shielding system ground. For example, on a USB cable these pins should
be connected to the USB cable outer shield, which in turn connects to the shield on
the USB connector at the other end of the cable.

Where no external shielded ground is available peripherals should connect pins 4
and 18 to the peripheral’s system ground.

USB
Pins 5, 6, 7, and 8 constitute the USB VBUS, D+, D-, and GND pins respectively.

The handheld is designed to accept the following parameters on pins 5, 6, 7, and 8:

13 - 10 POWER_OUT Output High
impedence

Power output to
external devices

14 - 11 SPKR_L Analog
output

AC coupled Speaker output
left

15 - 12 SPKR_R Analog
output

AC coupled Speaker output
right

16 - 13 AGND Power GND Analog ground

17 - 14 Reserved NA NA Do not connect

18 - 15 SHIELD Shield GND Cable shield

Pin # on
Device/
Multi-

Connector

Pin # on
Charger/
Adapter

Connector

Pin# on
Data/Cable
Connector

Name Direction with
respect to the
device

Default State
with no
attachment

Function

Name Description Minimum Average Maximum Units

(V)USB_VBUS_CHG Input charging voltage 4.375 5.0 5.25 V

(V)USB_VBUS_CHG Input serial peripheral
detection voltage

2.97 3.3 3.63 V

(I)USB_VBUS_L Input charging current, no
negotiation, sunk from VBUS

- - 100 mA

(I)IUSB_VBUS_H Input charging current, with
negotiation, sunk from VBUS

- - 500 mA

Chapter 9 Multi-connector Specifications

136

Serial interface hardware
Pins 10 and 11 provide 3.3V logic-level serial connections with no dedicated
hardware flow control pins. The direction of these pins with respect to the device
is as follows:

■ Pin 10 transmits from the handheld

■ Pin 11 receives into the handheld.

The serial port connected to pins 10 and 11 supports the following bit rates and
configuration options:

■ 1,200 baud

■ 2,400 baud

■ 4,800 baud

■ 9,600 baud

■ 14,400 baud

■ 19,200 baud

■ 28,800 baud

■ 38,400 baud

■ 57,600 baud

■ 115,200 baud

■ 7 data bits

■ 8 data bits

■ No stop bits

■ 1 stop bit

■ Parity bit

■ No parity bit

Both pins 10 and 11 are pulled high within the device by weak pull-ups. These
GPIO are capable of waking the handheld from all operational modes, including
sleep mode. For more information on how these weakly pulled, high input
characteristics are used in the peripheral detection mechanism, see “Peripheral
detection.”

Pins 10 and 11 operate at 3.3V nominal voltage levels.

Pinout of the multi-connector

137

Treo 650 smartphones and Tungsten T5 handhelds are designed to accept the
following parameters on pins 10 and 11:

*With respect to digital ground, pin 8

Serial interface software
The multi-connector serial pins interface with the Palm OS as a virtual serial port.

HotSync interrupt hardware
Pin 12 provides a HotSync Interrupt pin. The HotSync interrupt is weakly pulled
high inside the device.

A HotSync interrupt is initiated when pin 12 is pulled to GND.

The HotSync interrupt is not used in the peripheral detection mechanism; it only
initiates a HotSync operation.

Treo 650 smartphones and Tungsten T5 handhelds are designed to accept the
following parameters on pin 12:

*With respect to digital ground, pin 8

HotSync interrupt software
The HotSync interrupt is always set as an input. The default interrupt detection
occurs on a falling edge.

Name Description Minimum Average Maximum Units

(V)RXTX_INL Input logic low voltage* 0 - 0.594 V

(V)RXTX_INH Input logic high voltage* 2.904 - 3.63 V

(V)TX_OUTL Output logic low voltage* 0 - 0.3 V

(V)TX_OUTH Output logic high voltage* 2.67 - 3.63 V

(V)TX_OC Open circuit TX line voltage* - 3.3 - V

(V)RX_OC Open circuit RX line voltage* - 3.3 - V

Name Description Minimum Average Maximum Units

(V)HS_INL Input logic low-voltage*
triggering interrupt

0 - 0.594 V

(V)HS_OC Open circuit line voltage* - 3.3 - V

Chapter 9 Multi-connector Specifications

138

Power output
Pin 13 provides a power output to power an external peripheral. This power
output is limited to low-current capability only. The power output is normally
driven LOW or floated as a high impedance signal to minimize the chances of a
short to GND damaging the device.

Treo 650 smartphones and Tungsten T5 handhelds are designed to accept the
following parameters on pin 13:

*With respect to digital ground, pin 8

Audio detection
A Tungsten T5 handheld automatically detects and switches audio if it detects an
attached audio peripheral and the audio peripheral indicates that a headset is
inserted into the handheld.

Tungsten T5 handhelds should not, however, have a headset inserted into the
headset jack and be attached to an audio peripheral at the same time. The audio
signal would be shared between the two, resulting in a loss of volume on the
headset and the multi-connector audio output channels.

Audio output
Pins 14 and 15 provide headphone-level stereo audio output. This output is
intended to drive an external audio output device (such as a “boom box”), or to
interface with a car kit.

Devices typically connect pins 14 and 15 directly to their headset stereo output
signals.

Name Description Minimum Average Maximum Units

(V)POUT_L Output inactive voltage* 0 - 0.363 V

(V)POUT_H Output active voltage* 2.97 3.3 3.63 V

(I)POUT Output current supplied 30 - - mA

(C)POUT Minimum load series
resistance to GND*

89 - - Ohms

(C)POUT Maximum load capacitance - - 4.7 µF

Peripheral requirements

139

Peripheral requirements
For information on the peripheral detection mechanism that drives many of the
requirements listed in this section, see “Peripheral detection.”

Peripherals are required to conform to the following specifications to ensure
successful operation with Treo 650 smartphones and Tungsten T5 handhelds:

*Pull-downs required for peripheral detection mechanism. May not be required on either or both of the RX and
TX lines.

Audio peripherals
Audio peripherals should conform to the following requirements:

Name Description Minimum Average Maximum Units

(C)PHL_LOAD Capacitive load on POWER
OUT pin

- - 4.7 µF

(R)PHL_LOAD Minimum load series
resistance on POWER OUT
pin

89 - - Ohms

(V)PHL_RXTX_INL Serial line input logic low
voltage*

0 - 0.594 V

(V)PHL_RXTX_INH Serial line input logic high
voltage*

2.904 - 3.63 V

(V)PHL_RX_OUTL Serial handheld receive line
output logic low voltage*

0 - 0.3 V

(V)PHL_RX_OUTH Serial handheld receive line
output logic high voltage*

2.67 - 3.63 V

(R)PHL_TX_DOWN Pull-down to GND on TX* 1K - 10K Ohms

(R)PHL_RX_DOWN Pull-down to GND on RX* 1K - 10K Ohms

Name Description Minimum Average Maximum Units

(R)PHL_A_DET Maximum series resistance
to ground on TX line for
Audio Peripheral detection

- - 1K Ohms

(R)PHL_A_DET_HS Maximum series resistance
to ground on RX line for
Audio Peripheral Headset
Jack Insertion detection

- - 1K Ohms

Chapter 9 Multi-connector Specifications

140

General serial peripherals
Serial peripherals should conform to the following requirements.

Peripheral detection
The multi-connector interface provides class-level peripheral detection. The class-
level detection mechanism is performed using hardware detection with no
software requirements on the peripheral.

Peripheral detection is initiated by triggering either the serial TX or serial RX lines
in their GPIO states as falling edge interrupts. After detection of an interrupt,
software in the device debounces the interrupted line for at least (T)DET_DBC
milliseconds. If the condition causing the interrupt on the TX or RX lines still exists
after (T)DET_DBC milliseconds, class-level detection initiates.

(R)PHL_A_DET_NHS Minimum series resistance to
ground on RX line for Audio
Peripheral Headset Jack
Insertion Absence detection

10M - No
maximum

Ohms

(R)AOUT_MIN Minimum series resistance to
ground on pins 14 and 15

8 - - Ohms

Name Description Minimum Average Maximum Units

Name Description Minimum Average Maximum Units

(T)PHL_SER_DLY

==

(T)DET_RXTX_DLY

Delay from POWER OUT
applied to peripheral driving
into Rx line

450 - - mS

RPHL_SER_DET Series resistance to ground
on TX and RX line before
POWER_OUT applied for
Serial Peripheral detection

- - 100K Ohms

VPHL_SER_DET Minimum voltage on TX and
RX line after POWER_OUT
applied for Serial Peripheral
detection

2.904 - POWER_OUT V

RPHL_SER_NDET Maximum series resistance
between VBUS and
POWER_OUT for Serial
Peripheral Detachment
detection

- - 10 Ohms

Peripheral detection

141

Class-level detection
Class-level detection involves sampling the serial TX and RX lines as GPIO both
before and after the application of POWER_OUT. This provides four bits to define
the attached peripheral, resulting in 12 possible attached configurations. (The
situation in which both RX and TX stay high after attachment of the peripheral is
invalid as no attachment interrupt is detected, thus invalidating four possible
combinations.)

Class-level detection is currently supported by the Tungsten T5 handheld. The
only class supported at this time is audio.

Peripheral attachment
Before attachment of any peripheral, the TX and RX lines are configured as GPIO
and have weak pull-ups attached to each line.

When a peripheral is attached, at least one of the TX or RX lines must by definition
be low. After debouncing the signal, the device samples the RX and TX lines and
applies power to the peripheral through the POWER_OUT signal. The device then
waits (T)DET_PWR_DLY milliseconds to allow the peripheral to power up, and
then samples the TX and RX lines again.

If you want a peripheral to identify itself, it must have strong pull-downs on the
appropriate serial communications lines. Some serial peripherals may not require
such strong pull-downs because the impedance to ground of the unpowered serial
input pins may provide small enough resistance to GND to allow detection to
operate effectively. Also, the peripheral must not power the RX line until
(T)DET_RXTX_DLY milliseconds after power is applied.

When a Tungsten T5 handheld detects that an audio peripheral is attached, the
handheld automatically switches audio from the internal device speaker to the
audio of the peripheral. As noted earlier, Tungsten T5 handhelds should not have
a headset inserted into the headset jack and be attached to an audio cradle at the
same time. The audio signal would be shared between the two, resulting in a loss
of volume on the headset and the multi-connector audio output channels.

The truth table for class-level detection is as follows:

Before
attachment

Peripheral
attached, no
POWER_OUT

Peripheral
attached,

POWER_OUT
applied

Class

TX RX TX RX TX RX

1 1 0 0 0 0 Audio peripheral detected, headset
not inserted

1 1 0 0 0 1 Reserved for future use

1 1 0 0 1 0 Reserved for future use

1 1 0 0 1 1 Reserved for future use

Chapter 9 Multi-connector Specifications

142

Peripheral removal
Detachment is detected by the TX and RX lines going high. The device detects
these changing GPIO signals by detecting the rising edge, and initiates peripheral
removal activities.

Audio peripheral detection timing diagrams
The following figure shows the timing diagram upon attachment of an audio
peripheral with a headset not inserted.

1 1 0 1 0 0 Reserved for future use

1 1 0 1 0 1 Audio peripheral detected, headset
inserted

1 1 0 1 1 0 Reserved for future use

1 1 0 1 1 1 Reserved for future use

1 1 1 0 0 0 Reserved for future use

1 1 1 0 0 1 Reserved for future use

1 1 1 0 1 0 Reserved for future use

1 1 1 0 1 1 Reserved for future use

Before
attachment

Peripheral
attached, no
POWER_OUT

Peripheral
attached,

POWER_OUT
applied

Class

TX RX TX RX TX RX

HOTSYNC_INT

RXD

VBUS

POWER_OUT

TDET_DBC

TATTACH

TDET_PWR_DLY

TDET_RXTX_DLY

TSDET_ID_TIMEOUT

TXD

TDET_SAMP1

TDET_SAMP2

TDETACH

Peripheral detection

143

The following figure shows the timing diagram upon attachment of an audio
peripheral with a headset inserted.

Peripheral detection timing specifications
The following are the timing requirements for the peripheral detection mechanism:

HOTSYNC_INT

RXD

VBUS

POWER_OUT

TDET_DBC

TATTACH

TDET_PWR_DLY

TDET_RXTX_DLY

TSDET_ID_TIMEOUT

TXD

TDET_SAMP1

TDET_SAMP2

TDETACH

Name Description Minimum Average Maximum Units

(T)DET_DBC Attachment interrupt
debounce duration

150 - - mS

(T)DET_SAMP1 Time to read the state of the
RX and TX GPIO before
POWER OUT applied

- - 50 mS

(T)DET_PWR_DLY Delay from POWER OUT
applied to reading the state
of the RX and TX GPIO

200 - 200 mS

(T)DET_SAMP2 Window of time from
maximum (T)DET_PWR_DLY
to read the state of the Rx and
Tx GPIO after POWER OUT
applied

- - 50 mS

Chapter 9 Multi-connector Specifications

144

Interfacing with an audio peripheral
The method we recommend for interfacing with an audio peripheral is for the
peripheral to be wired as described in the following table:

(T)SDET_ID_TIMEOUT Timeout from
(T)DET_SAMP2 window
finished until determination
that peripheral is Serial
Protocol Level detection
peripheral

200 - 200 mS

(T)DET_RXTX_DLY Delay from POWER OUT
application to peripheral
driving into RX line

450 - - mS

Name Description Minimum Average Maximum Units

Name Pin # Recommended configuration

VDOCK 1 Charging source if charging device; otherwise no
connect.

ADAPTER_ID 2 Connect to pin 3 if charging device with >=1Amp
source; otherwise no connect.

VDOCK_RTN 3 Charging source ground if charging device;
otherwise system ground.

SHIELD 4 Shield ground or system ground.

VBUS 5 No connect.

USB_DP 6 No connect.

USB_DN 7 No connect.

DGND 8 System digital ground.

USB_ID 9 No connect.

TXD 10 10K Ohm pull-down to DGND.

RXD 11 Insertion detection switch on headset jack, if any.
Signal should connect to GND when no headset is
inserted. Signal should be high impedance when
headset is inserted.

HOTSYNC 12 No connect.

POWER_OUT 13 Connect to system power if required by peripheral.

SPKR_L 14 Audio left signal.

Interfacing with an audio peripheral

145

SPKR_R 15 Audio right signal.

AGND 16 System audio ground.

Reserved 17 No connect.

SHIELD 18 Shield ground or system ground.

Name Pin # Recommended configuration

Chapter 9 Multi-connector Specifications

146

147

PART IV

Debugging

This part of the guide provides details on how to debug problems with the code
you create.

148

149

CHAPTER 10

Debugging

This chapter details how to debug problems with the APIs.

Debugging on Treo™ smartphones
Available on:
■ Treo™ 600 and Treo™ 650 smartphones

To support debugging on Treo™ smartphones, the Palm™ Debugger has been
updated to communicate with the Palm OS® PACE and the ARM-based debugger
nubs.

IMPORTANT There is no USB support for debugging on Treo 600 smartphones, so
you’ll need to use a serial cable if you want to do any debugging. The Treo 650
smartphone supports USB debugging except for project which requires you to use a
serial cable.

Chapter 10 Debugging

150

The following figure shows the various Debugger nubs and where they are located
within the Palm OS on a Treo smartphone.

68K Application

 Debugging On Treo 600

PACE

ARM OS

68K Debugger Nub

ARM Debugger Nub

Palm-Debugger

Debug Console

Registers

Debugging on Treo™ smartphones

151

Handling of fatal errors
Fatal errors are handled differently on Treo smartphones. Fatal errors are not
displayed to end users in the released product; if a fatal error occurs, the system
performs a soft reset. However, before resetting, the smartphone saves a log of the
error.

This process results in a better user experience. The user does not see fatal errors
while the smartphone just keeps working. As the Treo smartphone is primarily a
phone, its design is based on the belief that it is more important to keep the
smartphone working than to show a fatal-error dialog box that asks the user to
reset the smartphone.

Developers can access the error log in two ways:

■ Type ##ERR (CDMA) or #*ERR (GSM) in the dial pad view and press dial
(ERR = 377 on the dial pad).

■ Press the Log button in the DebugPref application as described in the next
section.

DebugPref for Treo smartphones

DebugPref is an application that allows you to configure how you want a Treo
smartphone to behave when an error occurs. You can also trigger immediate
debugging tests by tapping one of the buttons at the bottom of the DebugPref main
dialog box. Debug Pref is available from the palmOne Developer web site at
http://pluggedin.palmone.com.

A description of each setting and button is described in the following section.

Settings
■ Enable ARM debugger @ Reset

Puts the smartphone in debugger mode every time the system resets.

One of the following actions will take place when a fatal error occurs:

– ARM Debugger nub will start using the serial or USB port

– 68K PACE Debugger Nub will start using the serial or USB port

http://pluggedin.palmone.com/
http://pluggedin.palmone.com/

Chapter 10 Debugging

152

■ ARM debugger enabled now

This is used to enable the ARM debugger. (For more information on ARM
development, see the PalmSource™ web site.)

■ Password does not lockout debug.

Check this option to have the usual debug triggers enabled even if you have a
password set for a smartphone.

NOTE This option doesn’t make a smartphone any less secure, because it is
always possible to programmatically launch the Debugger if you have infrared
(beaming) access to a smartphone.

■ Allow DbgMsg before attach

Works only with the Palm OS® Debugger, a PalmSource™ debugging tool
currently not available to third parties.

■ Still show “safe” fatal errors

If the system determines that an error is not a major error, then it displays the
error. If it determines it is a major error, the system either automatically resets
the smartphone or launches the smartphone in debugger mode, depending on
how the Enable ARM debugger @ Reset setting is set.

Buttons
The following options are available by tapping the buttons at the bottom of the
screen:

■ 68K dbg

Immediately launch the ARM debugger nub.

■ ARM dbg

Immediately launch the 68K PACE debugger nub.

■ Log

Shows the last fatal error dialog box.

NOTE This is particularly useful because, as mentioned earlier, a Treo
smartphone does not display fatal errors when they occur; it simply performs
a soft reset.

Debugging on Treo™ smartphones

153

■ Test

Simulates one of the following errors:

Which debugger nub is currently active?
If you see a blinking block in the lower-left corner of the screen, the 68K PACE
debugger nub is active.

If you see a blinking block in the lower-right corner of the screen, the 68K PACE
console mode is active.

If you see a blinking line at the top of the screen, the ARM debugger nub is active.

NOTE The PACE debugger nub stops the PACE environment, not the ARM.The ARM
debugger nub stops everything and shows the current 68K state as accurately as
possible. It might not always be valid, because there is a state for each thread or
task.

How to connect to a Treo smartphone for debugging

To switch to debug or console mode:
1. Press Option+Shift+Find to open the Find dialog box.

2. Press S and then Alt.

The shortcut character appears as an option, usually at the bottom of the screen.

3. Select the shortcut character, enter a period (.), and then press Option-1 or
Option-2 to switch to Debug or Console mode, respectively.

Chapter 10 Debugging

154

Treo smartphone version of the Palm OS® simulator
This section describes the Treo smartphone version of the Palm OS® simulator.

5-way button keystroke equivalents
The 5-way button keystrokes are simulated in the Treo smartphone version of the
Palm OS simulator as follows:

Right-Shift Option
Left-Shift Shift
Right-Ctrl Menu
Left-Ctrl various vchrs, see below
Left-Ctrl-A vchrMenu
Left-Ctrl-B vchrLowBattery
Left-Ctrl-C vchrCommand
Left-Ctrl-D vchrConfirm
Left-Ctrl-E vchrLaunch
Left-Ctrl-F vchrKeyboard
Left-Ctrl-I vchrFind
Left-Ctrl-K vchrCalc
Left-Ctrl-N vchrNextField
Left-Ctrl-P vchrPrevField
Left-Ctrl-L chrCarriageReturn

Esc vchrHardPower (radio power)
F1 vchrHard1 (Phone)
F2 vchrHard2 (Calendar)
F3 vchrHard3 (Messaging)
F4 vchrHard4 (Screen power)

End hsChrSymbol (Alt)
Home vchrRockerCenter
Clear vchrRockerCenter
Left-Arrow vchrRockerLeft
Right-Arrow vchrRockerRight
Up-Arrow vchrRockerUp/vchrPageUp

(depending on focus mode)
Down-Arrow vchrRockerDown/vchrPageDown

(depending on focus mode)

Page-Up hsChrVolumeUp
Page-Down hsChrVolumeDown

F5 Toggle coordinate display in title bar
F7 Sticky-shift (toggles press/release

of shift key)
F8 Sticky-Option (toggles press/release

of option key)
F9 Plug-in/Unplug a simulated charger
F11 Increase simulated battery charge by 1%
F12 Decrease simulated battery charge by 1%

Left-Ctrl-R Soft Reset
Shift-Left-Ctrl-R Hard Reset
Left-Ctrl-S Power off (simulates down/up of Esc key)

Debugging on Treo™ smartphones

155

Source Level Debugging

Using Palm Debugger

Palm Debugger is the palmOne modified version of the Palm Debugger.exe
application. It allows for debugging of 68K code in Palm OS 5. You can get the
latest version from the palmOne developer web site.

To debug using Palm Debugger, follow this procedure:
1. Build your project object code to generate symbolic information (filename.sym).

You can find an example of how to build your project object code using this
method in the sample code available on the palmOne developer web site at
http://pluggedin.palmone.com. You must compile your code with something
resembling the following:

m68k-palmos-gcc -O2 -g -Wall SimpleSMS.o -o Obj/SimpleSMS.sym

2. Do one of the following:

– To connect to the Palm OS simulator, launch Palm Debugger and select
Connection as Emulator, and then launch the Palm OS Simulator.

– To connect to a Treo smartphone, launch Palm Debugger and select
Connection as Serial (USB connection is not supported), and then put the
Treo smartphone into Debug or Console mode using the method described
in “How to connect to a Treo smartphone for debugging.”

3. Install the database or databases that represent your application, and load its
symbols from the Source menu or by using the F8 hot key.

4. Open or load the appropriate .prc, .sym, and .c files.

Skip the gdbstub.c file by selecting Cancel.

http://pluggedin.palmone.com/

Chapter 10 Debugging

156

5. Set any breakpoints you need, and begin your debugging session.

Using Metrowerks Code Warrior
Code Warrior for Palm OS v9 also allows you to do source debugging on a Palm OS
simulator or Treo smartphone:

1. Select the project settings to build your project object code with symbolic
information:

Settings -> 68K Linker -> Debugger Info -> Generate SYM File

2. Do one of the following:

– To debug using the Palm OS Simulator, configure the project settings as
follows and launch the Palm OS Simulator.

Settings -> Palm OS Debugging -> Connect to ->Emulator

Debugging on Treo™ smartphones

157

– To debug on a Treo smartphone, configure the following project settings and
place the Treo smartphone into Debug or Console mode using the method
described in “How to connect to a Treo smartphone for debugging.”

Settings -> Palm OS Debugging -> Connect to -> Device

Device -> Com1

TIP Make sure the following are true:
The right COM port and baud rate (57600) are selected.
The COM port is not currently being used by other applications.
The Serial cable is connected to the right COM port.

3. Load your application and its symbols and run it by selecting Source -> menu
-> Run (or F5).

Code Warrior displays a dialog box notifying you that the application is being
loaded to the target.

4. Set any breakpoints you need, and begin your debugging session.

Chapter 10 Debugging

158

159

PART V

Style Guide

This part of the guide provides guidelines for the “look and feel” of applications
that use software components in the SDK.

160

161

CHAPTER 11

Style Guide

This chapter outlines the style guidelines that you should follow when designing
certain palmOne™ SDK features.

Chapter 11 Style Guide

162

Designing pages for the Blazer® web browser
Available on:
■ Treo™ 600 and Treo™ 650 smartphones

■ Tungsten™ T5 handhelds

Although the Blazer® web browser’s table unrolling technology does a good job of
adapting web sites for mobile devices, advance planning can reduce the translation
and download time and ensure that results are as expected. This section covers the
various factors that web site designers and programmers should take into account
when designing web pages.

General rules for web page design
Here are some general rules that apply when designing web sites for mobile
devices:

■ Make content accessible within one or two links.

Because the user is typically using a slow, costly connection, it is important that
the information the user is trying to access be easily available within one or two
navigational moves.

■ Keep relevant content and links within the viewable area.

■ Personalize and prefill forms whenever possible.

■ Use as much screen space as possible without cluttering the screen.

■ Keep graphics use to a minimum. When you have to use graphics, keep them
simple and small.

■ Keep the page size small, preferably under 4KB to 6KB.

■ Keep the page simple. Limit the use of JavaScript, and don’t use frames or
plug-ins. While JavaScript is supported, most JavaScript runs slower on the
Blazer web browser than on other handheld browsers due to memory and CPU
limitations. For simple JavaScript this is not noticeable, but the use of more
elaborate JavaScript may create noticeable delays.

Due to the various restrictions on designing web pages for mobile devices, we
recommend that a web site contain a parallel “mobile” version. The full web site
can take advantage of all the web technologies, while the mobile site is a slimmed-
down version designed to support mobile devices. For example, the palmOne web
site contains a page that is designed for mobile devices: http://mobile.palmone.com/
.

Web developers can have their web server automatically load the appropriate page
based on the user agent of the browser. For information about the user agent for
the Blazer web browser, please see “Browser identification.”

http://mobile.palmone.com/

Designing pages for the Blazer® web browser

163

Screen resolution
Mobile devices have a screen size that is much smaller than a desktop screen’s
resolution. On low resolution Treo™ smartphones, the full-screen resolution is 160
x 160 pixels, and the available space in the browser, due to the toolbar and scroll
bar dimensions, is 155 x 145 pixels. On high-resolution Treo smartphones, the full
screen resolution is 320x320, and on high-resolution Tungsten™ handhelds the
resolution is 320x320, 320x480, or 320x480, depending on the current state of the
Graffiti area. Blazer 4.0 web browser also has a URL bar that users can choose to
display or hide. When it is displayed, it takes space away from the current web
page display area. Designers should take these dimensions into account when
creating images, tables, lists, and other components of web pages. Developers who
want to alter their page based on the current screen resolution should note that the
current screen resolution is included in the User Agent. See “Browser
identification” for more information.

Connection speed
Users can connect to the Internet at several speeds. The speeds available depend
on the type of network the user is accessing and the device they are using to
connect (CSD, 1xRTT, GPRS, EDGE). Field-tested speeds can range from 10kbps
(CSD dial-up) to over 150kbps (EDGE). Web site designers should keep in mind
that different users can connect using a wide range of speeds and should optimize
their web pages to load appropriately.

Content
In Optimized mode, the Blazer web browser typically reformats web pages into a
small, screen-friendly format. Sites that have a simple layout with minimal tables
and graphics have a good chance of being displayed properly after the
reformatting. The sections details the factors to keep in mind when designing your
web pages.

Page titles
The Blazer web browser does not display web page titles in web page view. To
view the title of a web page, users must open the Page Properties dialog box, as
shown in the following figure. The page title is used to prepopulate the bookmark
description or title field when adding a bookmark.

Chapter 11 Style Guide

164

Content optimized for the Blazer web browser
You can also insert the following tag into the HEAD section of a web page to
minimize the amount of reformatting that the Blazer web browser does:

<META name="HandheldFriendly" content="True">

This tag tells the Blazer web browser to render tables without any special
reformatting. If this tag is not present, tables may be unrolled or reformatted. Also,
if this tag is present, Blazer 4.0 displays the content in one pass instead of the usual
two-pass rendering method.

Embedded Audio Playback
Blazer 3.0 and 4.0 web browser support embedded audio playback using the
<OBJECT> tag. The <BGSOUND> and <EMBED> tags are not supported. For instance,
"<object data="oscar.mid" type="audio/midi" width="0" height="0" ></

object>" loads and plays the MIDI file oscar.mid while the current page is
displayed.

All devices with Blazer 3.0 or Blazer 4.0 loaded in ROM support embedded MIDI.
Some devices may also support embedded AMR and/or embedded QCELP.

File upload
Blazer 4.0 web browser has limited file upload support. Blazer 4.0 only supports
uploading files from an expansion card; it does not currently support any
uploading from Palm OS main memory. When Blazer 4.0 is rendering a page with
a form containing the file upload tag, Blazer displays a single-line text field. To
upload a file, the user must type in the fully-qualified path to the file on the
expansion card to be uploaded. (In the future, a Browse button may be added that
allows the user to browse for the file to be uploaded.)

mailto command
The Blazer web browser does support the mailto command to send e-mail.

Typically on desktop systems, the web browser launches an e-mail application to
send mail when a mailto command is encountered. On devices, it is not
guaranteed that a mail application is installed. If an e-mail application is installed,
a mailto command launches the default e-mail application as defined in the
Defaults panel in Prefs.

For dialing telephone numbers, see the tel: and phoneto: tag discussions in the
“Palm OS integration tags” section.

Multipass rendering
Unless the HandheldFriendly tag is present, Blazer 4.0 web browser renders each
page in two passes. In the first pass, all the text on the page is displayed. In the
second pass, images are downloaded and JavaScript is downloaded and executed.
By making the text immediately available to the user, the site appears more
responsive and the user can read content and select links before the entire page has
downloaded. There are several things a content developer can do to ensure that a
page is more usable during the first pass:

Designing pages for the Blazer® web browser

165

■ Minimize the use of images, especially images with text.

Because images are not displayed until the second pass, if a site's content is
image-based the user has to wait longer before interacting with the page.

■ When images are used, include descriptive ALT tags.

During the first pass the text of the ALT tag is displayed in place of the image.

■ Do not use JavaScript in links.

Usually, when a user selects a link during the first pass, the link is immediately
activated. If the link includes JavaScript (and JavaScript is enabled), the browser
can not follow the link until the second pass because the JavaScript engine is not
available until the second pass is complete. Thus, if the user clicks on a link with
JavaScript during the first pass, an error message is displayed and the link is not
activated.

Forms
The Blazer web browser supports standard HTML and WML forms, including text
boxes, radio buttons, check boxes, text inputs, select lists, multiple selects, and
drop-down menus. However, there are some guidelines to follow when you design
forms for mobile devices:

■ Make sure that the form’s open and close tags (<form> and </form>) are not
contained inside a table. Form input may safely be placed inside table cells.

■ Text input is supported, but the maximum length of the text is the length of the
text input dialog box.

Tables
In Optimized mode, the Blazer web browser supports tables by reformatting or
unrolling the table so that it fits on the small screen of a mobile device. The table-
rendering engine is optimized for displaying simple text-based tables. Web page
designers should avoid using one-pixel spacer images for precise content control,
because the images and subsequent reformatting may not look ideal on a mobile
device.

Table width attributes are not supported. However, table cell width attributes are
supported. To widen tables, change the width attribute of the table cells. To
preserve the width on the client display, use the HandheldFriendly tag. For more
information, see “Content optimized for the Blazer web browser.”

For example, the following HTML code displays a table with a table width of 140:

<table border="1">
<tr>

<td width="140" colspan=5>abcdef</td>
</tr>
<tr>

<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>

Chapter 11 Style Guide

166

</tr>
</table>

The table appears on a desktop web browser as follows:

This same HTML code is displayed in the Blazer web browser without the extra
spacing if the HandheldFriendly tag is not included:

To have the Blazer web browser display the table as intended, include the
HandheldFriendly tag within the HEAD section of the web page, as follows:

<META name="HandheldFriendly" content="True">

This causes the device to display the table with the width tag enabled, as shown in
the following figure:

Images
Using images on a web site can enhance the presentation of content and the user
experience. At the same time, the use of images slows down the web browsing
experience. Therefore, it's important to carefully consider which images to display
on mobile devices.

a b c d e f

1 2 3 4 5

Designing pages for the Blazer® web browser

167

All images pass through an imaging processor in the Blazer web browser client
that scales down any image that exceeds the current screen size. The bit-depth of
the image is also adjusted to match the device’s image display settings.

When designing images for mobile devices, keep the following in mind:

■ Image size should be very small (under 4KB).

■ Use only a few graphics per page to reduce the load time.

■ Use images that are high contrast for easy readability.

■ Use ALT tags to display text content while images download.

Here is what is displayed while the image is loading:

And here is what appears after the image has finished loading:

Chapter 11 Style Guide

168

Images with text
Avoid using images in place of text. Unnecessary images add to the total download
time for each page. If the Blazer web browser needs to scale the image, the text may
become unreadable. The following images show how a text image can look fine on
a desktop browser but can become unreadable when scaled and displayed in the
Blazer web browser.

Designing pages for the Blazer® web browser

169

Horizontal header images
Many web sites use a horizontal header image for navigation purposes. Typically,
this image consists of many smaller images that are formatted in a table with zero-
length borders.

On a desktop browser, such an image is displayed appropriately. The Blazer web
browser, however, typically reformats such a page so that the images are stacked
vertically. The following images demonstrate this behavior.

Header images on a desktop browser:

The same images on the Blazer web browser:

You can clean up the web page by removing spacer images and inserting the
HandheldFriendly tag at the beginning of the page. The next figure shows the
updated page without spacer images in the table. The second figure shows the
page in the Blazer web browser without the HandheldFriendly tag. Because the
spacer images are not present, the browser displays the image in a more readable
format. The third figure shows the same page with the HandheldFriendly tag
present. This tag instructs the Blazer web browser not to reformat the tables. As a
result, the table is displayed as intended. The Blazer web browser provides
horizontal scroll bars to allow the user to view the entire image.

Chapter 11 Style Guide

170

Supported image formats
The Blazer 3.0 web browser supports the following image formats:

■ GIF

■ JPEG

■ PNG

■ Animated GIF

■ WBMP

■ BMP (Blazer 4.0 web browser)

Unsupported content
While the Blazer web browser supports most of the HTML 3.2 specification, there
are certain unsupported elements. Some of the additional web technologies that
are not supported in the Blazer web browser include:

■ Java applets

■ WMLScript

■ Animations (Macromedia Flash)

Designing pages for the Blazer® web browser

171

■ Audio, although the Blazer web browser can download an audio file to be
played by an application that can handle the audio format

■ Browser Plug-Ins

When the Blazer web browser encounters an unsupported element, it ignores the
associated code when displaying the web page. In most cases, the user experiences
the web page with reduced functionality. If the web site requires the unsupported
technologies to view the information, the Blazer web browser users will not be able
to use the web site.

Working with the Blazer web browser
This section discusses topics that are specific to the Blazer web browser and
Palm OS. Web site designers and you should make note of these issues when
implementing web pages that you have optimized for use with the Blazer web
browser.

Palm OS integration tags
Blazer Web Browser 3.0 and 4.0 do not support date picker and time picker.
Support may be added in a later release of the Blazer web browser.

Browser identification
As part of communication to a web server, web browsers send out a string
indicating what type of browser is accessing the server. This is referred to as the
user agent.

The the Blazer 3.0 web browser user agent string is:

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows 95; PalmSource;
Blazer 3.0) 16;160x160

The Blazer 4.0 web browser user agent string is:

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows 98; PalmSource/hspr-
H102; Blazer/4.0) 16;320x320

hspr-H102 indicates which palmOne device the browser is running on; different
devices have different strings. Also, the current screen size is included, so if the
user changes the state of the Graffiti area, the user agent string is updated to match
the screen size. For these reasons, you should not search for an exact match when
checking for the presence of the Blazer 4.0 web browser. Instead, simply check to
see if the user agent string contains the substring Blazer/4.0.

Web developers can use this header to send the version of a web page optimized
for display by the Blazer web browser.

Cookies
The Blazer web browser contains support for cookies. Typically, web site
developers use cookies to store a small amount of information about a user’s ID or
profile, web site personalization, and so forth. As with any web browser, users can

Chapter 11 Style Guide

172

have the Blazer web browser not accept cookies or clear out the cookie store.
Cookies are stored on the local Palm OS device.

The Blazer web browser contains full support for the SET-COOKIE header. The only
restriction is that the value attribute must not exceed 2000 bytes. Cookies with a
value attribute larger than 2000 bytes may be rejected. Other types of cookie
headers are not supported.

If a cookie has an expiration date, then it is a persistent cookie. If there is no
expiration date, it is a session cookie and the cookie is purged when the session is
terminated.

Session handling
On a desktop browser, a session cookie persists until the user quits the web
browser. On a Palm OS® device, only one application can be active at any given
time. To take into account that a user may temporarily switch to another
application while using the Blazer web browser, the system ends a session
20 minutes after the Blazer web browser exits. (This time may vary based on the
wireless service provider.)

Security
The Blazer web browser uses the standard Palm OS security libraries—the same
libraries that are shipped with every version of Palm OS 5.2.1 and later. The Blazer
web browser incorporates 128-bit SSL 3.0 encryption technology to ensure that
visiting any site with a device is as secure as browsing from a desktop. The 128-bit
encryption uses the RC4 algorithm and RSA-based key exchange. It also
incorporates RSA-based digital signature verification, MD5 and SHA-1 secure
hash algorithms, support for X.509 certificates, and an intuitive indication of a
secure connection by a lock icon in the toolbar or URL bar.

Caching
The Blazer web browser includes a web page cache to improve performance. If a
page requires a regular refresh, or should not be cached, the web server must send
the appropriate standard HTTP cache control headers in the HTTP response.

Downloads
Blazer 4.0 web browser limits downloads to 2MB.

Testing your web site
Designing your web pages will most likely be an iterative process. We recommend
that you test your web sites early and frequently to ensure that you are able to
achieve the intended design and layout. The following sections contain a few
pointers to help you successfully test your web site’s content.

Multiple devices
If you intend your content to be accessible through a variety of devices, be sure to
test your web site with as many of those devices as possible during the

Designing pages for the Blazer® web browser

173

development process. Areas you should look at in particular are device memory
and screen size.

Refreshing content
Because the Blazer web browser uses cached pages on a device to provide quick
access to frequently viewed content, constant updates to a web page during
development may not be visible on the device. We recommend that you set the
cache size to zero during testing. During development, you should use the Clear
button in Preferences to clear out the cache and use the Page -> Refresh menu
command to make sure the current page is loaded. Images are typically refreshed
when the page is refreshed. If images are not being updated in the Blazer web
browser, the cache should be cleared out or the image filename should be changed.

International support
The Blazer web browser client supports the Palm OS character set. This character
set is similar to the ISO-8859-1 character set. The Palm OS character set allows
support for most Western European characters. The Blazer web browser
application has also been localized into the following European languages:

■ English

■ French

■ Italian

■ German

■ Spanish

HTML encoding
The Blazer web browser supports web pages that are encoded using the
ISO-8859-1 and UTF-8 character formats. This allows Western European languages
to be displayed properly on the Blazer web browser client. Web pages that are
encoded in UTF-8 must indicate so by including one of the following tags:

Content-type HTTP Header:

Content-Type: text/html; charset=utf-8

HTTP-equiv META Tag:

<META http-equiv="content-type" content="text/html; charset=utf-8"\

WML Encoding
WML content is typically encoded in UTF-8 format. WML pages that are encoded
in the ISO-8859-1 format must indicate so by including one of the following tags:

Content-type HTTP Header:

Content-Type: text/vnd.wap.wml; charset=iso-8859-1

HTTP-equiv META Tag:

Chapter 11 Style Guide

174

<META http-equiv="content-type" content="text/vnd.wap.wml; charset=iso-
8859-1"\

XML Tag:

<?xml version="1.0" encoding="iso-8859-1"\

Accept headers
The Blazer web browser client supports Accept HTTP headers. The client sends
this header to the web server based on the languages the client supports. You can
use this header to determine what type of content to deliver to the device.

The Blazer Web Browser 3.0 Accept headers for an English ROM appear as follows:

Accept: text/html, application/vnd.wap.xhtml+xml, application/xhtml+xml;
profile="http://www.wapforum.org/xhtml", image/gif, image/jpeg, image/
pjpeg, */*
Accept-Language: en, *;q=0.8

The Blazer 4.0 web browser Accept header is similar to the Blazer 3.0 header,
except that it also includes every type currently registered with the Palm OS
Exchange Manager.

(The Accept-Language header varies based on the current language selected upon
setup of the device.)

Accept-Encoding: deflate, gzip

List of Acronyms
The following table lists web browser and internet acronyms.

Acronym Definition

cHTML Compact HTML. A subset of HTML for mobile devices. Primarily
used in i-Mode devices.

ECMA European Computer Manufacturers Association.

GIF Graphics Interchange Format.

HDML Handheld Device Markup Language. An old format used for web-
enabled phones. This is no longer used.

HTML Hypertext Markup Language.

HTTP Hypertext Transfer Protocol.

ISO International Organization for Standards. The name is derived
from the Greek word iso, meaning “equal.”

JPEG Joint Photographic Experts Group.

PNG Portable Network Graphics.

Designing pages for the Blazer® web browser

175

TCP/IP Transmission Control Protocol/Internet Protocol.

UCS Universal Character Set.

UTF UCS Transformation Format.

WAP Wireless Application Protocol.

WBMP Wireless Bitmap. A graphic format optimized for wireless devices.

WML Wireless Markup Language.

XHTML Extensible HTML. A cross between HTML and XML.

XML Extensible Markup Language.

Acronym Definition

Chapter 11 Style Guide

176

Palm OS Integration Tags
The Blazer web browser supports several tag attributes that extend HTML support
for Palm OS devices, as shown in the following table.

Keyword Description

HandheldFriendly This attribute for the META tag tells the proxy server that the
web page has been specifically designed for small screens.
The proxy server tries to render the tables as close to
specification as possible. Example:

<META name="HandheldFriendly" content="True">

Palm™ This keyword is used in the HREF attribute to launch a specific
application on the device. Blazer web browser exits and the
specified application becomes the active application.
Example:

Memo Pad

Palmcall This keyword is similar to the Palm keyword except that Blazer
web browser sublaunches the specified application. Once the
application exits, the user returns to Blazer web browser. For
example:

Flipper

Parameters can also be passed into the application using the
sysAppLaunchCmdURLParams launch code. For more
information on this and the palm and palmcall tags, please
refer to the following tutorial on the Palm OS Developer web
site:

www.palmos.com/dev/tech/webclipping/tutorials/
tutorial_palm.html

TLI-Is this link still valid?

phoneto: and tel: These keywords are equivalent and are used in the HREF
attribute to dial a specific phone number.

Blazer web browser exits and the phone application becomes
the active application when these keywords are used.

Examples:

Jenny and Empire

http://www.palmos.com/dev/tech/webclipping/tutorials/tutorial_palm.html

Designing pages for the Blazer® web browser

177

file: This keyword is used in the HREF attribute, in the URL bar, and
in the Open URL dialog box to access browser content stored
locally on an expansion card. A network connection is not
required when accessing content using file:///.

Note that the syntax always includes three slashes after file:

Blazer 3.0 web browser supports the following syntax:

file://dir1/dir2/file.txt

In this example, Blazer 3.0 web browser would attempt to
open the file file.txt located on the expansion card in directory
/dir1/dir2.

In addition to the Blazer 3.0 syntax, Blazer 4.0 web browser
includes support for an additional syntax that handles devices
with multiple expansion cards better, such as the Tungsten T5
handheld. T

An example of the additional syntax is:

file:///volname/dir1/dir2/file.txt

In this example, Blazer 4.0 would locate the expansion card
named volname, and then open file file.txt in directory /dir1/
dir2 on that expansion card.

Keyword Description

Chapter 11 Style Guide

178

Gadgets
In the Phone application on Treo smartphones, there is a fixed position for the
system gadgets. For third-party applications to be consistent with the Phone
application, they should position the system gadgets in the same location. We have
included suggestions for placement of the gadgets based on the Phone application.

Required headers and libraries
The following headers and libraries are required to use the gadgets:

■ PmSysGadgetLibrary

– 68K/Libraries/PmSysGadgetLib/PmSysGadgetLib.h

– Common/Libraries/PmSysGadgetLib/PmSysGadgetLibCommon.h

This is the library that contains the system Battery, Signal, and Bluetooth gadget
implementation.

How to include the Battery gadget
To include the Treo smartphone Battery gadget in an application form, do the
following:

1. Add a gadget to the application form at position (304, 0) for 320 x 320 resolution
for a Treo 650 smartphone. Use half these dimensions for a Treo 600
smartphone.

Because the system determines the height and width of the gadget, the width
and height specified in the rcp/rsrc file will not matter.

2. In the application form event handler for frmOpenEvent, add the following code:

PmSysGadgetStatusGadgetTypeSet (gPmSysGadgetLibRefNum
 frmP,
 <YOUR_BATTERY_GADGET_ID>,
 pmSysGadgetStatusGadgetBattery);

Updates and events associated with the Battery gadget are handled automatically.

Gadgets

179

How to include the Signal gadget
To include the Treo 650 smartphone Signal gadget in an application form, do the
following:

1. Add a gadget to the application form at position (278, 0) for 320 x 320 resolution
for a Treo 650 smartphone. Use half these dimensions for a Treo 600
smartphone. Because the system determines the height and width of the gadget,
the width and height specified in the rcp/rsrc file will not matter.

2. In the application form event handler for frmOpenEvent, add the following code:

PmSysGadgetStatusGadgetTypeSet (gPmSysGadgetLibRefNum
 frmP,
 <YOUR_SIGNAL_GADGET_ID>,
 pmSysGadgetStatusGadgetSignal);

Updates and events associated with the Signal gadget are handled automatically.

How to include the Bluetooth® gadget
To include the Treo 650 smartphone Bluetooth® gadget in an application form, do
the following. (Note that the Treo 600 smartphone does not include Bluetooth
technology):

1. Add a gadget to the application form at position (260, 0) for 320 x 320 resolution
for a Treo 650 smartphone. Use half these dimensions for a Treo 600
smartphone. Because the system determines the height and width of the gadget,
the width and height specified in the rcp/rsrc file will not matter.

2. In the application form event handler for frmOpenEvent, add the following code:

PmSysGadgetStatusGadgetTypeSet (gPmSysGadgetLibRefNum
 frmP,
 <YOUR_BLUETOOTH_GADGET_ID>,
 pmSysGadgetStatusGadgetBt);

Updates and events associated with the Bluetooth gadget are handled
automatically.

Chapter 11 Style Guide

180

193

Index

F
Full-screen writing

description 129

G
Graffiti 2 shift indicator. See GSI
Graffiti 2 Writing on LCD Manager. See GoL-

CD Manager
GSI

description 129

I
Inking

description 129

Index

194

	palmOne™ Fall ’04 Developer Guide
	Contents
	Overview
	How this guide is organized
	Where the APIs are described
	Installing the SDK

	Product Line Overview
	Treo™ smartphone product line
	What’s not supported by Treo smartphones

	Tungsten product line
	What’s not supported by Tungsten handhelds

	Zire product line
	What’s not supported by Zire handhelds

	Hardware features
	Software compatibility specifications (palmOne libraries)

	Multimedia
	Ring tones library
	Available on:
	Ring tone database
	Palm OS MIDI File Format
	Treo smartphone ring tone database information
	Restoring the system ring tone database
	Tools for Ring Tone files

	Voice Recording and Sound API
	Available on:

	Camera Manager API
	Available on:
	Using the Camera Manager API
	Overview of the camera feature
	Handheld resources required for camera functionality

	palmOne Photos API
	Codec Plug-in Manager API
	Codec Plug-in Manager API Overview
	Codec Plug-in Manager process
	Codec media formats

	Data Communications
	NetPref library API
	Available on:
	Loading the library
	NetPref library Information
	NetPref panel

	HTTP library
	Available on:
	Architecture
	Functional highlights
	HTTP library interface to SSL
	HTTP library use of Certificates/Public Key Infrastructure
	HTTP library implementation
	General HTTP program information

	Net Services API
	Available on:
	Overview of the Net Services feature

	Telephony
	Overview of the Telephony API libraries
	Available on:

	CDMA and GSM library differences
	GSM Connected indicator
	Operator’s Name indicator
	Voicemail indicator
	Launching the Phone application in a specific view
	Required headers
	Launching the Phone application in Call Log view
	Launching the Phone application in Dial Pad view
	To launch in Dial Pad view and automatically dial a phone number
	To launch in Dial Pad view and prefill the number field
	To launch in Dial Pad view without a phone number

	Launching the Phone application in the Favorites view

	Launching the Contacts application with the New Contact window open
	Required headers

	SMS
	What is the difference between SMS and NBS?
	SMS library
	Available on:

	What is SMS?
	Why use the SMS library?
	Understanding the SMS library
	Incoming messages and message events
	Outgoing messages
	Handling the GSM alphabet and Palm OS alphabet
	Message segmentation
	Binary segmentation
	Textual segmentation

	Message database
	Header information
	SMS Header Structure
	Segmentation information
	Address information
	Message text

	Launching SMS from the New SMS screen

	System Extensions
	Transparency API
	Available on:

	File Browser API
	Available on:

	Smart Text Engine API
	Available on:
	STE Architecture
	STE Parsing Engine
	STE Rendering Engine
	STE Display Engine

	REM Sleep API
	Available on:
	Normal sleep deferral
	REM sleep mode
	Detecting REM sleep mode
	Waking up from REM sleep mode

	Keyguard API
	Available on:
	Option and Shift key APIs

	MMS helper functions API
	Available on:
	MMS Usage Model
	MMS Sample Code

	NVFS API
	Available on:
	Differences between NOR and NAND flash memory
	Programming on devices that have NVFS
	Checking for NVFS
	Database issues
	Accessing the internal file volumes in NVFS
	Feature pointer issues

	5-Way Navigation and Keyboard API
	Available on:
	5-way navigation terminology
	Overview of 5-way navigation
	Navigation events
	Option and Shift modifiers

	Including objects as skipped objects
	Default navigation
	Initial focus mode
	UI objects included in the navigation order
	Tab order
	Vertical order
	Initial focus
	Cycling

	Custom navigation
	Hex navigation resource
	PilRC navigation resource
	Objects that become nonusable
	Handling navigation events

	Focus treatment
	Navigational API and behavioral differences between Treo™ 600 smartphones, Treo 650 smartphones, and Tungsten™ T5 handhelds
	Palm OS Features
	Functions
	Associating custom behavior with the Center button
	New Center button events for Treo 650 smartphones and Tungsten T5 handhelds
	Paging
	Palm navigation macros

	Tips and pitfalls
	Navigation Order
	Focus
	Focus Rings and Redraw Problems
	Fields

	Handspring extensions
	Available on:

	Tips and Tutorials
	Available on:
	Terminology
	Tips
	Tutorial
	Topic
	Lesson

	Content
	Topic titles
	Lesson text
	Lesson images

	Tips and Tutorial structure
	Menu document
	Lesson document
	XML document

	Converting Tips and Tutorial content in a PRC file
	What you need
	Converting content into an XRD resource file
	Converting a Palm XRD resource file into a PRC

	Displaying Tips and Tutorial content
	Displaying Application Tips
	Displaying a Tutorial

	Graphic Element Design Guidelines
	Tutorial Main Menu
	Tutorial Content Pages
	Images that are in the shared content library in the device’s ROM

	Full-Screen Writing API
	Available on:
	Overview of the full-screen writing feature

	Applications
	Web Browser API
	Available on:
	How the web browser works
	Web Browser Feature Overview
	Protocol stack support
	Overview of key web browser features

	Download manager
	Content support
	Download restrictions

	Launching the web browser on Treo smartphones
	Launching the web browser in minimal mode

	VersaMail® application API
	Prerequisite knowledge required for using the VersaMail Device APIs
	Overview of the VersaMail Device APIs
	VersaMail Account Configuration
	Overview of the MMDevice database
	MMDevice database record keys

	Adding Outgoing E-mail to VersaMail Folders
	Overview of adding e-mail to the Outbox

	VersaMail Font library
	Checking whether the Font library is present
	Using the Font library

	VersaMail Attachment Plug-ins API
	Overview of how the VersaMail application handles plug-ins
	Overview of plug-in design

	Multi-connector Specifications
	Overview
	Available on:

	Pinout of the multi-connector
	Shielding
	USB
	Serial interface hardware
	Serial interface software
	HotSync interrupt hardware
	HotSync interrupt software
	Power output
	Audio detection
	Audio output

	Peripheral requirements
	Audio peripherals
	General serial peripherals

	Peripheral detection
	Class-level detection
	Peripheral attachment
	Peripheral removal

	Audio peripheral detection timing diagrams
	Peripheral detection timing specifications

	Interfacing with an audio peripheral

	Debugging
	Debugging on Treo™ smartphones
	Available on:
	Handling of fatal errors
	DebugPref for Treo smartphones
	Settings
	Buttons
	Which debugger nub is currently active?

	How to connect to a Treo smartphone for debugging
	To switch to debug or console mode:

	Treo smartphone version of the Palm OS® simulator
	5-way button keystroke equivalents

	Source Level Debugging
	Using Palm Debugger
	To debug using Palm Debugger, follow this procedure:

	Using Metrowerks Code Warrior

	Style Guide
	Designing pages for the Blazer® web browser
	Available on:
	General rules for web page design
	Screen resolution
	Connection speed
	Content
	Page titles
	Content optimized for the Blazer web browser
	Embedded Audio Playback
	File upload
	mailto command
	Multipass rendering
	Forms
	Tables
	Images
	Unsupported content

	Working with the Blazer web browser
	Palm OS integration tags
	Browser identification
	Cookies
	Session handling
	Security
	Caching
	Downloads

	Testing your web site
	Multiple devices
	Refreshing content

	International support
	HTML encoding
	WML Encoding
	Accept headers

	List of Acronyms
	Palm OS Integration Tags

	Gadgets
	Required headers and libraries
	How to include the Battery gadget
	How to include the Signal gadget
	How to include the Bluetooth® gadget

	DRAFT: BETA DRAFT palmOne, Inc. Confidential

